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Abstract. In this paper, we consider the laws of large numbers with infinite means based on ϕ-mixing
sequences. An exact weak law and a strong law are obtained for ϕ-mixing asymmetrical Cauchy random
variables. It is also presented that the weak law cannot extend to a strong law. In addition, some simulations
are presented to illustrate our results of the laws of large numbers.

1. Introduction

Let (Ω,F ,P) be a probability space and {Xn,n ≥ 1} be a sequence of independent and identically
distributed (i.i.d.) random variables. The laws of large numbers including weak law and strong law are
very important in limit theory. But people usually consider the laws of large numbers with finite means (see
Chow and Teicher[1]). It is known that Cauchy random variables have infinite means. Adler[2] introduced
asymmetrical Cauchy random variables as follows.

Let a random variable X to be an asymmetrical Cauchy random variable with a slight twist, i.e. the
density is

f (x) =

{ p
π(1+x2) , if x ≥ 0,

q
π(1+x2) , if x < 0,

(1)

where p + q = 2. If p = q = 1, then we get the usual Cauchy distribution. By (1), it can be checked that
E|X| = ∞. Alder[2] obtained the weak law and strong law of large numbers for the i.i.d. asymmetrical
Cauchy random variables satisfying (1). Inspired by Alder[2], we will consider the laws of large numbers
for dependent asymmetrical Cauchy random variables in this paper. Before stating our works, we recall
the definition of ϕ-mixing.

Let n and m be positive integers. Write F m
n = σ(Xi,n ≤ i ≤ m). Given σ-algebras B,R in F , let

ϕ(B,R) = sup
A∈B,B∈R,P(A)>0

|P(B|A) − P(B)|.
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Define the ϕ-mixing coefficients by

ϕ(n) = sup
k≥1

ϕ(F k
1 ,F

∞

k+n), n ≥ 0.

Definition 1.1. A random variable sequence {Xn,n ≥ 1} is said to be a ϕ-mixing random variable sequence if
ϕ(n) ↓ 0 as n→∞.

It is known that ϕ-mixing sequences are important dependent time series cases. For more properties
of ϕ-mixing sequences, one can refer to Lu and Lin[3] and Fan and Yao[4]. Recently, a lot of attention
has been paid on the study of laws of large numbers with infinite means. The earlier research of laws
of large numbers without finite means, one can refer to Adler[5, 6]. For the one sided or Pareto-type
laws with infinite means, we can refer to Adler[7]-[15], Matsumoto and Nakata[11], Nakata[12]-[14], Adler
and Matula[15], Yang et al[16], Matula et al[17], Xu et al[18], Giuliano and Hadjikyriakou[19], Adler and
Matula[20] and the references therein. For the laws of asymmetrical Cauchy random variables, we can refer
to Adler[2] and Xu et al[18].

The rest of this paper is organized as follows. In order to obtain our main results, some lemmas are
presented in Section 2. In Section 3, the weak law and strong law ofϕ-mixing asymmetrical Cauchy random
variables are presented. It is also shown that the weak law cannot extend to a strong law. In Section 4, we do
some simulations for our Theorems 3.1 and 3.2. Last, the conclusions are presented in Section 5. Through
out the paper, denote C,C1,C2, . . ., to be some positive constants independent on n. Let log x = log(max(x, e))
and I(A) be the indicator function of A. For simplicity, → means convergence as n → ∞, an ∼ bn means

an/bn → 1, P
−→ means convergence in probability, a.s.

−→ means almost surely convergence and X d
= Y means

that X and Y have the same distribution.

2. Preliminaries

Lemma 2.1 (Wang et al[21, Lemma 1.7]) Let p ≥ 2 and {Xn}n≥1 be a ϕ-mixing sequence with
∑
∞

n=1 ϕ
1/2(n) < ∞.

