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The Approximation by the Pertinent Euler-Lagrange-Jensen
Generalized Quintic Functional Maps in Quasi-Banach Spaces

Nguyen Van Dung?, Nguyen Thi Thanh Ly?

®Faculty of Mathematics Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam

Abstract. The purpose of this paper is to approximate a given map by the pertinent Euler-Lagrange-Jensen
generalized quintic functional map, and by the Euler-Lagrange-Jensen alternative generalized quintic
functional map. The obtained results are extensions of certain stability results from Banach spaces to
quasi-Banach spaces. The obtained results are supported by the examples.

1. Introduction and preliminaries

For a given map ¢ : X — Y, many authors have been interested in approximating ¢ by certain map
Q : X — Y which has certain better properties. This is the main idea of the so-called Ulam-Hyers stability [2],
[13]. In [14] Mohiuddine et al. approximated the map ¢ : X — Y, where X is a real normed space and

Y is a real Banach space, by the map Q : X — Y satisfying the following pertinent Euler-Lagrange-Jensen
generalized quintic equation

+h
0+ 7o y) AED)] + hQUk — )~ Qi =)

—12 (% + 1)[32Q( )+ Q-] -2 - ) -1)QE) = 0 (1)
for all x,y € X, where h € R\ {-1,0,1,2} is a fixed number. Similarly, the authors also approximated

@ : X = YbyQ: X — Y satisfying the following Euler-Lagrange-Jensen alternative generalized quintic
equation

hx +y x+h y hy - x
(h+1)5[hQ(h+1)+Q(h+1)] (h = 1)5[hQ(h =) - 5]

—( + D[IA(QEx +y) + Qi — ) + 20 = 1)*QW)| = 0 ©)

forall x,y € X, where h € R\ {-1,0, 1} is a fixed number.

The quasi-normed space is one interesting generalization of the normed space [10], [11]. The difference
of a quasi-norm compared to a norm is the modulus of concavity « > 1, see Definition 1.1.(3) below. This

2010 Mathematics Subject Classification. Primary 39B82; 47H10; Secondary 39B52

Keywords. Stability; functional equation; quasi-Banach; quasi-normed space

Received: 28 March 2020; Revised: 26 June 2020; Accepted: 28 June 2020

Communicated by Dijana Mosi¢

Research supported by the project SPD2020.01.02 of Dong Thap University, Vietnam

Email addresses: nvdung@dthu. edu.vn (Nguyen Van Dung), nguyenthithanhly@dthu.edu.vn (Nguyen Thi Thanh Ly)



N. V. Dung, N. T. T. Ly / Filomat 35:4 (2021), 1215-1231 1216

fact causes that a quasi-norm is not necessarily continuous, and the inequality does not necessarily hold for
more than two points. It is important to emphasize that the standard basic results of Banach space theory
such as the Uniform Bounded Principle, Open Mapping Theorem and Closed Graph Theorem, which
depend only on completeness, apply to quasi-normed spaces. However applications of convexity such
as the Hahn-Banach Theorem are not applicable, see [10, page 1102]. The most important quasi-normed
spaces are L,-spaces with 0 < p <1 with the following quasi-norm [11, page 16]

= [ veoraue). ©

Note that L,-spaces with 0 < p < 1 are non-normable spaces. There have been also quasi-normed spaces
with non-continuous quasi-norms, for example see [12, Example 3].

There have been results for the stability of functional equations in quasi-Banach spaces, see [3, Chap-
ter 20], [6], [7], [8], [9, Chapter 10], [15] for example. However, in these papers, the authors assumed that
every quasi-Banach space is a p-Banach space. Note that the calculations in p-Banach spaces are much more
easier than that in quasi-Banach spaces since every p-normed space is continuous and the inequality (4)
also holds for finite elements, that is

n n
DIRTEP WIS
1 i=1

i=

Recently, results for the stability of functional equations in quasi-Banach spaces which are not assumed
to be p-Banach spaces have been studied [4], [5], [6]. The key technique in these results is an explicit version
of the Aoki-Rolewicz theorem which states that for a given quasi-norm, there exists an equivalent p-norm,
see Theorem 1.2 below.

In this paper, we continue to approximate a given map by the pertinent Euler-Lagrange-Jensen gener-
alized quintic functional map, and by the Euler-Lagrange-Jensen alternative generalized quintic functional
map. The obtained results are extensions of the main ones of [14] from Banach spaces to quasi-Banach
spaces, and they are supported by the examples.

