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Ramin Kazemi?, Akram Kohansal?, Afshin Fallah?, Fariba Nasiri

*Department of Statistics, Imam Khomeini International University, Qazvin, Iran

Abstract. In this paper, we introduce a flexible extension of the generalized weighted exponential distri-
bution which is called four-parameter generalized weighted exponential (FGWE) distribution. Theoretical
properties of this model including the mode, median, moment generator function, moments, mean de-
viations, mean residual life, coefficients of skewness and kurtosis, hazard function, survival function,
Bonferroni and Lorenz curves, reliability probability, entropy measures and stochasting ordering are de-
rived and studied in details. We develop the maximum likelihood estimators of the unknown parameters
and their corresponding asymptotic confidence intervals. A simulation study and a real world application

are also worked out to assess the maximum likelihood estimators and to illustrate the applicability of the
proposed distribution in practice.

1. Introduction

Exponential distribution plays an important role in statistical theory of reliability and lifetime analysis.
Several extensions to the exponential distribution have been developed by many authors during the last
decades. There is an increasing interest in using the weighted exponential distributions in modeling of the
skewed positive data especially for lifetime analysis (see [1], [7], [12] and [13]). Some important probability
distributions in statistics such as gamma belongs to the family of weighted exponential distributions. Many
weighted exponential distribution have been developed so far via adding an extra shape parameter to a
given symmetric distribution. Gupta and Kundu [8] and Al-Mutairi et al. [1], by using the idea of Azzalini
[2], introduced two new classes of the univariate and bivariate weighted exponential distributions. They
discussed distributional and inferential aspects of these families and show that the proposed distributions
can be used effectively to analyze skewed positive data. In univariate case, as it has been noted by Gupta and
Kundu [8], the univariate weighted exponential distribution, denoted by WE, can be used as an alternative
to the gamma or generalized exponential distributions, because it has a probability density function whose
shape is very close to the shape of these distributions. Also, this distribution can be obtained as hidden
truncation model and may perform better than the well known gamma, log-normal, Weibull or generalized
exponential distributions in many situations. As it has been considered in [8], a random variable X is
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a weighted exponential (WE) distribution with shape parameter a and scale parameter A, denoted by
WE(a, A), if the density function of X is given by

1+a

fx(xla, A) = (1-e?Ae™,  x,a,A>0.
WE distribution was generalized to another two-parameter weighted exponential distributions TWE(a, A)
by [12] with the following pdf,

1+a)d+2a)
2a2

Shakhatreh [12] investigated the main properties of this distribution. He obtained and studied several
statistical properties and statistical inferences. Two real data sets of which one is a right censored data set
analyzed, and it showed that in both two cases our model fits much better than WE or some other existing
models. Also, TWE distribution was generalized to the three-parameter generalized weighted exponential
distributions GWE(a, A, k) by Kharazmi et al. [10] with the following pdf,

Fx(xla, A) = (1-e e,  x,a,A>0.

04
B(1/a,k+ 1)

where B(, ) is the beta function and k € IN U {0}. Kharazmi et al. [10] obtained several statistical and
reliability properties of GWE distribution and investigated the estimation and inference procedure for
distribution parameters. They showed that the proposed model can provide better fit than the recent
class of weighted exponential by using two real data examples. We propose a simple extension of this
distribution which is called four-parameter generalized weighted exponential (FGWE) distribution with
adding a parameter y. New properties not provided in [10] will be computed and the previous calculated
properties will be extended.

fx(xla, A, k) = (1—e Qe x,a,A>0,

Definition 1.1. A random variable X is said to have four-parameter generalized weighted exponential distribution
FGWE(a, A, k, y) with integer k € IN U {0} if the pdf of X is given as following:

fx(xla, A, k,y) = (1 - Ae™*, x,a,4,7 > 0. (1)

a
B(t,k+1)
Theorem 1.2. Suppose X ~ FGWE(a, A, k,y). Then,

1) For k =0,y =1, the random variable X is distributed according to the exponential distribution, Exp(A).

2) For k =y = 1, the random variable X is distributed according to the weighted exponential distribution, WE(«a, A),
introduced in [8].

3) For y =1, the random variable X is distributed according to the exponential distribution, GWE(a, A, k).

4) For a = k =1,y = 1, the random variable X is distributed according to the generalized exponential distribution,
GE(A,2), introduced in [6].

(5) The random variable X converges in distribution to the exponential distribution, Exp(A), as ¢ — +ocoand y = 1.
6) The random variable Y = cX for ¢ > 0, is distributed according to FGWE(a, A/c, k, ).