If EXn = 0 and E|Xn|
p < ∞ for all n ≥ 1, then

E
(

max
1≤k≤n

∣∣∣∣ k∑
i=1

Xi

∣∣∣∣p) ≤ C
( n∑

i=1

E|Xi|
p +

( n∑
i=1

EX2
i

)p/2)
,

where C is a positive constant depending only on ϕ(·).
With the help of Lemma 2.1, it is easy to obtain the convergence theorem of ϕ-mixing sequence. So we

omit the proof of Corollary 2.1 here.
Corollary 2.1. Let {Xn,n ≥ 1} be a sequence of ϕ-mixing random variables with

∑
∞

n=1 ϕ
1/2(n) < ∞. If∑

∞

n=1 EX2
n < ∞, then

∑
∞

n=1(Xn − EXn) converges almost surely.
Lemma 2.2. (Lu and Lin[3, Theorem 8.2.1]). Let {Xn,n ≥ 1} be a sequence of ϕ-mixing random variables and

{Fn = σ(Xn),n ≥ 1} be a sequence of σ-fields. Then, for all An ∈ Fn,

∞∑
n=1

P(An) < ∞ ⇔ P(An, i.o.) = 0.

In addition,
∞∑

n=1

P(An) = ∞ ⇒ P(An, i.o.) = 1.

Lemma 2.3. (Adler[2, Lemma 1.1]). lim
x→∞

π−2 arctan x
x−1 = 2.
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3. Main results

3.1. Weak law of large numbers
In this section, we discuss the weak law of large numbers forϕ-mixing asymmetrical Cauchy random

variables.
Theorem 3.1. Let {Xn,n ≥ 1} be a sequence of ϕ-mixing random variables with the same distributions from

an asymmetrical Cauchy random variables by a slight twist (1). Assume the ϕ-mixing coefficients satisfy that∑
∞

n=1 ϕ
1/2(n) < ∞. Then for all α > −1 and any slowly varying function L(·), one has as n→∞

1
L(n)nα+1 log n

n∑
j=1

L( j) jαX j
P
−→

p − q
π(α + 1)

. (2)

Proof. For n ≥ 1, let an = nαL(n), bn = nα+1L(n) log n and denote

Xnj = −
bn

a j
I
(
X j < −

bn

a j

)
+ X jI

(
|X j| ≤

bn

a j

)
+

bn

a j
I
(
X j >

bn

a j

)
, 1 ≤ j ≤ n. (3)

It is used the partition

1
L(n)nα+1 log n

n∑
j=1

L( j) jαX j =

n∑
j=1

a j

bn
X j

=

n∑
j=1

a j

bn
(X j − Xnj) +

n∑
j=1

a j

bn
(Xnj − EXnj)

+

n∑
j=1

a j

bn
E
(
X jI

(
|X j| ≤

bn

a j

))
+

n∑
j=1

a j

bn

[
EXnj − E

(
X jI

(
|X j| ≤

bn

a j

))]
:= I1 + I2 + I3 + I4. (4)

To prove (2), we need to show that

I1
P
−→ 0, I2

P
−→ 0, I3 →

p − q
π(α + 1)

, I4 → 0. (5)

For all α > −1 and all ε > 0, by (1) and Lemma 2.3, it can be founded that

P
(∣∣∣∣ n∑

j=1

a j

bn
(X j − Xnj)

∣∣∣∣ > ε) ≤ P
( n⋃

j=1

(X j , Xnj)
)
≤

n∑
j=1

P(|X j| >
bn

a j
)

=
1
π

n∑
j=1

(
− q arctan

bn

a j
+

qπ
2

+
pπ
2
− p arctan

bn

a j

)
=

p + q
2π

n∑
j=1

[π − 2 arctan
bn

a j
]

≤ C
n∑

j=1

a j

bn
= C

n∑
j=1

L( j) jα

L(n)nα+1 log n
→ 0, (6)

using the fact that L(·) is slowly varying. So I1
P
−→ 0.
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It can be seen that {(Xnj − EXnj), 1 ≤ j ≤ n} is a mean zero sequence of ϕ-mixing random variables with
the same mixing coefficients. In addition, by Markov’s inequality, Lemma 2.1 and (1) and (6), it can be
argued that for all α > −1 and all ε > 0,

