
Filomat 35:3 (2021), 759–769
https://doi.org/10.2298/FIL2103759D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The main objective of the paper is to prove some unified common fixed point theorems for a
family of mappings under a minimal set of sufficient conditions. Our results subsume and improve a host
of common fixed point theorems for contractive type mappings available in the literature of the metric fixed
point theory. Simultaneously, we provide some new answers in a general framework to the problem posed
by Rhoades (Contemp Math 72, 233-245, 1988) regarding the existence of a contractive definition which is
strong enough to generate a fixed point, but which does not force the mapping to be continuous at the fixed
point. Concrete examples are also given to illustrate the applicability of our proved results.

1. Introduction and preliminaries

One of the fundamental questions in fixed point theory is to seek or identify sufficient conditions which
on imposing on the set X and/or the mapping T, assure a nonempty set of fixed points, i.e., Fix(T) , φ.
Common fixed point theorems are natural extensions of fixed point theorems. It is more efficient to study
fixed point theorems for a pair or a family of mappings satisfying some conditions rather than fixed point
theorems satisfying an individual mapping. These conditions are generally sufficient conditions and include
continuity or weaker form of continuity, containment of range of the mappings, a noncommuting condition
besides a contractive condition and every substantial common fixed point theorem attempts to minimize
the set of conditions by weakening one or more of these sufficient conditions. In addition to ensuring
existence of a common fixed point, it may be necessary to prove its uniqueness. From a computational
view, a constructive algorithm to calculate the value of a common fixed point is desirable. Such algorithms
often require iterates of the given mappings.

The interdependence of common fixed points and commuting mappings was first observed by Jungck
[24]. His result in the setting of complete metric spaces yields an abstraction of the Banach contraction
principle and partially answers the historical open question (see [6, 21]): For a pair of commuting self
mappings (S,T) on the [0, 1], what additional conditions guarantee that S and T have a common fixed
point?

Jungck’s result motivated researcher to investigate common fixed point theorems for commuting and
noncommuting pairs of mappings satisfying contractive conditions. The constructive technique used by
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Jungck has been further improved and extended by other researchers to establish common fixed point
theorems for three, four and sequence of mappings.

Definition 1.1. Let (X, d) be a metric space with S,T : X→ X. A pair of mappings (S,T) is said to be:

(1) compatible [25] if limn→∞ d(STxn,TSxn) = 0, whenever {xn} is a sequence in X such that limn→∞ Sxn =
limn→∞ Txn = t for some t in X.

(2) α-compatible [56] if

lim
n→∞

d(STxn,TSxn) = 0, lim
n→∞

d(SSxn,TSxn) = 0, lim
n→∞

d(STxn,TTxn) = 0, lim
n→∞

d(SSxn,TTxn) = 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for some t in X.

(3) quasi-α-compatible [56] provided every sequence {xn} in X satisfying lim
n→∞

Sxn = lim
n→∞

Txn = t for some t

in X splits into most four subsequences such that any of these subsequences, say
{
xni

}
, satisfies at least

one of the four conditions lim
ni→∞

d(STxni ,TSxni ) = 0, lim
ni→∞

d(SSxni ,TSxni ) = 0, lim
ni→∞

d(STxni ,TTxni ) = 0,

lim
ni→∞

d(SSxni ,TTxni ) = 0.

(4) semi α-compatible [57] if lim
n→∞

d(STxn,TSxn) = 0 or lim
n→∞

d(SSxn,TSxn) = 0

or lim
n→∞

d(STxn,TTxn) = 0 or lim
n→∞

d(SSxn,TTxn) = 0, whenever {xn} is a sequence in X satisfying Sxn,Txn ∈

SX ∩ TX and lim
n→∞

Sxn = lim
n→∞

Txn = t for some t in X.

(5) weakly compatible [26] if, for all x ∈ X, Sx = Tx implies that STx = TSx.

(6) non-trivially weakly compatible if S and T commute on the set of coincidence points, whenever C(S,T) = {x ∈
X : Sx = Tx} , φ, i.e., the set of coincidences is nonempty.