7) The random variable Y = e~ X with o, A > 0, has a weighted beta distribution, wbeta(g, k+ 1).

8) The random variable Y =1 — e~ with a, A > 0, has a weighted beta distribution, wbeta(k +1, g)

Proof. Obvious. [

The density of the FGWE distribution for different values of the parameters k, y, @ and A, is plotted in Figure
1, indicates that the FGWE distribution can be a suitable candidate for a vast class of positively skewed
data.

The rest of the paper is as follows. In Section 2, we give the mode, moment generator function, mean,
variance, coefficients of skewness and kurtosis and higher moments of FGWE distribution. In Section 3,
we compute the reliability probability for difeerent values of k and y. In Section 4, we give the Shannon
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and Reyni entropies. In Sections 5 and 6, we give the mean deviatins and mean residual life of FGWE
distribution, respectively. Bonferroni and Lorenz curves are given in Section 7 and comparing WE and
FGWE distributions with respet to stochastic ordering information are given in Section 8. Kharazmi et
al. [10] claimed that due to the non-linearity of equations for the partial derivatives (with respect to a and
A), the MLEs of parameters can be obtained numerically for GWE distribution. But here and in Section
9, the maximum likelihood estimators of the all unknown parameters and their corresponding asymptotic
confidence sets are developed. A simulation study and a real world application are also worked out to
assess the maximum likelihood estimators and to illustrate the applicability of the proposed distribution,
in Section 10. The conclusion of the paper is given in Section 11.
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Figure 1: The density plot of the FGWE distribution for different values of the parameters k, &, A and y.

2. Mode, median and moments

Notice that
d kade~aAx
d_xz lngX(x|a, A/ k/ 7/) - _/\y : % _ EA—an’
d —ka® \2emax
e log fx(xla, Ak, y) = m <0,




R. Kazemi et al. / Filomat 35:3 (2021), 827-844 830

thus the density function (1) is a log-concave function of x for all x > 0. Therefore, the FGWE distribution
is strongly unimodal and it’s unique mode is located at

1 k
x=- log(;a + 1).

We have B
—/\(w Z ( )( 1)1 —z)\ax
i=0
Thus we can show the probability density function of X as follows:
k

a k - 4
X ,A, k, . a—Y =1 ze—A(ery)x'
e, A k) = g Z;‘(Z)( )

The cumulative distribution function and the hazard function of the FGWE(a, A, k, ) are given, respectively,
by

Fx(xla, A, k,y) =

k
— )l —A(ai+y)x
Vk+1)12()0r1+)/ —e 7R ()

and

Ayx —/\ax k
B(’ k+1) rerd (1 )

Hx(xla, A, k) =

k ( 1)‘ _ . 7
B(V k+1) i= 0( Doyl —e eAMai+y)x]

for x > 0 and 0 otherwise. There is no explicit solution for the equation Fx(m|a, A, k,y) = 1/2, so the median
m can not be given explicitly.

Corollary 2.1. Suppose that X ~ FGWE(a, A, k,y). If we use the conditional notations fz(-|0) and Fz(-|0) to show
the pdf and cdf of an exponential random variable Z with mean equal to 1/0, then

a
fx(xla, Ak, y) = WfZ(XMV)(FZ(xWA))k,
_ a (-1)
Fx(xla, Ak, y) = m;( )az+ Fz(x|A(ai +v))

In the next theorem we derive the moment generator function and the first two moments of the FGWE
distribution.

Theorem 2.2. Suppose X ~ FGWE(a, A, k,y). Then
i) The moment generator function (mgf) of the random variable X is
T(1+k+ 2)p(t
Mx(t) = ( "‘) ( j‘:) t-Ay <0 3)
T(L)r(k + L)
where I'(-) is the gamma function.
ii) The first two moments are given, respectively, by

B0 = ({14 k+ 2) - y(2)) 4)

a

where V() is the digamma function and

Var() = = (/(5) -y (14 ke 1))
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Proof. We have

foo(l ~ e—/\ax)ke—(/\)/—t)xdx _ B(‘)//O[ — t/(AD{),k + 1)
0 Aa '

Due to the definition of the moment generator function and this fact that dn];ff(t) o = E(X") proof is

completed. [

Since the exponential distribution (k = 0, = 1) is an especial case of the FGWE distribution, the main
distributional characteristics of the GWE distribution, i.e., the probability density function (pdf), cdf, mgf,
moments, etc., can be formulated as an explicit expression of their corresponding counterparts in the
exponential distribution. For example, since