P
(∣∣∣∣ n∑

j=1

a j

bn
(Xnj − EXnj)

∣∣∣∣ > ε) ≤ 1
ε2 E

(
max
1≤k≤n

∣∣∣∣ k∑
j=1

a j

bn
(Xnj − EXnj)

∣∣∣∣2)
≤ C1

n∑
j=1

a2
j

b2
n

E|Xnj|
2
≤ C2

n∑
j=1

[
a2

j

b2
n

EX2
j I(|X j| ≤

bn

a j
) + P(|X j| >

bn

a j
)]

= C2

n∑
j=1

a2
j

b2
n

( ∫ 0

−
bn
aj

qx2

π(1 + x2)
dx +

∫ bn
aj

0

px2

π(1 + x2)
dx

)
+ C2

n∑
j=1

P(|X j| >
bn

a j
)

≤ C3

n∑
j=1

a j

bn
= C3

n∑
j=1

L( j) jα

L(n)nα+1 log n
→ 0,

which implies I2
P
−→ 0. By (1),

I3 =

n∑
j=1

a j

bn
E
(
X jI

(
|X j| ≤

bn

a j

))
=

n∑
j=1

a j

bn
E
(
X1I

(
|X1| ≤

bn

a j

))
=

n∑
j=1

a j

bn

∫ 0

−
bn
aj

qx
π(1 + x2)

dx +

∫ bn
aj

0

px
π(1 + x2)

dx

=

n∑
j=1

a j

bn

1
2π

[−q log(1 +
b2

n

a2
j

) + p log(1 +
b2

n

a2
j

)] =

n∑
j=1

a j

bn

p − q
2π

log(1 +
b2

n

a2
j

)

∼
p − q
π

n∑
j=1

a j

bn
log

bn

a j
=

p − q
π

n∑
j=1

a j

bn
[log bn − log a j]

=
p − q

πnα+1L(n) log n

n∑
j=1

jαL( j)[log(nα+1L(n) log n) − log( jαL( j))]

=
(p − q)(α + 1)
πnα+1L(n)

n∑
j=1

jαL( j) +
p − q

πnα+1L(n) log n

n∑
j=1

jαL( j) log(L(N))

+
(p − q) log log n
πnα+1L(n) log n

n∑
j=1

jαL( j) −
(p − q)α

πnα+1L(n) log n

n∑
j=1

jαL( j) log j

−
p − q

πnα+1L(n) log n

n∑
j=1

jαL( j) log(L( j))

:= I31 + I32 + I33 + I34 + I35.
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It can be checked that

I31 =
(p − q)(α + 1)
πnα+1L(n)

n∑
j=1

jαL( j)→
p − q
π

,

|I32| =
p − q

πnα+1L(n) log n

n∑
j=1

jαL( j) log(L(n)) ≤ C
log(L(n))

log n
→ 0,

|I33| =
(p − q) log log n
πnα+1L(n) log n

n∑
j=1

jαL( j) ≤ C
log log n

log n
→ 0,

I34 = −
(p − q)α

πnα+1L(n) log n

n∑
j=1

jαL( j) log j→ −
(p − q)α
π(α + 1)

,

|I35| =
p − q

πnα+1L(n) log n

n∑
j=1

jαL( j) log(L( j)) ≤ C
log L(n)

log n
→ 0,

using the fact that L(·) is slowly varying so log(L(n))
log n → 0 as n → ∞ (see page 368, property A5 of Lu and

Lin[3]). Then,

I3 =

n∑
j=1

a j

bn
E
(
X jI

(
|X j| ≤

bn

a j

))
→

p − q
π
−

(p − q)α
π(α + 1)

=
(p − q)
π(α + 1)

.