Remark 1.2. It is well-known that the compatibility implies quasi-α-compatibility or semi α-compatibility but the
converse need not be true [57]. However, quasi-α-compatibility and semi α-compatibility are independent to each
other [57]. A systematic study of the relationship between various noncommuting conditions can be found in [20].

Remark 1.3. It may be observed that weakly compatible mappings commute at all the coincidence points, hence
a minimal noncommuting condition for the existence of common fixed point for contractive type mapping pairs.
However, the notion of semi α-compatibility is useful not only in establishing the existence of a coincidence point but
also implies commutativity at coincidence points.

Common fixed point theorems for a sequence of mappings have been studied by several authors. The
best known results along these lines are the following theorems which encompass most of the results
established in the literature of metric fixed point theory.

Theorem 1.4. (Jungck et al. [27]) Let (X, d) be a complete metric space and S,T selfmaps of X with S or T continuous.
Suppose their exist a sequence {Ai} of selfmaps of X satisfying

(i) either Ai : X→ SX ∩ TX for each i; or
(i’) S,T : X→ ∩iAiX;
(ii) each Ai is compatible with S and T;

(iii) for any ε > 0 their exist a δ > 0 , δ being lower semicontinuous, such that

ε ≤ max{d(Sx,Ty), d(Aix,Sx), d(A jy,Ty), [d(Aix,Ty) + (A jy,Sx)]/2} < ε + δ⇒ d(Aix,A jy) < ε.

Then all the Ai,S and T have a unique common fixed point.

Theorem 1.4 is actually a correction of the result of Rhoades et al. [68].
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Theorem 1.5. (Jachymski [22]) Let S and T be selfmaps of a complete metric space (X, d) and either S or T continuous.
Let {Ai}

∞

i=0 be a sequence of selfmaps of X satisfying

(i) A0X ⊂ TX, AiX ⊂ SX for i ∈N;
(ii) pairs of (A0,S) and (Ai,T), i ∈N, are compatible;

(iii) for each i ∈ N there exists an upper semicontinuous function φi : R+ → R+ such that φi(t) < t for all t > 0
and for any x, y ∈ X,

d(A0x,Aiy) ≤ φi(max{d(Sx,Ty), d(A0x,Sx), d(Aiy,Ty), [d(A0x,Ty) + d(Aiy,Sx)]/2}).

Then all the Ai, i ∈N ∪ {0}, S and T have a unique common fixed point.

The following key lemma connects Theorems 1.4 and 1.5.

Lemma 1.6. [22] Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a metric space (X, d). For any x, y ∈ X and
i, j ∈N define

Mi j(x, y) = max{d(Sx,Ty), d(Aix,Sx), d(A jy,Ty), [d(Aix,Ty) + d(A jy,Sx)]/2}).

Then the following statements are same:

(I) There exists a lower semi continuous function δ : R+ → R+ such that, for any ε > 0, δ(ε) > ε and for x, y ∈ X
and i, j ∈N with i , j

ε ≤Mi j(x, y) < δ(ε) implies d(Aix,A jy) < ε.

(II) There exists an upper semi continuous function φ : R+ → R+ such that φ is nondecreasing, φ(t) < t for all
t > 0, and

d(Aix,A jy) ≤ φ(Mi j(x, y)), for x, y ∈ X and i, j ∈N with i , j.

In 1996, Pant [53] proved the following theorem which is one of the most general fixed point theorem
for a sequence of mappings.

Theorem 1.7. (Pant [53]) Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) and any
one of A1,A2,S and T be continuous such that

(i) A1X ⊂ TX, A2X ⊂ SX;
(ii) pairs of (A1,S) and (A2,T) are compatible;

(iii) there exists an upper semicontinuous function φ : R+ → R+ such that φ(t) < t for all t > 0 and for any
x, y ∈ X
d(A1x,A2y) ≤ φ(max{d(Sx,Ty), d(A1x,Sx), d(Aiy,Ty), [d(A1x,Ty) + d(Aiy,Sx)]/2}));

(iv) d(A1x,Aiy) < max{d(Sx,Ty), d(A1x,Sx), d(Aiy,Ty), [d(A1x,Ty) + d(Aiy,Sx)]/2}).