(=1)"m!
Zm+1

PM(z+1) = P"(z) + , o m>1

we have ) .
IE(X) = X, VQT(X) = ﬁ

With simple but long calculations,

ﬁ(‘m +k+y/a) =3l +k+y/a)P(y/a) - p(y/a)’

+ 3P/ A +k+y/a) = (y/a))
+ 3Pl +k+y/a)Wy/a) - ¢ (L +k+y/a) + ¢ (y/a)

+ YA +k+yla) -9 (/)
BOC) = (00 + kb y/a)* = 4901 + K+ p/) iy o)

+ Yy )t + 30 (1 +k+yla) - 6v(y/a)* (W' (1 +k+yla)— U (y/a))
- 6P (l+k+y/a) (y/a)+ 31#’(7//&)2

+ 6Pl +k+ )//04)2(1]1()//04)2 - A+k+yla)+ Y (y/a))

- W@/ L+k+yla) =9 (y/a)

— A +k+y/a)(y/a) =3¢y /a) @ (1 +k+y/a) - ¢ (y/a)

- YA +k+y/a)+ 0" (y/a) - pOA +k+y/a)+ 1/1(3)()//(1)).

E(X%)

Using the above results, the measures of skewness and kurtosis of the FGWE distribution can be obtained
as

E(X3) - 3E(X?)E(X) + 2IE3(X)

Skewness(X) = NVar GO )
Kurtosis(x) = E&D- 4E<X3>H<X§] ;g)(xm'ﬂ%m ~ 3B

respectively. Since

f Cpreteiegy o _TOED
0 ((y + ai)dy™! -

we have

, W aAT(n+1) u (k) (1)
= = —
iy = E(X") «

B(L, k+1) & \i)((y + aid)yt
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We can also find the n-th central moment of the FGWE distribution as (¢ = y] = E(X)):

EX-p)'=), (?)#}(—#)“‘f :

=0

3. Reliability probability

In the following theorem we compute the probability that one of two independently distributed FGWE
random variables exceeds another. In the context of the reliability, this probability is in core of interest and
is known as the reliability probability, R = P(X > Y).

Theorem 3.1. Suppose that two independent random variables X and Y are distributed according to the distributions
FGWE(a, A, k1, y) and FGWE(a, A, ka, ), respectively. Then the reliability probability is given by

a Z (kl)( 1)‘ 2}+az,k2 + 1)

a1+y
]_

R=P(X>Y)=

B(L, ki + 1)B(L,ky + 1)

Proof. Set C(a, k,y) := iB(%,k +1). Thus

k -1y B k+1
Z(]f)(.l) _ Bk )=C(a,k,y). )

iai+
o \arTy a

Consider the cdf of the FGWE distribution given in (2). Then

PX>Y) = 1- fo Fx() fr(y)dy
= 1—f0 (Cla, k1, 7)) Z( )a(z-:)k( e—/\(ai+kz)y)fy(y)dy

k +00
= 1= (Cla k) Z(l)afl?y [ Ay

+ (Cla, k1, 7)) Z (kl) 1y f e MY (C(a, ky, ) e Y1 — gAY

ai+y

1y

ai+y

= (Cla k1, ) N (Clav ko, ) Z(kl) C(a, ko, 2y + ai).

O

For the special case of kj = k; = 0 and y = 1 where X and Y are independent random variables with
exponential distribution, Exp(1), we have P(X > Y) =

Theorem 3.2. Suppose two random variables X and Y are distributed according to the distributions FGWE(«a, A, k, 1)
and FGWE(a, A, k, y2), respectively. Then the reliability probability is given by

o % ()L B k4 1)

=0 m+y2
R=P(X>Y)=—=
B(Z,k+1)B(2,k+1)

Proof. The proof is quite similar to the proof of Theorem 3.1. [J
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Theorem 3.3. Suppose Dk (X, Y) denotes the Kullback-Leibler (KL) divergence between two random variables X ~
GWE(a, A, k) and Y ~ FGWE(a, A, k, y). Then
B(z,k+1) y-1/ y y

Dxi(X,Y) =1o +
KL( ) gB(%,k+1) a

Proof. We have

o frHa, Ak, 7)
fo frlla, ARy log =

*eo B(%,k+1)
A, k) log| —5——e 0" d
fo fr(xla, A, k) Og(B(g;,kH)e x

D (X, Y)

B, k+1)
2T A = DErewe(X),
og B ke D) (y = DErcwe(X)

where Ergwe(-) denotes the expectation with respect to the density fy(xla, A, k, ). The proof completes due
to the following fact:

Ercwe(X) = Al—a(‘/’(l +hk+ g) - l/’(Z))'

a
0

We compare GWE and FGWE distributions via Kullback-Leibler divergence in Figure 2.

