
Filomat 35:4 (2021), 1267–1287
https://doi.org/10.2298/FIL2104267L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, for a complete residuated lattice L, we present the categorical properties
of >-neighborhood spaces and their categorical relationships to neighborhood spaces and stratified L-
neighborhood spaces. The main results are: (1) the category of >-neighborhood spaces is a topological
category; (2) neighborhood spaces can be embedded in >-neighborhood spaces as a reflective subcategory,
and when L is a meet-continuous complete residuated lattice, >-neighborhood spaces can be embedded in
stratified L-neighborhood spaces as a reflective subcategory; (3) when L is a continuous complete residuated
lattice, neighborhood spaces (resp., >-neighborhood spaces) can be embedded in >-neighborhood spaces
(resp., stratified L-neighborhood spaces) as a simultaneously reflective and coreflective subcategory.

1. Introduction

By a neighborhood space [15], we mean a pair (X,U ), where X is a non-empty set and U := {U x
}x∈X

satisfies: (1) U x is a filter on X, and (2) U x
⊆ ẋ := {A ⊆ X|x ∈ A}. In this case, U is also called a

neighborhood system on X. A neighborhood space (X,U ) is called topological if it satisfies moreover (NT)
A ∈ U x =⇒ ∃B ∈ U x s.t. ∀y ∈ B, A ∈ U y. It is well known that one can establish a bijection between
topological spaces and topological neighborhood spaces by takeing that “A is an open set of a topological
space X ifand only if A ∈ U x for any x ∈ A”. Therefore, neighborhood space is an extension of topological
space and is often called the pretopological space. Moreover, it is easy to see that pretopological space is also
equivalent to pretopological convergence space [13, 35].

Since fuzzy sets were applied in topology, various types of lattice-valued neighborhood spaces were
proposed as the extension of some types lattice-valued topological spaces, see Fang [9], Shi [39], Zhang
[46, 48] and Höhel-S̆ostak [16], and so on. Quite recently, types of lattice-valued neighborhood spaces
are closely related to rough sets [29, 49, 50]. It is well known that the categorical properties and the
categorical relationships have always been the focus of lattice-valued topology theory. Thus, as the extension
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of lattice-valued topological spaces, it is natural and interesting to study the categorical properties and
categorical relationships about lattice-valued neighborhood spaces.

In recent years, given a complete residuated lattice L as the membership of fuzzy sets, the notions of
stratified L-topology and strong L-topology have attracted much attention of fuzzy topologist, see Fang
and Yue [8, 9, 45], Jäger [21, 22], Pang [33, 34], Ahsanullah [4, 5], Han and Yao [12, 43], Reid and Richardson
[36, 37], Li [26, 27], Lai and Zhang [23], and so on. Particularly:

♦ When L is a complete MV-algebra, Fang and Yue [9] proved that>-neighborhood spaces are equivalent
to pretopological >-convergence spaces, and topological >-neighborhood spaces are equivalent to
strong L-topological spaces.

♦ When L is meet-continuous (MV-algebra is meet-continuous), the author and co-author [27] showed
that >-neighborhood spaces are equivalent to conical L-neighborhood spaces in [23].

♦ When L is a complete Heyting algebra, Jäger [21] verified that stratified L-neighborhood spaces are
equivalent to pretopological stratified L-convergence spaces, and topological stratified L-neighborhood
spaces are equivalent to stratified L-topological spaces, later the author and co-author [26] generalized
Jäger’s results from the lattice-context (precisely, from complete Heyting algebra to meet-continuous
complete residuated lattice).

To sum up, >-neighborhood space is an extension of strong L-topological space, and stratified L-
neighborhood space is an extension of stratified L-topological space.

The concept of topological groups is defined as a group equipped with a topology such that the group
operations are continuous with respect to the topology. Since topological spaces and continuous functions can
be described by neighborhood systems, topological groups can also be described by neighborhood systems.
For L a complete Heyting algebra, as an extension of topological groups, Al-Mufarrij and Ahsanullah
[3] introduced a notion of stratified L-neighborhood topological groups, which is defined as a group
equipped with a topological stratified L-neighborhood space such that the group operations are continuous.
Note that topological stratified L-neighborhood spaces describe precisely stratified L-topological spaces [3,
Proposition 1.10] and the continuous functions between stratified L-topological spaces can be characterized
by stratified L-neighborhood systems [3, Remark 1.8], hence stratified L-neighborhood topological groups
characterize precisely stratified L-topological groups. Later, by dropping the topological condition in
stratified L-neighborhood topological groups, Ahsanullah etal [4] investigated the notion of stratified
L-neighborhood groups. Quite recently, the author observed that the topological condition for stratified
L-neighborhood space is not used in the characterized theorem of stratified L-neighborhood topological
groups [3, Theorem 2.21]. We also observed a similar result from the characterized theorem of topological
groups [1, Theorem 1.3.12]. Inspired by these two observations, we showed in [18, Theorem 3.15] that the
stratified L-neighborhood space associated with a stratified L-neighborhood group is naturally topological.
Hence the topological condition is redundant, and stratified L-neighborhood groups are equivalent to
stratified L-neighborhood topological groups. In this sense, we say that when defining (lattice-valued)
topological groups, (lattice-valued) neighborhood spaces are enough. Therefore, the study on lattice-valued
neighborhood spaces is important to the theory of lattice-valued topological groups.