Then all the Ai,S and T have a unique common fixed point.

If S and T are self-mappings of a metric space (X, d) and if {xn} is a sequence in X such that Sxn = Txn+1,n =
0, 1, 2, ..., then the set O(x0,S,T) = {Sxn : n = 0, 1, 2, ...} is called the (S,T)-orbit at x0 and T (or S ) is called
(S,T)-orbitally continuous [12] if limn Sxn = z implies limn TSxn = Tz (or limn Sxn = z implies limnSSxn = Sz).

The main objective of this paper is to prove common fixed point theorems for a family of mappings
satisfying a minimal set of sufficient conditions. Our results generalize the results of Ćirić [12, 13], Fisher
[16–18], Boyd and Wong [7], Agarwal et al. [1], Husain and Sehgal [32], Browder [9], Chang [10], Jungck
[24–26], Jungck et al. [27–29], Jachymski [22, 23], Sessa [70], Sessa et al. [72], Pant [53, 57], Pathak et al.
[60, 61], Pathak and Khan [62], Singh [73], Singh and Singh [74], Singh and Tiwari [75], Hadjic [30], Iseki
[34], Kaneko [35], Khan [38], Khan et al. [39, 40], Kubiak [41], Matkowski [43], Mukherjee [49], Kang and
Kim [37], Meir and Keeler [44], Maiti and Pal [42], Park and Bae [58], Park and Moon [59], Rao and Rao
[63, 64], Ray [65], Reilly [66], Rhoades et al. [68], Sehgal [70], Rus [69], Yeh [76, 77] and many others.
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2. Main Results

In the following theorems we shall denote

M1i(x, y) = max{d(Sx,Ty), d(A1x,Sx), d(Aiy,Ty), [d(A1x,Ty) + d(Aiy,Sx)]/2}

for any x, y ∈ X. Also, let φ : R+ → R+ denote an upper semicontinuous function such that φ(t) < t for all
t > 0.

Theorem 2.1. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y), whenever M1i(x, y) > 0.

Let S be semi α−compatible with A1 and T be semi α−compatible with Ak for some k > 1. If the mappings in one of the
semi α−compatible pairs (A1,S) or (Ak,T) are orbitally continuous, then all the Ai,S and T have a unique common
fixed point.

Proof. Let x0 be any point in X. Define sequences {xn} and {yn} in X given by the rule

y2n = A1x2n = Tx2n+1, y2n+1 = A2x2n+1 = Sx2n+2.

This can be done by virtue of (i). if A1x2n = A2x2n+1 or A2x2n+1 = A1x2n+2 for some value of n ∈ N ∪ {0},
it becomes easier to establish the existence of the fixed point. So let us assume that A1x2n , A2x2n+1 and
A2x2n+1 , A1x2n+2, for every value of n ∈N ∪ {0}, then by virtue of (ii), we obtain

(1) d(y2n, y2n+1) ≤ φ(d(y2n−1, y2n)) < d(y2n−1, y2n) and
(2) d(y2n−1, y2n) ≤ φ(d(y2n−2, y2n−1)) < d(y2n−2, y2n−1).

We thus see that {d(yn, yn+1)} is a strictly decreasing sequence of positive numbers and hence tends to a limit
r ≥ 0. Suppose r > 0. Then relation (1) on making n→∞ and in view of upper semi continuity of φ yields
r ≤ φ(r) < r, a contradiction. Hence r = limn→∞ d(yn, yn+1) = 0. We show that {yn} is a Cauchy sequence.
Suppose it is not. Then there exist an ε > 0 and a subsequence {yni } of {yn} such that d(yni , yni+1 ) > 2ε. Since
limn→∞ d(yn, yn+1) = 0, there exist integers mi satisfying ni < mi < ni+1 such that d(yni , ymi ) ≥ ε. If not, then

d(yni , yni+1 ) ≤ d(yni , yni+1−1) + d(yni+1−1, yni+1 ) < ε + d(yni+1−1, yni+1 ) < 2ε

a contradiction. If mi be the smallest integer such that d(yni , ymi ) ≥ ε then

ε ≤ d(yni , ymi ) ≤ d(yni , ymi−2) + d(ymi−2, ymi−1) + d(ymi−1, ymi ) < ε + d(ymi−2, ymi−1) + d(ymi−1, ymi ).