4
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Figure 2: Kullback-Leibler divergence between GWE and FGWE for some selected parameter values of a and y with k = 2.

4. Entropy measures

Shannon entropy is a central concept of information theory for expressing the uncertainty about a
random variable. Renyi defined a generalization of Shannon entropy which depends on a parameter .

Renyi entropy defined by
1 (4
-3 log ( ff (x)dx),

Hy(f(x)) =
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where v > 0 and v # 1. Renyi entropy tends to Shannon entropy as v — 1. We have

[Ty - 2O D
0 ai ’

Thus if X ~ FGWE(a, A, k, y), then

(@A) IB((yv)/a, ko + 1))

1
Ho(f(x) = T— 1°g( (B(E,k+ 1)y

Also, as v — 1, the Shannon entropy is given by

aA

Hi(f(x)) = —10g(m

) k(L +K) + (rfa+ R + k+y/a) - gljj()//a).

For the exponential distribution (k = 0,y = 1), since (z + 1) = ¢(z) + %, we have

Hi(f(@) = 1~ log A.

5. Mean deviations

The mean deviations can be used as a measure of spread in a population. The mean deviations about
the mean and about the median are given by

61(X) = fo fx — il f(x)x

and
62(X) = fo b = mil (o),

respectively, where u = E(X) and m = median(X). These quantities can be calculated as

m
0100 = 2uFx() -2 [ xfayd
0

and
02(X) = 1 =2 f xfx)dx.
0
Since i i
ft Xe—/\(aiﬂ/)de - e_/\t(‘uw)(e)”(mﬂ/) - /\t(ai + 7) — 1)
0 N2t +y)? ’
we have
200 o (k| (<L) e ) — A +y) = 1)
61(X) = 2uFx(u) = ——— ¥ |, '
1(X) uFx(u) B(%,k‘i'l) ;(z) A2(ai+y)?

and

2aA
X)=p— —24
X =1 ; (ai+ )

k (k) (_1)ie—/\m(ai+y)(e)\m(ai+y) _ /\m(ai + 7/) _ 1)
; .
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6. Mean residual life

In life testing situations, the expected additional lifetime given that a component has survived until time
x is a function of x, called the mean residual life. More specifically, if the random variable X represents the
life of a component, then the mean residual life is given by m(x) = E(X — x|X > x) and can be expressed as

m(x) = 1% fxoo F(u)du,
where F = 1 — F. From (5),

a £k (1)
Fx(xl, A, k) =1 — —— — g Maity)x
NEY ”) B(Z;,k+1)2()

i=0 iai+ Y
Hence,
k  /k O (mien
Zi:o (i)ﬁe Mai+y)x
m(X) - ko ke (=1) i) .
Zi:O (j)al'_ﬂ;e )

7. Bonferroni and Lorenz curves

We can construct Bonferroni and Lorenz curves, which are important in several fields such as economics,
reliability, demography, insurance and medicine. They are defined as the following:

B(F(x)):ﬁ fo LF(H)dt

and

L(F(x)) = % fo LF(f)dt.

If X ~ FGWE(a, A, k, p), then

B al k k (_1)ie—/\x(ai+)/)(e/\x(aiﬂ/) _ /\X((Xi + )/) — 1)

and

ad o (k) (1) e M () — Ax(ai+y) — 1)
LF@) = ———— Y [ SR :
uB(L k+1) =\ (ai +7)

Figure 3 shows Bonferroni and Lorenz curve plots for some selected paparmeter values.
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Plot of Bonferroni Curve Plot of Lorenz Curve
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Figure 3: Bonferroni and Lorenz curve plots for some selected paparmeter values of @, y and A with k = 2.

8. Stochastic ordering

In this section, we are interested in comparing WE and FGWE distributions with respect to stochastic
ordering information. The comparing two random variables are very important in reliability theory, risk
analysis, and other disciplines. There are many possibilities to compare random variables or their distribu-
tions, respectively, with each other. One of the most important orderings among stochastic orderings is the
likelihood ratio ordering which compares lifetimes of systems with respect to their likelihood information.
In this section, we give a basic theorem for comparing FGWE(a, A, k, ) and WE(ak, Ay) distributions. Now,
let us to give a quick review of required definitions of stochastic orders and notation which are used in the
following theorem. Let X and Y be two random variables with distribution functions F and G, survival
functions F =1 - Fand G = 1 - G and density functions f and g. It is said that X is smaller than Y in the
following expression:

1. Likelihood ratio order (X <, Y) if g(x)/ f(x) is increasing in x.

2. Hazard rate order (X <y, Y) if G(x)/F(x) is increasing in x.

3. Usual stochastic order (X <4 Y) if F(x) < G(x).

4. Mean residual life order (X <,y Y) if E(X — x|X > x) < E(Y — x|Y > x).

The following implications hold among these stochastic orders:

Y<, X=Y<, X=Y Sst(mrl) X.