Now we present basic notions and properties which are useful in the next section.

Definition 1.1 ([1], Definition 3; [11], pages 6-7). Let X be a vector space over the field K (R or C), k > 1 and
Il : X = Ry be a function such that forall x,y € X,r € KK,

1. |Ix|l = O if and only if x = 0.
2. lrxl = frl- Il
3. lx + yll < wllxll + llyll)-

Then ||.|| is called a quasi-norm in X, the smallest « is called the modulus of concavity, and (X, ||.ll, x) is called a
quasi-normed space. For a quasi-normed space (X, ||.||, k), without loss of the generality we can assume that x is the
modulus of concavity. The quasi-norm ||.|| is called a p-norm, and (X, ||.||, ) is called a p-normed space if for some
peO;1]andall x,y € X,

e + yIIP < llxll? + Nyl (4)

The sequence {x,} is called convergent to x if lim ||x,, — x|| = 0, written lim x,, = x.
n—00 n—oo

The sequence {x,} is called Cauchy if lim ||x, — x|l = 0.

The quasi-normed space (X, ||.||, k) is called a quasi-Banach space if each Cauchy sequence is convergent. The
quasi-normed space (X, ||.||, x) is called a p-Banach space if it is p-normed and quasi-Banach.

Theorem 1.2 ([12], Theorem 1). Let (Y, %, ||.|) be a quasi-normed space, p = log,, 2, and

kel = inf{(zn: IlP) s x = Zn:xf,xi €Yn> 1}
i=1

i=1
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forall x € Y. Then, |||.|l| is a p-norm on Y, that is forall x, y € Y,
Il + Yl < {11l + iy P ()
Moreover, forall x € Y,
el < il < [l (6)
and if ||.|| is a norm, then p = 1 and |||.||| = |I.]I.
Lemma 1.3 ([14], page 3). Suppose that
1. X and Y are vector spaces.
2. Q: X — Yisamap satisfying (1).
Then for all x € X,n € N and m = h — 1, we have
Q) = {mj”Q(nj”x) l:flml >1,m# -2
mQ(m™"x)  if lm| <1,m # 0.
One of the main results of [14] is as follows.
Theorem 1.4 ([14], Theorem 3.1). Suppose that
1. X is a real normed linear vector space and (Y, ||.||) is a real Banach space.
2. @ : X — Yis a map satisfying
oo G+ o+ 0 -0l ) o7
—( + D[E(plx + ) + plx - ) + 207 = 1P| < 7)
forall x,y € X, where c > 0and h € R\ {-1,0, 1} are constant.
Then there exists a unique map Q : X — Y such that
1. Q satisfies the Euler-Lagrange-Jensen alternative generalized quintic functional equation (2).
2. Forallx e X,
¢ It + 15K2 + 17
lpC) = QN <SG )" e+ 12z + 16 ®)

3. Forallx € X, Q(x) = gglo Qn(x) where Q,(x) = 27"p(2"x).

2. Main results

First, we give an example to show the limitation of the assumption of Banach spaces in Theorem 1.4.

Example 2.1. Consider the following space

X=Y= L%[O,l] = {x :[0,1] > R: le% is Lebesgue integmble}

T 132 :
with ||x|| = (f |x(t)|fdt) forall x € L2[0,1]. Let a € R and define ¢ : X — Y by p(x)(t) = x°(t) +a forall x € X
0

and all t € [0,1]. Then we have
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1. (Y |I.ll, k) is not normable. Then it is not a Banach space.

2. All assumptions of Theorem 1.4, except for the assumption of Y being Banach space, are satisfied.

Proof. (1). It follows from [12, Examples 1 & 2] that Y is a quasi-normed space which is not normable. Then
it is not a Banach space.