That is, there exists integers mi satisfying ni < mi < ni+1 such that d(yni , ymi ) ≥ ε and

(3) limni→∞ d(yni , ymi ) = ε.

Without loss of generality we can assume that ni is odd and mi even . Now, by virtue of (1), we have

d(yni+1, ymi+1) ≤ φ(d(yni , ymi) + d(yni , yni+1).

Now, on letting ni → ∞ and in view of (3) and upper semi continuity of φ, the above relation yields
ε ≤ φ(ε) < ε, a contradiction. Hence {yn} is a Cauchy sequence. Since X is complete, there exists a point z in
X such that yn → z. Also

y2n = A1x2n = Tx2n+1 → z and y2n+1 = A2x2n+1 = Sx2n+2 → z.

We show that Aix2n+1 → z for each i > 2. If limn Aix2n+1 , z for some i > 2, then there exists a subsequence
{Aix2m+1} of {Aix2n+1}, a number r > 0 and a positive integer M such that for each m ≥ M we have
d(A1x2m,Aix2m+1) ≥ r, d(Aix2m+1, z) ≥ r and

d(A1x2m,Aix2m+1) < M1i(x2m, x2m+1) = d(A1x2m,Aix2m+1),
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a contradiction. Hence Aix2n+1 → z for each i > 1.
Suppose that T is semi α−compatible with Ak for some k > 1 and T and Ak are orbitally continu-

ous. Then orbital continuity of Ak and T implies that AkTx2n+1 → Akz,AkAkx2n+1 → Akz,TAkx2n+1 →

Tz and TTx2n+1 → Tz. Semi α−compatibility of Ak and T yields limn→∞ d(AkTx2n+1,TAkx2n+1) = 0 or
limn→∞ d(AkTx2n+1,TTx2n+1) = 0 or limn→∞ d(TAkx2n+1,AkAkx2n+1) = 0 or limn→∞ d(AkAkx2n+1,TTx2n+1) = 0,
whenever {xn} is a sequence in X satisfying Akxn,Txn ∈ AkX ∩ TX and limn→∞ Akx2n+1 = limn→∞ Tx2n+1 = z
for some z in X. Hence Akz = Tz.

Since AkX ⊂ SX, there exists a point u in X such that Akz = Su. We show that Su = A1u. If not, then the
inequality

d(A1u,Akz) < M1k(u, z) = d(A1u,Akz)

yields a contradiction. Hence Tz = Akz = Su = Au.

Semi α−compatibility of A1 and S implies that A1A1u = A1Su = SA1u = SSu. Similarly, Semi
α−compatibility of Ak and T implies that AkAkz = AkTz = TAkz = TTz. If A1u , A1A1u using (iii) we
get

d(A1u,A1A1u) = d(A1A1u,Akz) < M1k(A1u, z) = d(A1A1u,Akz),

a contradiction. Hence A1u = A1A1u and A1u = A1A1u = SA1u, i.e., A1u is a common fixed point of A1
and S. Similarly, using (iii) we find that Akz(= A1u) is a common fixed point of Ak and T. Moreover, if
Akz , AiAkz for some i > 1, using (iii) we get

d(Akz,AiAkz) = d(A1u,AiAkz) < M1i(u,Akz) = d(A1u,AiAkz),

a contradiction. Hence Akz(= A1u) is a common fixed point of T and Ai for i > 1. The proof is similar when
A1 and S are assumed semi α−compatible and orbitally continuous. Uniqueness of the common fixed point
follows easily.