In this paper, consider L being a complete residuated lattice, we shall study the categorical properties
of >-neighborhood spaces and their categorical relationships to neighborhood spaces and stratified L-
neighborhood spaces.

The contents are arranged as follows. Section 2 recalls some basic notions as preliminary. Section 3 focuses
on the categorical properties of >-neighborhood spaces and their categorical relationships to neighborhood
spaces. The main results are: (1) the category of >-neighborhood spaces is a topological category; (2)
neighborhood spaces can be embedded in >-neighborhood spaces as a reflective subcategory; and if L is a
continuous complete residuated lattice, then neighborhood spaces can embed in >-neighborhood spaces
as a simultaneously reflective and coreflective subcategory. Section 4 presents the categorical properties
of stratified L-neighborhood spaces and their categorical relationships to >-neighborhood spaces. The
main results are: (1) the category of stratified L-neighborhood spaces is a topological category; (2) if L is a
meet-continuous complete residuated lattice, then >-neighborhood spaces can be embedded in stratified
L-neighborhood spaces as a reflective subcategory; and if L is a continuous complete residuated lattice, then
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>-neighborhood spaces can embed in stratified L-neighborhood spaces as a simultaneously reflective and
coreflective subcategory. Section 5 makes a conclusion.

2. Preliminaries

In this section, we recall briefly some basic notions of neighborhood spaces, complete residuated lattice,
lattice-valued fuzzy sets and lattice-valued filters.

2.1. Neighborhood Spaces
In this subsection, we recall some concepts about neighborhood spaces from [15].
Let (X,U ) and (Y,V ) be neighborhood spaces. Then a function f : (X,U ) −→ (Y,V ) is said to be

continuous at x if B ∈ V f (x) implies f−1(B) ∈ U x, and f is said to be continuous if it is continuous at each x ∈ X.
Let NS denote the category of neighborhood spaces and continuous functions.

For a source (X
f j
−→ (X j,U j)) j∈J in NS, we mean that (X

f j
−→ X j) j∈J is a family of functions and (X j,U j) j∈J

is a family of neighborhood spaces. By the initial structure w.r.t. the source (X
f j
−→ (X j,U j)) j∈J is meant the

neighborhood system U on X such that the conditions of an initial lift in the category of NS are fulfilled,
that is,

(1) all functions f j : (X,U ) −→ (X j,U j) are continuous,
(2) for any neighborhood space (Y,V ) and any function f : Y −→ X, it holds that f : (Y,V ) −→ (X,U ) is

continuous if and only if for all j ∈ J, the functions f j ◦ f : (Y,V ) −→ (X j,U j) are continuous.

Each source (X
f j
−→ (X j,U j)) j∈J in NS has an initial structure U defined by ∀x ∈ X,

U x = {A ⊇
⋂
j∈F

f−1
j (B j)|F ∈ 2(J),∀ j ∈ F,B j ∈ U

f j(x)
j },

where 2(J) denote all the non-empty finite subsets of J.

For a sink ((X j,U j)
f j
−→ X) j∈J in NS, we mean that (X j

f j
−→ X) j∈J is a family of functions and (X j,U j) j∈J

is a family of neighborhood spaces. By the final structure w.r.t. the sink ((X j,U j)
f j
−→ X) j∈J is meant the

neighborhood system U on X such that the conditions of a final lift in the category of NS are fulfilled, that is,
(1) all functions f j : (X j,Ui) −→ (X,U ) are continuous.
(2) for any neighborhood space (Y,V ) and any function f : X −→ Y, it holds that f : (X,U ) −→ (Y,V ) is

continuous if and only if for all j ∈ J, the functions f ◦ f j : (X j,U j) −→ (Y,V ) are continuous.

Each sink ((X j,U j)
f j
−→ X) j∈J in NS has a final structure U defined by ∀x ∈ X,

U x =


ẋ, x <

⋃
j∈J

f j(X j);⋂
j∈J, f j(x j)=x

f j(U
x j

j ), otherwise.

A category over Set is called topological iff it has initial structures iff it has final structures.
The reader is referred to [2] for other notions and results in category theory.
A filter on a set X is an upper set of (2X,⊆) (2X denotes the power set of X) that is closed under finite

meets and does not contain the empty set ∅. For any set X, let F (X) denote the set of filters on X. Let
f : X −→ Y be a function and F ∈ F (X), G ∈ G (Y). Then we denote f (F ) the filter on Y generated by the
family { f (A)|A ∈ F } as filter base, and call it the image of F under f . In addition, if for all B ∈ G it holds
that f−1(B) , ∅, then the family { f−1(B)|B ∈ G } forms a filter base on X, and we denote the filter generated by
it as f−1(G ) and call it the inverse image of G under f .