Furthermore, by (3) and (6), it has

I4 =
1
bn

∣∣∣∣ n∑
j=1

a j

[
EXnj − E

(
X jI

(
|X j| ≤

bn

a j

))]∣∣∣∣ ≤ C
n∑

j=1

P(|X j| > bn/a j)→ 0.

So the proof of (5) is completed. Combining (4) with (5), we obtain (2). �

3.2. Strong law of large numbers

In this section, the strong law of large numbers for ϕ-mixing asymmetrical Cauchy random variables is
also discussed.

Theorem 3.2 Let {Xn,n ≥ 1} be a sequence of ϕ-mixing random variables with the same distributions from
an asymmetrical Cauchy random variables by a slight twist (1). Assume the ϕ-mixing coefficients satisfy that∑
∞

n=1 ϕ
1/2(n) < ∞. Then for all β > 0 and any slowly varying function L(·), one has as n→∞

1

L(n) logβ n

n∑
j=1

L( j) logβ−2 j
j

X j
a.s.
−→

p − q
πβ

. (7)

Proof. For n ≥ 1, let an =
L(n) logβ−2 n

n , bn = L(n) logβ n, cn = bn
an

= n log2 n and denote

X̃n = −cnI(Xn < −cn) + XnI(|Xn| ≤ cn) + cnI(Xn > cn).
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We use the partition

1

L(n) logβ n

n∑
j=1

L( j) logβ−2 j
j

X j

=
1
bn

n∑
j=1

a j[X̃ j − EX̃ j] +
1
bn

n∑
j=1

a j[c jI(X j < −c j) + X jI(|X j| > c j) − c jI(X j > c j)]

+
1
bn

n∑
j=1

a j[−c jP(X j < −c j) + EX jI(|X j| ≤ c j) + c jP(X j > c j)]

:= I1 + I2 + I3. (8)

Obviously, {[X̃ j−EX̃ j], j ≥ 1} and {X̌ j = 1
c j

[X̃ j−EX̃ j], j ≥ 1} are also mean zero sequences ofϕ-mixing random
variables with the same mixing coefficients. Similar to the proof of (6), by (1) and Lemma 2.3, it follows

∞∑
j=1

P(|X j| > c j) =

∞∑
j=1

( ∫ −c j

−∞

q
π(1 + x2)

dx +

∫
∞

c j

p
π(1 + x2)

dx
)

=
1
π

∞∑
j=1

[π − 2 arctan c j]

≤ C
∞∑
j=1

1
c j

= C
∞∑
j=1

1

j log2 j
< ∞. (9)

In addition, by (1) and (9), it yields
∞∑
j=1

EX̌2
j ≤ C1

∞∑
j=1

1
c2

j

EX2
1I(|X1| ≤ c j) + C2

∞∑
j=1

P(|X1| > c j)

= C1

∞∑
j=1

1
c2

j

( ∫ 0

−c j

qx2

π(1 + x2)
dx +

∫ c j

0

px2

π(1 + x2)
dx

)
+ C2

∞∑
j=1

P(|X1| > c j)

≤ C3

∞∑
j=1

1
c2

j

( ∫ 0

−c j

dx +

∫ c j

0
dx

)
+ C2

∞∑
j=1

P(|X1| > c j)

≤ C4

∞∑
j=1

1
c j

= C4

∞∑
j=1

1

j log2 j
< ∞. (10)

Consequently, we apply Corollary 2.1 with (10) and have that

∞∑
j=1

X̌ j =

∞∑
j=1

a j

b j
[X̃ j − EX̃ j] converges, a.s.