Remark 2.2. Theorem 2.1 is also true if we replace the condition (i), i.e., A1X ⊂ TX and AiX ⊂ SX when i > 1 by
the following condition: Given x0 in X there exist x1 and x2 in X such that A1x0 = Tx1 and Aix1 = Sx2 when i > 1.

Theorem 2.3. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y), whenever M1i(x, y) > 0.

Let S be α−compatible with A1 and T be α−compatible with Ak for some k > 1. If the mappings in one of the
α−compatible pairs (A1,S) or (Ak,T) are orbitally continuous, then all the Ai,S and T have a unique common fixed
point.

Proof. The proof is similar to the proof of Theorem 2.1.

We now give a common fixed point theorem in which the notion of semi α−compatibility is replaced by
an independent notion of quasi α−compatibility.

Theorem 2.4. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y),A1x , Aiy.

Let S be quasi α−compatible with A1 and T be quasi α−compatible with Ak for some k > 1. If the mappings in
one of the quasi α−compatible pairs (A1,S) or (Ak,T) are orbitally continuous, then all the Ai,S and T have a unique
common fixed point.
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Proof. The proof can be written in the same lines of the proof of Theorem 2.1.

The following corollaries are easy consequences of Theorem 2.1.

Corollary 2.5. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y),A1x , Aiy.

Let S be quasi α−compatible with A1 and T be quasi α−compatible with Ak for some k > 1. If the mappings in
one of the quasi α−compatible pairs (A1,S) or (Ak,T) are continuous, then all the Ai,S and T have a unique common
fixed point.

Corollary 2.6. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y),A1x , Aiy.

Let S be quasi R−commuting with A1 and T be quasi R−commuting with Ak for some k > 1. If the mappings in
one of the quasi R−commuting pairs (A1,S) or (Ak,T) are orbitally continuous, then all the Ai,S and T have a unique
common fixed point.

Putting k = 1, 2 in Theorem 2.1, we get the following result for four mappings.

Theorem 2.7. Let A1,A2,S and T be selfmappings of a complete metric space (X, d) such that for all x, y ∈ X,

(i) A1X ⊂ TX, A2X ⊂ SX;
(ii) d(A1x,A2y) ≤ φ(max{d(Sx,Ty), d(A1x,Sx), d(A2y,Ty), [d(A1x,Ty) + d(A2y,Sx)]/2}).

Let S be semi α−compatible with A1 and T be semi α−compatible with A2. If the mappings in one of the semi
α−compatible pairs (A1,S) or (A2,T) are orbitally continuous, then A1,A2,S and T have a unique common fixed
point.

Taking A2 = A1 and T = S in Theorem (2.7), we get the following fixed point theorem for a pair of
mappings:

Theorem 2.8. Let A1 and S be selfmappings of a complete metric space (X, d) such that for all x, y ∈ X,

(i) A1X ⊂ SX;
(ii) d(A1x,A1y) ≤ φ(max{d(Sx,Sy), d(A1x,Sx), d(A1y,Sy), [d(A1x,Sy) + d(A1y,Sx)]/2}).

Let S be semi α−compatible with A1 and (A1,S) be orbitally continuous. Then A1 and S have a unique common fixed
point.

By putting in Theorem 2.7, S = T = I, the identity mapping on X, we get a distinct category of common
fixed point theorems where we do not require the mappings to satisfy any commuting or noncommuting
conditions.

Theorem 2.9. Let A1 and A2 be selfmappings of a complete metric space (X, d) such that for all x, y ∈ X,

d(A1x,A2y) ≤ φ(max{d(x, y), d(A1x, x), d(A2y, y), [d(A1x, y) + d(A2y, x)]/2}).

Also, let φ : R+ → R+ be an upper semicontinuous function such that φ(t) < t for all t > 0. Then A1 and A2 have a
unique common fixed point.

Putting A2 = A1 and S = T = I, the identity mapping on X in Theorem (2.9), we get the following result:
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Corollary 2.10. [Agarwal et al [1]] Let A1 be a selfmapping of a complete metric space (X, d) such that for all x, y ∈ X,

d(A1x,A1y) ≤ φ(max{d(x, y), d(A1x, x), d(A1y, y), [d(A1x, y) + d(A1y, x)]/2}).