(2). Itis clear that X is a real vector space. For all x, y € X, we have

e e e e B [ ) e
= (2 + )[I{p(+ y) + - y) + 202 - ()|
1
([

hx(t) + y(t))5 has (X(t) + hy(t))5 . a]
+(h- 1)5[h(

(h+1)5[h( h+1 h+1
’lx(;fl)_—l]/(t))5 ha (hy(;)_—lx(t))f’ ~ a]
2

1
dt)

e 1)[h2((x(t) YO + (x(t) — y(O)° +20) + 202 = D) + a)]

1
([ 10130+ 50"+ (x0-+ R0 ]+ 11309 - 0" = (s - x0)]

— B2 + D[ (x(8) + y(B)° + (x(t) — y(H)°] - 200 + (I = 122 (1)
1 2
zdt)

1
- ( fo ’h[(hxm +y0) + ()~ y) |+ [(x0) + hy®) = (hy) - x(1)) |

+(h+ 1)+ (h = 1)°a — 2K2(H2 + 1)a — 20k + 1)(* — 1)%a

~ I + 1) (0 + 90 + (0) — y(O)F| - 207 + DO ~ 175

1
dt)

1
= ( f |2h(h5x5(t) + 10123 (ByP (1) + Shx(B)y* (1)) + 2(x° (1) + 1012y (1) (1) + Sh*y* (Bx()
0

2
+(h+ 1)+ (h = 1)°a — 2K2(H2 + 1)a — 20k + 1)(* — 1)%a

= 21212 + 1)(x°(t) + 103 (O () + 5x(B)y* () — 2(h° — 1 = 1 + 1) (1)

1
dt)

2
+2a(h6+15h4+15h2+1—h4—h2—h6+h4+h2—1)
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= ( f 1 '[(2’16 +2 = 202022 + 1)) = 2(h® — 1 = 2 + 1)|°(8) + [200* + 2002 — 20022 + 1) [P () (#)
0

1
dt)

2
+ [1012 + 101" = 1072(W? + 1) |x(t)y* (1) + 301> (2 + 1)a

1 1 2
= 30M%(h? + 1)a|  dt
([ o)

= 30K2(H2 + 1)a.

It follows that
hx+y x+hy hx -y x —hy
5 _1\° _
H(h”)[h¢(h+1)+(’)(h+1)]+(h 1)[h(”(h—1) (”(1—14)]

= (2 + D[ (pc + v) + p(x = y)) + 2022 = 1)2p(v)]

This proves that (7) holds. Then all assumptions of Theorem 1.4, except for the assumption of Y being
Banach space, are satisfied. [

= 3Oh2(h2 + 1)a.

Now, we investigate the stability of the map satisfying the pertinent Euler-Lagrange-Jensen generalized
quintic equation (1) in quasi-Banach spaces.

Theorem 2.2. Suppose that
1. X is a real vector space and (Y, ||.||, x) is a real quasi-Banach space.

2. @ : X = Yis a map satisfying

h h
100+ D p( ) + ()] + Biplix = ) = oy =) ©)
—H2 (% + 1)[32(p(x;—y) + =y 202 - DI - DIl < ¢

forall x,y € X, wherec > 0and h € R\ {-1,0,1,2} are constant.

Then there exists a unique map Q : X — Y such that
1. Forallx € X,

- 2C(m) \r 10
ot - Qe < (=) (10)
wherem = h—1,p =log,, 2, and
o4 [(m + 1)%(m? + 2m + 2)|
Clm) = —( )
|ml|P [mé + m* + 4m3 + 7m? + 5m + 2

2. Forall x € X, Q(x) = lim Q,,(x) where
n—oo

m™p(m"x) if m| > 1,m # -2
Qu(x) = 5n -n ;
mo(m™"x) iflm| <1,m #0.
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3. Q satisfies the pertinent Euler-Lagrange-Jensen generalized quintic functional equation (1).
Proof. By replacing x = 0, y = 0 in (9), we obtain

c

\%

102+ 1)°[1p(0) + @(0)] + p(0) — (0) = I3 (1% + 1)[32(0) + p(0)] - 2(1* = 1)(I* = D)p(0)
= |h® - 6h> + 16h* — 201> + 16h* — 7h + 2|./lp(0)||. (11)

Since m = h — 1, we have

W — 6h° + 16h* — 203 + 16h* — 7Th + 2
= (m+1)°—6(m+1)°+16(m + 1)* —20(m + 1)> + 16(m + 1)*> = 7(m + 1) + 2
= m®+m* +4m® + 7m* + 5m + 2. (12)

Therefore, from (11) and (12), we obtain
Im® +m* + 4m® + 7m* + 5m + 2.|lp(0)| < c.
Note that m® + m* + 4m® + 7m? + 5m + 2 > 0 for all m. Then we have

C
0)l < ’

(13)