So we use Kronecker’s lemma with bn →∞ and obtain that

I1 =
1
bn

n∑
j=1

a j[X̃ j − EX̃ j]
a.s.
−→ 0. (11)

Furthermore, by (9) and Borel-Cantelli lemma, it yields

|I2| ≤
2
bn

n∑
j=1

a j|X j|I(|X j| > c j)
a.s.
−→ 0. (12)
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By (1), it can be checked that

H :=
1
bn

∣∣∣∣ n∑
j=1

a j[−c jP(X j < −c j) + c jP(X j > c j)]
∣∣∣∣

≤

n0∑
j=1

b j

bn
P(|X j| > c j) +

n∑
j=n0+1

b j

bn
P(|X j| > c j)

=
1

L(n) logβ n

n0∑
j=1

L( j)

j log2−β j
+

1

L(n) logβ n

n∑
j=n0+1

L( j)

j log2−β j

:= H1 + H2, (13)

where n0 is some positive constant. We will show that H→ 0. Obviously, for any β > 0,

H1 → 0. (14)

For 0 < β < 1,

H2 =
1

L(n) logβ n

n∑
j=n0+1

L( j)

j log2−β j
≤

1

L(n) logβ n

∞∑
j=n0+1

L( j)

j log2−β j
→ 0, (15)

using the fact that L(·) is slowly varying. For β = 1,

H2 =
1

L(n) log n

n∑
j=n0+1

L( j)
j log j

≤ C
log log n

log n
→ 0. (16)

For β > 1,

H2 =
1

L(n) logβ n

n∑
j=n0+1

L( j)

j log2−β j
≤ C

logβ−1 n

logβ n
→ 0. (17)

Then, it follows from (13) to (17) that

H→ 0. (18)

Next, we consider EXnI(|Xn| ≤ cn). Obviously, it follows from (1) that

EXnI(|Xn| ≤ cn) =

∫ 0

−cn

qx
π(1 + x2)

dx +

∫ cn

0

px
π(1 + x2)

dx

=
1

2π
[−q log(1 + c2

n) + p log(1 + c2
n)]

=
p − q
2π

log(1 + c2
n)

∼
p − q
π

log cn ∼
p − q
π

log n, (19)

Consequently, by (19),
n∑

j=1

a j

bn
EX jI(|X j| ≤ c j) ∼

p − q

πL(n) logβ n

n∑
j=1

L( j) logβ−1 j
j

→
p − q
πβ

. (20)

Therefore, by (18) and (20), it yields

I3 →
p − q
πβ

. (21)

Finally, the proof of (7) is completed by (8), (11), (12) and (21). �
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3.3. Almost sure results

In this section, we discuss that the weak law of Theorem 3.1 cannot extend to a strong law.
Theorem 3.3 Let the conditions of Theorem 3.1 hold true. Then for all α > −1 and any slowly varying function

L(·), one has

lim inf
n→∞

1
L(n)nα+1 log n

n∑
j=1

L( j) jαX j ≤
p − q

π(α + 1)
, a.s., (22)

and

lim sup
n→∞

∣∣∣∣ 1
L(n)nα+1 log n

n∑
j=1

L( j) jαX j

∣∣∣∣ = ∞, a.s. (23)

Proof. Let an = nαL(n), bn = nα+1L(n) log n, denote

Tn =
1

L(n)nα+1 log n

n∑
j=1

L( j) jαX j =

n∑
j=1

a j

bn
X j.

Applying Theorem 3.1, we obtain that Tn
P
−→

p−q
π(α+1) as n→∞, which implies that there exist a subsequence

nk satisfying Tnk

a.s.
−→

p−q
π(α+1) as k→∞. Therefore, it yields

lim inf
n→∞

Tn ≤ lim
k→∞

Tnk =
p − q

π(α + 1)
, a.s.