Also, let φ : R+ → R+ be an upper semicontinuous function such that φ(t) < t for all t > 0. Then A1 has a unique
fixed point.

Corollary 2.11 (Boyd and Wong [7]). Let A1 be a selfmapping of a complete metric space (X, d) such that for all
x, y ∈ X,

d(A1x,A1y) ≤ φ{d(x, y)}.

Also, let φ : R+ → R+ be an upper semicontinuous function such that φ(t) < t for all t > 0. Then A1 has a unique
fixed point.

In the next theorem we obtain a generalization of Theorem 2.1 by dropping the assumption on orbital
continuity and semi α−compatibility of the mappings and completeness of the space an replacing the later
two by nontrivial weak compatibility and completeness of the range of one of the mappings.

Theorem 2.12. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y), whenever M1i(x, y) > 0.

Let S be nontrivially weakly compatible with A1 and T be nontrivially weakly compatible with Ai for some i > 1. If
the range of one of the mappings be a complete subspace of X, then all the Ai,S and T have a unique common fixed
point.

Proof. Let x0 be any point in X. Define sequences {xn} and {yn} in X given by the rule

y2n = A1x2n = Tx2n+1, y2n+1 = A2x2n+1 = Sx2n+2.

Then proceeding exactly as in Theorem (2.1) it follows that {yn} is a Cauchy sequence and {y2n = A1x2n =
Tx2n+1} and {y2n+1 = A2x2n+1 = Sx2n+2} are also Cauchy sequences. Suppose that the range of T is a complete
subspace of X. Then, since {y2n = Tx2n+1} is a Cauchy sequence in TX, there exists some u ∈ X such that
Tx2n+1 → Tu. Thus A1x2n = Tx2n+1 → Tu and A2x2n+1 = Sx2n+2 → Tu. We now show that A2u = Tu. If not,
using (ii), for large values of n we get

d(A1x2n,A2u) ≤ φ(M12(x2n,u)) = φ(d(A2u,Tu)).

On making n → ∞ this yields d(Tu,A2u) ≤ φ(d(A2u,Tu)) < d(Tu,A2u), a contradiction. Hence A2u = Tu.
Since A2X ⊂ SX, there exists some w ∈ X such that Tu = A2u = sw. We claim that A1w = Sw. If A1w , Sw, we
have d(A1w,A2u) < φ(M12(w,u)) = d(A1w,A2u), a contradiction. Hence A1w = A2u = Tu = Sw. If A1w , Aiu,
for some i > 2, by (iii) we get d(A1w,Aiu) < M12(w,u) = d(A1w,Aiu), a contradiction. Hence for each i > 1
we get A1w = Aiu = Tu = Sw. Now nontrivial weak compatibility of A1,S and Ai,T and the contractive
conditions imply that A1w is a common fixed point of A1,Ak,S and T. Moreover, if A1w , AiA1w for some
i > 1, we get d(A1w,AiA1w) < M12(w,A1w) = d(A1w,AiA1w), a contradiction. Hence A1w is a common fixed
point of all Ai,S and T. The proof is similar when the range of S is assumed a complete subspace of X. This
completes the proof of the theorem.

Putting k = 1, 2 in Theorem 2.12, we get the following result for four mappings.

Theorem 2.13. Let A1,A2,S and T be selfmappings of a complete metric space (X, d) such that for all x, y ∈ X,

(i) A1X ⊂ TX, A2X ⊂ SX;
(ii) d(A1x,A2y) ≤ φ(max{d(Sx,Ty), d(A1x,Sx), d(A2y,Ty), [d(A1x,Ty) + d(A2y,Sx)]/2}).
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Let S be nontrivially weakly compatible with A1 and T be nontrivially weakly compatible with A2. If the range of one
of the mappings be a complete subspace of X, then A1,A2,S and T have a unique common fixed point.