Theorem 8.1. Suppose Y ~ FGWE(a, A, k,y) and X ~ WE(ak, Ay). Then X <, Y.

Proof. 1t is sufficient to see that the ratio fy(x)/fx(x) is increasing in x. We have

>0.

_(fY(x)) _ ekan(l — e—Dl/\X)k(_ea}\x + eka/\x)ka/\
dx\ fx(x)] (=1 + eaMx)(=1 + ekaix)2

O

9. Maximum likelihood estimation

In this section we consider the maximum likelihood (ML) estimation of parameters of the FGWE
distribution. Consider a random sample Xj,..., X, from the FGWE(a, A, k, y) distribution. Then, the
likelihood function is given by

k
L(a, Ak, ylxg, ..., xn) = ( k+1)) {H(l e~hax) } e\ LiL X (6)

a 4
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We first explain the maximum likelihood estimation of parameter k assuming the values of A,y and « are
known. This parameter plays an important role as different values of k are correspond to the different
families of the distributions. Maximizing the likelihood function with respect to k can not be done by
differentiating the likelihood function because of the factorials and because k must be an integer. For
known values of the parameters A,y and a, the profile likelihood function of the parameter k is given by

k
LK) = L(kix) o< (B(yk 1)) {H( A}

Suppose k denotes the maximum likelihood estimator of the parameter k. Then, it must simultaneously
satisfies the following two inequalities

L(k) > Lk -1) 7)
L(k) > Lk +1). 8)

From the equation (7), we have

p B(LE )"
%(k) >lo +) T(xa,A)>1,
Lik-1) B(L,k+1)

where T(x; @, A) = [];(1 — e71%%). Since T(x; @, ) is a positive quantity, we have
k B(L,k
oo, o B
L(k-1) B(%, k +1)
= 1+—>(T(x0¢ /\))
ak

> (T(;a, A) 7

Therefore the inequality (7) holds if and only if

k< )4 {a (T(x,' a, /\)*% - 1)}_1 . )
Similarly, it can be shown that the inequality (8) holds if and only if

k> yla(Tosa, ) 1)) -1 (10)
Combining the inequalities (9) and (10) it is resulted that k must satisfies the inequality

k< )4 {a (T(x; a, /\)_% - 1)}_1 <k+1.

Therefore the explicit form of the maximum likelihood estimator of parameter k is obtain to be

Y
a(Teoa,A)7 " - 1)} ()

w‘)

where [b] denotes the largest integer less than or equal to b. It can be seen that, despite of the work of
Feldman and Fox [5], for the success probability in binomial distribution, the maximum likelihood estimator
of parameter k has a closed form.

Now, we can use the profile likelihood of the parameters (a, A,y) to find their maximum likelihood
estimators. According to the equation (6), the profile log-likelihood function of a, A and y, assuming k are
known, is obtained to be

a, A, y) = -nlogC(a,k,y)+nlogA — Ay Z X; + kz log(1 — exp{—Aax;}). (12)

i=1 i=1
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We also note that by definition of C(«, k, y) in relation (5),
9"Cla, k, ) 5 (k) (=1
(n) — =7l z B S A
Ca'l@A,y): dar " =i \i) (ai +y)r!

and

d"C(a, k, y) k(K (=1)r+
(1) — 7 —pl _— =
G (a, A, y): oy n! E i @is n=1,2,...

Therefore equating the first order derivations of (12) with respect to @, A and y to zero leads to the following
system of equations:

af(a{, A, V) nyl)(oz, A, y) L X,‘E_Aaxi
Ja - Cla, A, p) * k/\; 1= gAax;i
ag(a/ /\/ )/) _ —Aax; 3
dA - yle+ka21_e—)lax, -
dHa,Ay) 7, a, A, %) n _
dy = T"CaAy Z % = 0. (13)

i=1

One can use an iterative maximization procedure to find the solutions of equations (13).