So the proof of (22) is completed.
Let cn = bn/an = n log n. As for the upper limit (23), if M is any positive constant, then by (1) and (10), it

follows
∞∑

n=1

P(
an

bn
|Xn| > M) =

∞∑
n=1

P(|X1| > Mcn)

=

∞∑
n=1

( ∫ −Mcn

−∞

q
π(1 + x2)

dx +

∫
∞

Mcn

p
π(1 + x2)

dx
)

=
1
π

∞∑
j=1

[π − 2 arctan(Mcn)]

≥ C
∞∑

n=1

1
cn

= C
∞∑

n=1

1
n log n

= ∞. (24)

Combining Lemma 2.2 with (24), we have

lim sup
n→∞

∣∣∣∣anXn

bn

∣∣∣∣ = ∞, a.s.,

So it follows

lim sup
n→∞

∣∣∣∣∑n
j=1 a jX j

bn

∣∣∣∣ ≥ lim sup
n→∞

∣∣∣∣anXn

bn

∣∣∣∣ = ∞, a.s.

Therefore, the proof of (23) is completed. �
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4. Numerical experiments

In this section, we do some simulations for Theorems 3.1 and 3.2. It is known that if Y d
= U(0, 1),

then for any given distribution F(x), x ∈ R, the random variable X = F−1(Y) has distribution F(x), where
F−1(u) = inf{x : F(x) ≥ u}, u ∈ (0, 1). So we use this method to generate an asymmetrical Cauchy distribution.
Let p + q = 2 and p, q ≥ 0. Assume that X is an asymmetrical Cauchy random variable whose distribution
satisfies

F(x) =

{ q
2 +

q
π arctan x, if x < 0,

q
2 +

p
π arctan x, if x ≥ 0,

(25)

So we give the algorithm of generation of asymmetrical Cauchy random variables. In view of the infinite
mean, we use the truncated method in this simulation. Let ε = 10−100, M = 10100. For given p ≥ 0 and q ≥ 0
with p + q = 2, we generate a uniform random variable U(0, 1). If u ≤ ε, then x = −M; if ε < u ≤ q/2, then
x = tan((u − q/2)π/q); if q/2 < u < 1 − ε, then x = tan((u − q/2)π/p); if 1 − ε ≤ u ≤ 1, then x = M.

For n ≥ 1, let

Xn =

m∑
k=1

aken−k, (26)

where ak > 0, 1 ≤ k ≤ m, {et, t ∈ Z} are i.i.d. asymmetrical Cauchy random variables. So {Xn} is a m-
dependent sequence. It is also a ϕ-mixing sequence. In order to make Xn satisfy asymmetrical Cauchy
distribution (25), we take

∑m
k=1 ak = 1. For simply, we take a1 = 0.7 and a2 = 0.3 in (26) and let slowly varying

function L(·) ≡ 1 in Theorems 3.1 and 3.2. For any α > −1, β > 0, denote

Tn(1) =
1

nα+1 log n

n∑
j=1

jαX j −
p − q

π(α + 1)
(27)

and

Tn(2) =
1

logβ n

n∑
j=1

logβ−2 j
j

X j −
p − q
πβ

, (28)

where p + q = 2. As the sample n = 2000 : 2000 : 10000, we obtain the box plots of (27) for Theorem 3.1 and
(28) for Theorem 3.2, by repeating 1000 times.
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By Figs 1 and 2, it can be seen that the medians of Tn(1) are closed to zero as sample n go to infinity,
which are agreed with Theorem 3.1. In view of infinity mean of asymmetrical Cauchy distribution, there
are many “outliers”, which lead the means of Tn(1) are not robust to go to zero as sample n go to infinity.
Similarly, By Figs 3 and 4, the medians of Tn(2) are closed to zero as sample n go to infinity, which are
agreed with Theorem 3.2. But the means of Tn(2) are not robust to go to zero as sample n → ∞. So, the
median method is more robust than the mean method, especially in many “outliers” case or non-stationary
process.

5. Conclusions

In this paper, Theorems 3.1, 3.2 and 3.3 extend Theorems 3.1, 2.1 and 4.1 of Adler[2] from independent
case to dependent case of ϕ-mixing, respectively. In addition, we do some simulations in Figs 1 to 4, which
are agreed with our Theorems 3.1 and 3.2. Furthermore, it can be founded that the median method is more
robust than the mean method, especially in many “outliers” case or non-stationary process.
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