Sinceh € R\ {-1,0,1,2}, thenm € R\ {-2,-1,0, 1}. Now we consider following two cases.
Casel. |m| >1and m # -2.
By replacing y by x in (9) we obtain

c

[\

102+ 1| () + ()] + hep(hx = x) = (hx = x) = B2 + 1)[320(x) + 9(0)] - 201 - 1)(h* - D ()l
= [0r+ 1) = 321202 + 1) - 2022 = (' = D]p(x) + (2 - Dl - x) — (1 + Dp(O)

= 1l= (0= @) + (1 = Dp(hx = x) = K31 + Dp(O)

= |mlp(mx) — m’p(x)] = (m + 1)*(m* + 2m + 2)p(0)|!. (14)

It follows from (14), (5) and (6) that
lmlp(mx) = m>E)IP = (m + 1)*(m* + 2m + 2)pO)||I”

< |llmlp(mx) — m>p(x)] = (m + 1)*(m? + 2m + 2)p(0)[|IP
< |lmlp(mx) — m>p(x)] — (m + 1)*(m* + 2m + 2)p(0)|P.
< .

This implies that

ImPlllp(mx) — m>p)|IP < ¢ + |(m + 1)*(m* + 2m + 2)P|ll@(0)I|I°
< P+ |(m + 1)*(m? + 2m + 2)F|lp(0)|F. (15)

Then, using (13), (15), we have
lllp(mx) = m>p(x)lIP < C(m)
that is

C(m)

Iml>r”

llm~p(mx) — eIl < (16)
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By using (16) and (5) we have

lllp () = m~>"p(m"x)|IP
< llp@e) = m2pmllP + lllm>p(mx) = m™ P )lIF + - - + IIm~>" Do (m" " x) — m™"pm" )|
C(m
< (1 + |m|_5p 4o+ |m|_5(”_1)P)Q
||
1- |m|‘5f’”C
1 ") (17)
For eachn € N and x € X, put
Qulx) = m™"p(m"x). (18)
We shall prove that {Q,(x)} is a Cauchy sequence. For i,j € N, i > j, using (6), (17) and (18), we obtain
1
0 < 5lIQj(x) — Qi < Q;(x) = Qi
= Nlm™>p(mix) — m™ p(m'x)||P
= mlPllpm’x) — m™>Dem™.mlx)(IP
5 1 — |m|=2P6=D
5jp
<m0, =1 C(m)
||~ — ImI‘S”iC 19
T T -1 (m). (19)

Note that [m| > 1. Then taking the limit in (19) as i, j — oo, we obtain
Jim 1100 = Qito)ll = 0.

This proves that {Q,(x)} is a Cauchy sequence in (Y, ||.]|, k). Since (Y, [|.||, x) is a quasi-Banach space, the exists
the map Q : X — Y defined by

Q) = lim Q,(x), xeX (20)
Next, we will prove that Q(x) satisfies (10). Indeed, from (17) and (18), we have

1~ [m| 5"

ImPr —1

lllp(x) = QulII < C(m). (21)

Taking the limit in (21) as n — oo, using (5) and the continuity of p-norm [||.|||, we obtain

IA

llp@) — QI

= lllp) - lim QI
= lim [lp() - QI
C(m)

=1

1
Slp(x) - QI

This implies that (10) is proved.
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Now, we prove that Q satisfies (1). Replacing x by m"x and y by m"y in (9) and using (6), (18), we have

hm"x + m"y m'x + hm"y
)+ o

c = ”(h”)S[h‘P( h+1 I+ h

)] + ho(hm"x —m"y)
+m'y

—p(hm"y —m"x) — (W + 1)[32(p( ) + p(m'x — m”y)] -2 - 1)(h* - 1)

h
G+ DY) 1 (2 %]+M&@x—w-{%@y—w

_ 5n
= Iml hl T+h

202+ D[320,(50) + Qutx - )] 207 - D -~ Q.

|m|5n

\%

m+nW@4h+J Q41+hﬂ+MMm 9 = Qullty =)

202+ D[320,(50) + Qulr - )] - 207 - Dt - DR

It implies that

[l + 17 hQn(h+1) Qn(1+h)]+hQn(hx y) — Qullty — x)

—Hwﬂkmd D)+ Qutr - )] - 202 - e - Q|
< |m™"c (22)