Taking A2 = A1 and T = S in Theorem 2.13, we get the following fixed point theorem for a pair of
mappings:

Theorem 2.14. Let A1 and S be selfmappings of a complete metric space (X, d) such that for all x, y ∈ X,

(i) A1X ⊂ SX;
(ii) d(A1x,A1y) ≤ φ(max{d(Sx,Sy), d(A1x,Sx), d(A1y,Sy), [d(A1x,Sy) + d(A1y,Sx)]/2}).

Let S be nontrivially weakly compatible with A1. If SX is a complete subspace of X, then A1 and S have a unique
common fixed point.

The following result is a consequence of Theorem 2.12, since nontrivially weakly compatible mappings
are semi α−compatible.

Theorem 2.15. Let {Ai}, i = 1, 2, 3, . . ., S and T be selfmappings of a complete metric space (X, d) such that

(i) A1X ⊂ TX, AiX ⊂ SX when i > 1;
(ii) d(A1x,A2y) ≤ φ(M12(x, y));

(iii) d(A1x,Aiy) < M1i(x, y), whenever M1i(x, y) > 0.

Let S be semi α−compatible with A1 and T be semi α−compatible with Ak for some k > 1. If the range of one of the
mappings be a complete subspace of X, then all the Ai,S and T have a unique common fixed point.

3. Examples

The following examples illustrate Theorems 2.3 and 2.12.

Example 3.1. Let X = [2, 20] with usual metric d. Define mappings Ai,S,T:X→ X, i = 1, 2, 3, . . ., by
A1 = 2, A1x = 3 if x > 2,
A2x = 2 if x = 2 or x > 5, A2x = 6 if 2 < x ≤ 5,
S2 = 2 Sx = 6 if x > 2
T2 = 2, Tx = 12 if 2 < x ≤ 5, Tx = x − 3 if x > 5,
and for i > 2,
Aix = 2 if x ≤ 2 + 1

i or > 5, Aix = 6 if 2 + 1
i < x ≤ 5.

Then {Ai}, S and T satisfy all the conditions of Theorems 2.3 and 2.12 and have a unique common fixed point
x = 2. It is also easy to observe that A1 and S are orbitally continuous and α−compatible mappings. But
neither A1 nor S is continuous, not even at their common fixed point x = 2. It may also be verified that T and
Ai are α−compatible when i > 2. However, one can easily verified that T and Ai are quasi α−compatible.

Example 3.2. Let X = [2,∞) with usual metric d. Define mappings Ai,S,T:X→ X, i = 1, 2, 3, . . ., by
A1x = A2x = 2 for all x,
Sx = 2 if x ≥ 2,
T2 = 2x if x ≥ 3 Tx = 2 if x < 3,
and for i > 2,
Aix = 2(3 + 1

i ) if x > 3 + 1
i , Aix = 2 if x ≤ 3 + 1

i .

Then {Ai}, S and T satisfy all the conditions of Theorems 2.1 and 2.3 and have a unique common fixed point
x = 2. It is also easy to observe that A1 and S are orbitally continuous and α−compatible mappings. It may
also be verified that T and Ai are α−compatible when i > 2. However, T and Ai are quasi α−compatible
when i > 2.

The following example [57] illustrates Theorem 2.8.
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Example 3.3. Let X = [0, 10] be equipped with the usual metric on X. Define mappings A1,S : X→ X by

A1x = (6 − x)/2 if x ≤ 2, A1x = 3 if 2 < x ≤ 5, A1x = 2 if x > 5,
Sx = x if x ≤ 2, Sx = 10 if 2 < x ≤ 5, Sx = (x + 1)/3 if x > 5.

Then A1 and S satisfy all the conditions of Theorem 2.8 and have a unique common fixed point x = 2. It can be seen in
this example that limn→∞ d(A1A1xn,SA1xn) = 0, whenever {xn} is a sequence in X satisfying A1xn,Sxn ∈ A1X∩ SX
and limn→∞ A1xn = limn→∞ Sxn = t for some t in X. It can also be verified that A1 and S satisfy the contractive
condition d(A1x,A1y) ≤ φ(d(Sx,Sy)) for all x, y ∈ X whenever φ(t) = t/2. Moreover, it is also easy to observe that
A1 and S are orbitally continuous mappings. It may be seen in this example that A1 and S are neither compatible, nor
A1−compatible, nor S−compatible nor compatible of type (P).