9.1. Confidence interval for interested parameters

We are interesting to drive the exact distribution of k. It should be noted that it is not possible to use
the asymptotic normality of the ML estimators for k because the log-likelihood function is not differentiable
with respect to the parameter k and due to discreteness of the distribution of this estimator. According to
the equation (11), k is a nonnegative integer random variable. One can write

P([a (T(x; a,y)\)‘:x - 1)] B b)

P(( ozbai y)n <Toa,A) < (oz:b((-l:—-li_)l-zy)n)’

Pk = b)

where T(x; &, A) = [];(1 — e71%%). Recalling the part (8) of Theorem 1.2, when a and A are known, the
statistics T(x; a, A) is a product of n independent weighted beta random variables. The product of the
independent beta random variables belongs to a family whose densities are particular Meijier G-functions.
This distribution is too complex to be used for inferential proposes. Therefore, we use the central limit
theorem to derive the asymptotic distribution of the logarithm of this random variable. We have

Pk=0) = P(log(ab e ) Zlog(Y) < 1og(a(0‘b(f—;2y))
= P(log(%) <W<log (océ)é(i—-li_)l-i)/))' (14)

where Y; = 1 — ¢74*%i has the weighted beta distribution (wbeta(k + 1, Z—:)), W = % Y.y Wi and W; = log(Y)).
It is well known that the mean and the variance of the natural logarithm of a beta random variable can be
expressed in terms of the digamma and trigamma functions. If Z ~ beta(a, ), then E(log(2)) = ¢(a) -y (a+p)
and E(log(Z))* = (1/}(04) U(a + B)? + P1(a) — Y1(a + B), where 11(-) denote the trigamma functions. Thus,
the mean and variance of the random variable W; = log(Y;) is obtained to be

po = (W) = Elog(Yy) = — {9k + 1) =k + 1 + /)
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and
= Var(Wy) = E(log(Y}))* - E*(log(Yy))
=~ (Elog@)* - F(log(2))
= Sl ) = gl 1+ /),

8N

For enough large sample sizes the central limit theorem implies that W ~ N(u, %72”). Therefore due to the
equation (14) the sampling distribution of the k, in the form of a probability mass function, is obtained to be

) Vi(log(=all_y _ 1., Vin(log(=22-) — i)
P(k=b)zCD( g ((l;l)y H )_(D( ggby H )

where b =0,1,2,... and O(-) denotes the cdf of the standard normal distribution. Once the parameters k, y
and a are estimated, the quantiles of this distribution can be used to compute the moments of k, to construct
the confidence intervals and to test the hypothesis concerning k. The moments of a given real valued function
of k, g(lAc), is obtain to be ]E(g(lAc)) =Y g(b)P(lA{ = D). The sampling distribution of the maximum likelihood
estimator of parameter k for n = 100, k = 2 and different values of parameters «, ) is plotted in Figure 4.
It can be seen that this distribution is a right skewed discrete distribution that assigns small probability to
the large values. Therefore by ignoring the values with zero or too small probabilities from the sampling
distribution of k, the interested moments of this distribution can be calculated as ]E(g(l%)) = 2211 g(b)P(lAc =Db),
where M denotes a large natural value, e.g. 100. We provide the graphs of the root mean square error
(RMSE) and the standard deviation (SD) of k for various values of the sample size and parameters a,y
in Figure 5. It can be seen that the RMSE and SD of the proposed maximum likelihood estimator are
both decreasing function in terms of sample size. Of course it should be noted that, as a drawback of the
proposed estimator, after a strick decreasing in the RMSE of this estimator, the rate of the decreasing is
very small for large values of the sample size. Since the variance is exponentially decreasing, this facts
indicates that some biases remains even for large sample sizes. From the Figure 5 it is also resulted that the
grater values of the parameters «, y are correspond to the smaller values of the RMSE and variance of the
proposed maximum likelihood estimator for k. The cdf and quantile function of the asymptotic sampling
distribution of estimator k are given by

Fi(t) = Z P(k = b),
b<[t]

Flp) = inf{beZF(b)2p),

respectively. The quantile function can be used to provide a (1 — a)% confidence interval for parameter k.
For this it suffice to find two quantiles of sampling distribution of k, say g, (k) and g,,(k), such that

P(g,(k) <k < gq,(k) =1-a.