Note that |m| > 1. Then taking the limit in (22) as n — oo, using (20) and the continuity of p-norm |||.|||, we
obtain

hy
o+ 0oty qﬁiﬁhwqm ») - Qly —

1202+ 1[320( ) 4 Qe - )] - 202 - e - |

[+ 0 tim Q) + tim Q5]+ 1l Q- 9

) n—>oo
~ lim Qu(y - x) - hz(h2+1)[32thn( y)+th,,(x )
=207 = (" - 1) lim Q, (|

hy
<x+

= im0+ 1) [hQn( )+ q, 1+h

n—eo h+1

)] + hQu(hx = y) = Qullty — )

202+ D[320,( ) + Qe - )] 207 - )t - DQ.W|

|5n

IN

lim |m
n—oo

= 0.
It follows that

hy
Mm+WMqh+Q + Q)] + Qe ~ y) = Qlhy )

1202 + D[320(— T4 Qe -] 202 - et - new|| =

This proves that Q satisfies (1).
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Case 2. |m| <1land m # 0.
By replacing y and x by m~'x in (9), then using the similar argument as in Case 1, we have

llpx) = m>p(mx)IP < C(m). (23)
By using (5) and (23), we have
lllp(x) = m>" p(m ™ x)IIP

< o) = mom™ NP + limpm™ x) = m om0
+eeeF ”|m5(n—1)(P(m—(n—1)x) _ m5n(p(m—nx)”|p
< (1 Pt |m|5("_1)7’)C(m)
Lot 24
T I mpr (m). (24)
For eachn € N and x € X, put
Qu(x) = m™p(m "x). (25)

We shall prove that {Q,(x)} is a Cauchy sequence. For i, j € N, i > j, using (6), (24) and (25), we obtain

1
0 < 511Q;(x) = Qi)

IA

1Q;(x) = Qi)III”

llmlqp(m™~Tx) = m> @(m ") II

ImPPlp(m ) = m®Dgp(m~ )l
1 — [mpr-»
1~ [mp¥
[mPi¥ — |m|?

- 1— |mlp

[P

IA

C(m)

C(m). (26)
Note that |m| < 1,m # 0. Then taking the limit in (26) as i, ] — co and we obtain
Jim [1Q,) ~ Qi) = 0.

This proves that {Q,(x)} is a Cauchy sequence. Since (Y, ||.||, ) is a quasi-Banach space, the exists the map
Q: X — Y defined by

Q) = lim Qn(x), x€X. (27)

Next, we will prove that Q(x) satisfies (10). Indeed, from (24), we have

llp@) = QulIF” < 5 =-Clm). (28)

Taking the limit in (28) as n — oo, using (5), (20) and the continuity of p-norm |||.|||, we obtain

IA

llp(x) — QE)IIP

= llp() - lim QI

= lim llp() = QP
C(m)

1—|mP

1
Slp(x) - QI
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This implies that (10) holds.

1224

Now, we prove that Q satisfies (1). Replacing x by m™x and y by m™y in (9) and using (6), (25),

we obtain
hm™x +m™"y m™7x + hm™y
)+ o

¢ = ”(“1)5[}“’)( HT1 T+

)] + ho(hm™x —m™"y)

—p(hm™y —m™"x) — h*(h* + 1)[32(p(m y) +om™"x — m_”y)]

2
=2(1* = 1)(h* = Dep(m™

T (h+1)5[hQn(h+1y)+Q(xl-:h)]+hQn(hx y) - Qu(hy - )

I+ D[32Qu(57) + Qulr - )] 207 - )0 - Q.|

\%

|71’l| —5n

m+nW@4h+Q Q(NWH+MMM ¥) = Qullty = )

202+ D[320,(50) + Qula - ] ~207 - Dt - DR
It implies that

+hy
(x

1+ h)]+hQn(hx y) = Qu(hy — x)

o+ e i)

202+ D[320,(50) + Qutx - )] 202 - D - Q|
< |m|5n
Taking the limit in (29) as n — oo, using (27) and the continuity of p-norm [||.]||, we obtain

x+hy

WMMWQMJ)qlwﬂM@My)@WX)

202 + D[320() + Qe - )] - 202 - 1) - QG|

_ |”(h+1)5hthn( diil

X
e M\ T 1)+33?0Q”(1+

12 + 1|32 lim Q,,( y)+thn(x y] - 202 - 1)t - 1) th,,(x)|||

_ 11m“|(h+1)5[hQn(h+1y)+Q(1+h)]+hQn(hx y) = Qulhy - x)

02+ D[320,(50) + Qulx - )] - 202 = Dkt - Q|
< Jim e

= 0.