Remark 3.4. In Theorem 2.8, the notion of nontrivial weak compatibility can not be replaced by weak compatibility.
The following example illustrates this fact:

Example 3.5. Let X = [2, 20] be equipped with the usual metric on X. Define mappings A1,S : X→ X by

A1x = 6 if 2 ≤ x ≤ 5, A1x = (x + 5)/5 if x > 5,
Sx = 12 if 2 ≤ x ≤ 5, Sx = (x + 1)/3 if x > 5.

Then A1 and S satisfy all the conditions of Theorem 2.8 but do not have a common fixed point. It can be seen in this
example that A1 and S are trivially weakly compatible.

Remark 3.6. In Theorem 2.8 we cannot replace the notion of semi α-compatibility by weak compatibility. This can
be seen from Example 3.5 above.

4. Discussions

Our proved theorems apply to a wider class of mappings than the results of compatible and continuous
maps since our theorems apply to semi α−compatible or nontrivially weakly compatible and orbitally
continuous maps also. Moreover, as compared to the analogous results, the present theorems have been
proved under considerably weaker assumptions. A few observations regarding the above proved theorems
are in order.

(i) Theorem 2.1 assumes S to be semi α−compatible with A1 and T to be compatible with Ai where i > 1.
In comparison to this, Theorem 5.1 of Jachymski [22] assumes T to be compatible with Ai for each
i > 1 while Rhoades et al. [68] (see also Jungck et al. [27]) assume each Ai to be compatible with both
S and T. In Example 3.1, T and A2 are not compatible.

(ii) In Theorem 2.1 for each i > 2 the mappings A1, Ai satisfy the plain contractive condition d(A1x,Aiy) <
M1i(x, y) . On the other hand, Theorem 5.1 of Jachymski [23] requires A1, Ai, i > 2, to satisfy the
contractive condition d(A1x,Aiy) < φi(M1i(x, y)) where φi : R+ → R+ is an upper semicontinuous
function such that φi(t) < t for each t > 0. This condition is not satisfied in Example 3.2 for any
i > 2 since the required function φi would not be upper semicontinuous at t = 4 + (2/i). Similarly the
theorem of Rhoades et al. [68] (see also Jungck et al. [27]) requires each Ai, A j to satisfy a Meir-Keeler
type (ε, δ) contractive condition and δ is required to be lower semicontinuous. However, in Example
3.2 above, A1 and Ai fail to satisfy the (ε, δ) condition at ε = 4 + (2/i) when i > 2.

(iii) Theorem 2.1 assumes the mappings in one of the semi α−compatible pairs (A1,S) or (Ak,T), where
k > 1 be orbitally continuous. In comparison to this, Theorem 5.1 of Jachymski [22, 23] assumes S
or T to be continuous while Rhoades et al. [27] (see also Jungck et al. [27]) also assumes S or T be
continuous . Likewise, the theorems of Fisher [18] and Pant [53] assume one of the mappings to be
continuous. In Example 3.1 none of the mappings are continuous.

Remark 4.1. Our work provides a possibility to extend our proved results in other generalized metric spaces, namely,
b−metric space, b−rectangular metric space, bν(s)− metric spaces[2, 3, 9, 14, 15, 19, 33, 45–48, 78].
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Remark 4.2. In all the theorems established in this paper, we have not assumed any mapping to be continuous. In
fact, the mappings assumed by us are not only discontinuous in their domain of definition but also discontinuous
at their common fixed point. Thus, we provide more answers to the problem posed by Rhoades [67] regarding the
existence of a contractive definition which generate a fixed point, but does not force the mapping to be continuous at
the fixed point. The first answer to this problem was given by Pant [52]. The new answers of the Rhoades’s problem
are distinct from [4, 5, 57, 60, 62].
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