When all parameters are unknown the maximum likelihood estimates of the unknown parameters for the
FGWE distribution necessarily obtain via an iterative procedure. Therefore, derivation of the exact sampling
distribution of the maximum likelihood estimators of A, @ and y is not possible. Hence, the asymptotic
distribution of these estimators could be used instead. Despite of the maximum likelihood estimator of
parameter k, for parameters @,y and A the estimators share the fundamental optimality properties of the
maximum likelihood estimators, i.e. they are unbiased, efficient and asymptotically normal [3]. We provide
the asymptotic distribution of the maximum likelihood estimators that are necessary for the inferential
proposes. It suffices to compute the Fisher information matrix for obtaining the asymptotic variance of the
estimators.
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Figure 4: The sampling distribution of the maximum likelihood estimator of parameter k for n = 100, k = 2 and different values of
parameters «, y.

Consider the profile log-likelihood function of @, A and y in (12). The Fisher information matrix is obtain
to be

Li(a, A,y) Toa, A, y)  Lis(a, A, y)
I(a/ /\/ V) = 121 (0[, A/ 7/) 122(0(/ /1/ 7/) 123(0(/ /\/ )/) ’ (15)
Li(a, A, y) Is2(a,Ay) I, A y)

where

Pla Ay CRary)  (CR@ANY XX

In(a, A, y) = —]E( Ey )—n Ca iy ( Ca i) ) + nkA ]E(—l—e"‘ax)
XZE—Z/\aX
2
+ nkA ]E(m),

825(0(, /\, )/) n ) ze—)\aX ) Xze—zmx

I R e I e
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Figure 5: The RMSE and SD of the maximum likelihood estimator of parameter k for different values of parameters «, y and sample
size.

Pla, A, CP(a, A, D@, A, 7)\2
I, 1,y) = _]E( (a2 y))zn v ( y)_n( 7 ( 7/))/
dy Cla, A,y) Cla, A, y)
Pl(a,A,y) 2,-AaX X2p-21aX
Ip(a, A y) = Dala,Ay) = _IE(—B/\&’Q ) = nkAaE (—1 — e_MX) + nkAalE (—(1 — e—AaX)z)'
Pl A,y CO Ay CPa A7) (@ A,7)
e ) = e d) = ) = Ay
@A) = In(a i) = B[ 208D e
na,Ay) = Inldy) = ( 707 )—n (X),
where >
Cla, k,y)
o) _
Ca,y(ar /\/ V) - aaay .

It is easy to show that the expectation terms in the above expressions can be computed via the following
general formula

E( XrephaX )_ al(r+1) & (k—s) Yy
(L—e Xy | = ArBLk+1) &\ i J(ai+p) +y)+t

for 0 <s <kandr,p € N. Now, based on normality and optimality of the maximum likelihood estimators,
we have

(&/ ﬁ/ 7?) ~ AN3((al /\1 7/)/ I(CK, Ar 7/)_1)-

This asymptotic distribution can be used to construct confidence interval and to test hypotheses concerning
a, A and y. The %95 asymptotic confidence interval of the parameters a, A and ) are obtained, respectively,
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to be
a +1.96 /I (& A, 7)1,
A £1.96In(a, A, p)7,
and

v +1.96 \/Isa(@, A, P)1.

10. Data Illustration

In this section, we used a simulation study and a real example are used to assess the proposed maximum
likelihood estimators of the FGWE distribution parameters.

10.1. Simulation Study

We simulate n observation from a FGWE distribution with k = 2, A = @ = 0.1 and y = 2. As we
pointed out earlier, the greater values of the parameter a are correspond to the smaller values of the RMSE
and variance of the proposed maximum likelihood estimator for k. Therefore this choice of a is adopted
to evaluate the worst situation in estimation of the parameter k. The bias and the Root Mean Squares
Error (RMSE) of the maximum likelihood estimators of the parameters are presented in Table 1. It can
be seen that the RMSE values of the estimators decrease as the sample size increases. This is due to the
asymptotic optimality properties of the maximum likelihood estimators. Following Lachos et al. [11] and
Cancho et al. [4], we also proposed selecting the best fit by inspecting the Akaike information criterion
(AIC = 2r —2£(0)) and the Schwarz Bayesian information criterion (BIC = —¢ (6) +0.5r log 1), where 0, r and
n denote the vector of parameters, the number of estimated parameter and the sample size, respectively.
These criteria are computed for the FGWE distribution along with the correspond values for the GWE, WE
and exponential distribution in order to provide a comprehensive assessment and comparison of different
candidate distributions for a set of right skewed positive observations and the results are presented in
Table 2. Throughout the number of iterations is 5000 which seems large enough to take into account the
uncertainty in sampling procedure.