It follows that

h
Mm+thh+ﬁ Q)] + Q0 ~ ) = Qliy )

-2+ 1[320( 55 v Q-] 202 - et - e =

+—;;y)] + I Tim Q, (hx - ) = lim Q,(hy - %)

(29)



N. V. Dung, N. T. T. Ly / Filomat 35:4 (2021), 1215-1231 1225

This proves that (1) holds.

By the above two cases, Q satisfies (1), and (10) holds.

Finally, we prove the uniqueness of the such map Q. Suppose that P : X — Y'is also a map satisfying (1)
and (10). By Lemma 1.3 we have

mo"Q(mx)  if |m| > 1,m # =2
= 30
Q) {m5”Q(m”x) iflml <1,m#0 (30)
m"P(mtx)  if jm| > 1,m # =2
P(x) = 31
) {m5”P(m”x) if Im| < 1,m # 0. S
Note that Q and P satisfy (10). By using Theorem 1.2, we have
11Q(x) = PIIP < llp(x) = QNP + lllp(x) — PCo)lIIP (32)
< llip() = QI + llp(x) = Peo)ll?
acm
WT—l if m| >1,m# -2
=\ 4cm)
T if jm| <1,m 0.
By using (30), (31) and (32) we have
Im| P |IQ(m"x) — P(m")NIP - if |m| > 1,m # —2
— PP
1196 = PO {Imls”’”IIIQ(m‘"X) = POl if bl < 1,m # 0
4C(m)
|m| =21 ifm|>1,m# -2
< jmr -1 (33)
=, A0
ImI W 1 |m|< ,m#0.

Taking the limit in (33) as # — oo we obtain [||Q(x) — P(x)||| = 0 for all x € X. Then Q = P. This proves the
uniqueness of the map Q which satisfies (1), and (10) holds. O

Since every normed space is a quasi-normed space with the modulus of concavity ¥ = 1, we have the
following corollary. Note that in the case of normed space (Y, ||.||) we have [||.]|| = |I.||. So there is no coefficient
2 in the right side of (10).

Corollary 2.3 ([14], Theorem 2.1). Suppose that
1. (X, |I.llx) is a real normed space and (Y, ||.||) is a real Banach space.
2. ¢ : X = Y is a map satisfying (9).

Then there exists a unique map Q : X — Y such that

1. Q satisfies the pertinent Euler-Lagrange-Jensen generalized quintic functional equation (1).

2. Forallxe X, m=h-1,

) — Qe < —
X)— X)) =
¢ P — 1]
where
c (m +1)%(m? + 2m + 2)
Cim) = —- (1 )
|m| [m® + m* + 4m3 + 7m? + 5m + 2|
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Next, we investigate the stability of the map satisfying the Euler-Lagrange-Jensen alternative generalized
quintic equation (2) in quasi-Banach spaces.

Lemma 2.4. Suppose that

1. X and Y are vector spaces.

2. Q: X — Y is a map satisfying (2).
Then for all x € X,n € N we have Q(x) = 27"Q(2"x).
Proof. By replacing x = 0, y = 0 in (2), we obtain

0 (h+ 1°[hQ(0) + QUO)] + (1 = 1)°[hQ(0) = Q(O)] - (” + 1)[K*(Q(0) + Q(0)) + 2(#* = 1)>Q(0)]

[+ 1)° + (= 1)° = 2022 + DI + (2 = 1)21]Q(0)
30K*(* + 1)Q(0).

Note that i # 0. So we have

Q(0) = 0. (34)
By replacing y by x in (2) and using (34) we get

hx + x X+ hx hx — x hx — x
0 = G+ Q)+ Q)]+ (- () - A=)
= + D[IA(QMx + x) + Q(x — 1)) + 207 - 1)°Q()]

= (h+1)°QW) + (h = 1)°Q(x) — (2 + D[IF(Qx) + Q) + 2(#* - 1?Q(w)]

= [0+ 1)+ (0 =1)° = 202 + 1) - 1?]Q(x) - (W + 1)Q(2x)

= 321 (H? + 1)Q(x) — H*(h* + 1)Q(2x)

(0 + 1)[2°Q(x) - Q(2x))|-
This implies that

Q(2%) = 2°Q(x). (35)

For each n € N, by using (35), we obtain

QR"x) =2°Q(2" )
=252°Q(2" %)

= 2"Q(x).
This proves that Q(x) = 27"Q(2"x). [
Theorem 2.5. Suppose that

1. X is a real vector space and (Y, ||.||, x) is a real quasi-Banach space.
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2. @ : X — Yis a map satisfying

ey x+hy -y hy-x
||(h+1)5[h‘P(h+1)+¢(h+1)]+(h_1)5[h¢(h )= o5z 1)]

—(2 + D[IP(p(x + y) + plx = ) + 202 - D)) | < (36)

forall x,y € X, where c > 0and h € R\ {-1,0, 1} are constant.
Then there exists a unique map Q : X — Y such that
1. Q satisfies the Euler-Lagrange-Jensen alternative generalized quintic functional equation (2).

2. Forallx € X, p =log,, 2,

c 20+ 30#)]

900 = QN < 3ol G =1y (37)

3. Forallx € X, Q(x) = 1}1_{130 Qu(x) where Q,(x) = 27" p(2"x).

Proof. By replacing x = 0, y = 0 in (36), we obtain

c

\%

102+ DPp(0) + (O] + (2 = D*[Ip(0) — (O)] — (2 + DI(p(0) + p(0)) + 201> ~ 12p(O)]]
[(h + 1)6 +(h— 1)6 - Z(h2 + 1)[h2 + (h2 — 1)2]|.||(p(0)||
30127 + Dllp(O)1.

Note that 1 # 0. So we have

llpO)ll < (38)

C
30n2(h2 + 1)

By replacing y by x in (36) we get

X+ x x + hx X hx —x

> s o) + ol + 0= T3 ) - ol 5]

-1+ 1)[h2((p(x +X) + @(x — x)) +2(0% - 1)2g0(x)]“
00+ 1D59) + (1= 1R - 07 + D[I(p(23) + 9(0)) + 207 - 1P|
[+ 1) + (= 1)° = 202 + 1)(? = 1] () = FA(H? + 1)p(0) = H2(#* + Dep(2x)

132K (H* + 1)(x) — K*(h* + 1)p(0) — K*(h* + 1)p(2x)||
R + 1).125p(x) — (0) — p(2x)|I.

a
\

Note that /1 # 0. So this implies that

c
12°¢(x) — (0) — p(2x)|| < 20E T 1) (39)
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By using Theorem 1.2 and (39), we obtain

1
EII25<P(X) — p2x)IP <1I2°p(x) — p2x)III

< I2°p(x) = (2x) = e(OIIP + lllpO)I

<12°p(x) = p(2x) = PO + llpOIF

cP
- p
< gEsy O

It follows from (38) and (40) that

1 1 c?
— _25 14 B 4 —5p SR P —
2||(p(x) 272p0)IIP < lllpx) =2 2pu)IIF < 27P(1 + 3OP)h2F’(h2 ey

For eachn € N and x € X, put
Qu(x) = 27p(2"x).
Using (5), (41) and (42), we have

lllp(x) = QuIIP
lllp(x) = 272" 2)IIP

<
1 c?
< (1424 42750 PP (1 4 )
< Je 307 R T 1y
1-2 1 o
< 271+ —)—8M8M
< T2 Ut pima ey
1—25m 1 o
S S
-1 T30 iEaE 1y

lllp(x) =22 ONIF + 127 p(2x) = 272 5QQR2)IIP + - - + 12720 V(2" x) — 272" )|IP

1228

(40)

(41)

(42)

(43)

Now, we will prove that {Q,(x)} is a Cauchy sequence in (Y,].|, x). Indeed, fori,j € N and i > j, by

using (6) and (43) we obtain

1
0.< 51Q)(x) - Q)P

IN

1Qj(x) = Qi)
= I27%p@2x) - 2% @ )|IP

= 2Pllp@/x) - 27 22)|IP
< 2—5JP.LW(1 + L)L
- 25 —1 300" h2r (h2 + 1)P
2751p — 25 1 c?
mo1 s mamE ey

Taking the limit in (44) as i, j — oo, we obtain

11]1330 1Qj(x) = Qi) = 0.

(44)

Hence, {Qy(x)} is a Cauchy sequence in (Y, ||.ll, k). Since, (Y;||.ll,x) is a quasi-Banach space, there exists

Q : X — Y such that for each x € X,

QW) = lim Q,().