Table 1: The bias and Root Mean Squares Error (RMSE) of the maximum likelihood estimators of the parameters.
Sample Size

Estimator Criterion 10 25 50 100
a Bias -0.0100 -0.0100 -0.0100 -0.0100
RMSE 0.0100 0.0100 0.0100 0.0100
A Bias 0.0100 0.0100 0.0100 0.0100
RMSE 0.0100 0.0100 0.0401  0.0100
y Bias 0.0100  0.0200 0.0100  0.0100
RMSE 0.0100  0.0200 0.0301  0.0100
k Bias 0.3500 0.3014 0.2090 0.1262

RMSE 0.7644 0.5788 0.4580  0.3558

The values of the -log-likelihood, AIC and BIC indicate that the FGWE distribution provides a better
fit to data in all cases. An important point is that distinguishing between GWE, WE and exponential
distribution may by difficult due to the similar values of the AIC and BIC for these three distributions, for
instance consider the sample size 10, the AIC values for the GWE, WE and exponential distributions are,
respectively, 44.50 and 44.94. Whereas, there is a considerable difference between the values of these criteria
for the FGWE distribution and other distributions. Obviously, as the sample size increases, the asymptotic
properties of the maximum likelihood estimators implies that the quality of the fit increases for the FGWE
distribution and decreases for the GWE, WE and exponential distributions.
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Table 2: The values of the minus log-likelihood (-loglike), AIC, BIC criteria and K-S statistic for the FGWE distribution along with
their correspond values for the GWE, WE and exponential distributions.

Sample Size

Criterion Distribution 10 25 50 100
FGWE 40.27 101.35 203.09 406.15
GWE 4247 10535 21211 417.32
-loglike WE 4250 106.30 212.61 425.13
Exponential 4294 107.64 21545 431.04
FGWE 4327 10436 206.09 409.16
GWE 4445 108.12 213.61 425.13
AIC WE 4450 108.30 214.61 427.13
Exponential 4494 108.64 216.45 432.05
FGWE 4372 106.19 208.96 413.06
GWE 4412 107.51 215.19 426.81
BIC WE 4481 109.52 216.52 429.74
Exponential 44.10 109.24 217.41 433.35
FGWE 0.125 0.136 0.165 0.187
GWE 0.129 0.145 0.174 0.192
K-S WE 0.131 0.151 0.182  0.193
Exponential 0.140 0.159 0.184 0.199

10.2. Real Example

Consider the following real data set that shows the lifetimes of 52 industrial productions [9]:

7.62 10.58 1.10 6.89 3.33 8.69 3.22 2.27 4.59 4.91 3.78 2.88 3.49 1.77 6.50 1.73 3.47 5.73 3.03 3.74 5.51 0.68
4.71 4.29 2.43 5.95 5.88 1.51 7.51 3.39 4.23 1.27 2.25 0.97 2.63 8.21 1.96 7.18 1.35 1.90 1.60 7.31 11.79 1.61 1.39
2.191.741.58 4.09 1.96 1.28 0.17.

The values of the minus log-likelihood, AIC and BIC criteria, K-S and corresponding p-values resulted
from fitting the FGWE distribution to this dataset are presented in Table 3. We also provide the correspond-
ing values for the GWE, WE and exponential distribution as another possible candidates for right skewed
positive data that both are special cases of the FGWE distribution. The values of these criteria show that the

Table 3: Comparison between the FGWE, GWE, WE and exponential distributions by using different criteria.
Distribution

Criterion FGWE GWE WE Exponential
- loglike 112.32 11455 119.73 698.63
AIC 114.54 11755 121.73 699.63
BIC 116.98 119.38 12295 700.23
K-S 0.098 0.176  0.187 0.198
p-value 0.845 0.433 0.532 0.476

FGWE distribution has better fit to the data than those of the other distributions. Notice that although the
GWE distribution improves upon the corresponding WE and exponential model but it does not provides a
good fit as much as the FGWE distribution does. Also, the profile log likelihood plots are added in Figure
6.
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Figure 6: Profile of log likelihood functions for data set in Subsection 10.2.

11. Conclusions

We discussed the main inferential aspects of four-parameter generalized weighted exponential distri-
bution containing the maximum likelihood estimation, interval estimation and some reliability properties.
We also developed some new results about the FGWE distribution from the distribution theory point of
view and provided some interesting closed form expressions for the this distribution and its related char-
acteristics. Our simulation study indicates to the good efficiency of the proposed estimators. We showed
that distinguishing between the GWE, WE and exponential distribution may be difficult for small sample
sizes. Also, the real data analysis provides evidence indicating there are some data for them the FGWE
distribution provides a considerably better fit in comparison to the GWE, WE and exponential distributions.
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