(45)
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Using (6), (43), (45) and the continuity of [||.|||, we obtain

%II(p(X) = QI < llpx) = QNP = lllp(x) — ,}g{}o Qu)IIP
= r}l_r){}o llp(x) = Qu()IIIP
1—275m 1 c?
<im T ) mge s 1y
1+ 307 c?
30° )th(hz +1)P(2°% - 1)

This implies that (37) holds.
We will prove that Q satisfies (2). By replacing x by 2"x and y by 2"y in (36) then multiplying two sides
of the inequality by 27" and using inequality (6), we obtain

h2"x + 2"y 2"x + h2"y h2"x = 2"y h2"y —2"x
€z ”(h”)S[h(P( ) T )]+ (= 17| 1) )
(2 + D[IP(p@"x + 2y) + p(2"x ~ 2")) + 2027 ~ 1 2"x)]||
hy —
> 2 70 () + (S + - V(=) - o]
=2 + D[I(Qulx + ) + Qul = ) + 207 = 17 Q)
h
> 2o 0D + @]+ - 05 - QUG
~(1 + D[F(Qulx + 1) + Qulx — ) + 2022 = 1D?Qu)]|
This implies that
+y X +hy y hy —x
e+ 00 (50 + @G+ - 0 (5= - .G
(1 + D[R Qulx + 1) + Qulx — ) + 222 = 12 Q]| < 277 (46)

Taking the limit in (46) as n — oo, using (45), the continuity of p-norm |||.|||, we obtain

y hy —x
|||(h+1)5hQ(h+1) (h+1)] (= 1)5[hQ(h 1) o7 =7)]
~(2 + D[I2(Q0 + y) + Qe — ) + 207 - 1)2 @]l

W)

)]+(h 1) [hthn( __y)—thn(h -

—(% + D)[( Tim Qu(x + ) + lim Qu(x - y)) +207 = 1) lim Qu(x) H|

- |||(h+1)5h11an( y)+ lim Qn(

n—oo h ]_ n—oo

y x+h -y hy—x
= lim H|(h+ 1)°[nQu( h+1)+Q (55 )] +(h - 1)5[hQ,,( =)~ Q(5—)]
—(12 + D]I(Qulx + y) + Qulx - ) + 2022 = 1P Q)|
lim 27>"¢

n—oo

0.

IA
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It follows that
hx+y x+hy hx—y hy —x
Jlew+ 07fe(57) + A5l + (- 7[5 =) - (=)

= 02+ )[IP(QUx + ) + Qx - ) + 2022 - D)QW|[| = 0.

This proves that Q satisfies (2).
Proving the uniqueness of Q is similar to the proof of Theorem 1.2 where Lemma 1.3 is replaced by
Lemma24. [

Similarly, we also have the result in normed spaces. This result is [14, Theorem 3.1]. In fact, the assumption
of (X, |I.|l) being a normed space is superfluous. We need only X is a vector space.

Corollary 2.6 ([14], Theorem 3.1). Suppose that
1. (X, |I.l) is a real normed space and (Y, ||.|) is a real Banach space.
2. @ : X — Y is a map satisfying (36).
Then there exists a unique map Q : X — Y such that
1. Q satisfies the Euler-Lagrange-Jensen alternative generalized quintic functional equation (2).

2. Forall x € X,

C
“90(3‘) - QM) = m

Finally, we give an example to support our results. The example also shows that our results are proper
generalizations of the given ones in [14].

Example 2.7. Consider the given spaces X, Y and the map ¢ in Example 2.1. Then we have
1. (Y |IIl, k) is a real quasi-Banach space with k = 2.

2. Theorem 2.5 is applicable to X, Y, ¢ but Theorem 1.4 is not.
3. @ is approximated by the map Q : X — Y defined by Q(x) = x°, x € Lz[0, 1].

Proof. (1). It follows from [12, Examble 1] that (Y;|.||, ¥) is a quasi-Banach space with x = 2.

(2). It follows from (1) and Example 2.1.(2) that all the assumptions of Theorem 2.5 are satisfied. Hence,
Theorem 2.5 is applicable to X and ¢.

However, it follows from Example 2.1.(1) that Y is not a Banach space. So Theorem 1.4 is not applicable
to given X, Y and ¢.

(3). We find that Q(x) = lim 2%"p(2"x) = lim 27%((2"x)° + ) = im (2® +27%a) = . [J

n—oo
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