Let (X,Ui) (i = 1, 2) be neighborhood spaces. Then we say U1 is finer than U2 or U2 is coarser than U1,
and denoted as U2 ≤ U1 if the function idX : (X,U1) −→ (X,U2) is continuous, that is U x

2 ⊆ U x
1 for all x ∈ X.
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Let N(X) denote the set of neighborhood systems on X. Then (N(X),≤) forms a complete lattice. For
{U j} j∈J ⊆ N(X), it is easily seen that:

(1) the supremum of {U j} j∈J is defined as: ∀x ∈ X, (
∨

j∈J U j)x is the filter generated by {
⋂
j∈F

A j|F ∈ 2(J),∀ j ∈

F,A j ∈ U x
j } as a base;

(2) the infimum of {U j} j∈J is defined as: ∀x ∈ X, (
∧

j∈J U j)x =
⋂

j∈J U x
j .

2.2. Complete Residuated Lattice and Lattice-Valued Fuzzy Sets

A complete residuated lattice is a pair (L, ∗), where L is a complete lattice with respect to a partial order ≤ on
it, with the top (resp., bottom) element > (resp., ⊥), and

(i) ∗ is a commutative semigroup operation on L such that a ∗
∨
j∈J

b j =
∨
j∈J

(a ∗ b j) for all a ∈ L and {b j} j∈J ⊆ L,

(ii) > is the unique unit in the sense of > ∗ a = a for all a ∈ L.
For a given complete residuated lattice, the binary operation→ on L is defined by a→ b =

∨
{c ∈ L|a∗c ≤ b}

for all a, b ∈ L. The binary operation→ is called the implication operation with respect to ∗. The basic properties
of ∗ and→ are collected as below [7, 14, 16, 19, 38].

(I1) a→ b = > ⇔ a ≤ b;
(I2) a ∗ (a→ b) ≤ b;
(I3) a→ (b→ c) = (a ∗ b)→ c = b→ (a→ c);
(I4) (

∨
j∈J

a j)→ b =
∧
j∈J

(a j → b), (I4) implies that (I4′) a ≤ b⇒ a→ c ≥ b→ c;

(I5) a→ (
∧
j∈J

b j) =
∧
j∈J

(a→ b j), (I5) implies that (I5′) b ≤ c⇒ a→ b ≤ a→ c;

(I6) a ∗ b ≤ c⇔ a ≤ b→ c.

In this paper, if not otherwise specified, L = (L, ∗) is always assumed to be a complete residuated lattice.
L = (L, ∗) is called a complete Heyting algebra or a frame when ∗ = ∧.
L = (L, ∗) is called a complete MV-algebra if L satisfies the condition:
(MV) a ∨ b = (a→ b)→ b for any a, b ∈ L.
L = (L, ∗) is said to be meet-continuous if the underlying lattice (L,≤) is a meet-continuous lattice [10], that

is, L satisfies the condition:
(MC) a ∧

∨
j∈J

a j =
∨
j∈J

(a ∧ a j) for any a ∈ L and any non-empty directed subset {a j| j ∈ J} ⊆ L.

L = (L, ∗) is said to be continuous if (L,≤) is a continuous lattice [10], i.e., for any non-empty subfamily
{a j,k| j ∈ J, k ∈ K( j)} ⊆ L with {a j,k|k ∈ K( j)} is directed for all j ∈ J, the following identity holds,

(CC)
∧
j∈J

∨
k∈K( j)

a j,k =
∨
h∈N

∧
j∈J

a j,h( j),

where N is the set of all choice functions h : J −→
⋃
j∈J

K( j) with h( j) ∈ K( j) for all j ∈ J.

Remark 2.1. For a complete MV-algebra, it is pointed out in [9, Lemma 2.2] that a ∧
∨
j∈J

a j =
∨
j∈J

(a ∧ a j) for any

a ∈ L and {a j| j ∈ J} ⊆ L. Hence, a complete MV-algebra is meet-continuous.

In a residuated lattice (L, ∗), for all a, b ∈ L, a ∗ b ≤ a, b and hence a ∗ b ≤ a ∧ b.
We call a function µ : X→ L an L-fuzzy set in X, and use LX to denote the set of all L-fuzzy sets in X. The

operations
∨
,
∧
, ∗,→ on L can be translated onto LX pointwise. That is, for any µ, ν, µ j( j ∈ J) ∈ LX,

µ ≤ ν iff µ(x) ≤ ν(x) for any x ∈ X,
(
∨
j∈J
µ j)(x) =

∨
j∈J
µ j(x), (

∧
j∈J
µ j)(x) =

∧
j∈J
µ j(x),

(µ ∗ ν)(x) = µ(x) ∗ ν(x), (µ→ ν)(x) = µ(x)→ ν(x).
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For any α ∈ L, we use α to denote the constant L-fuzzy set with value α. For any A ⊆ X, we use >A to
denote the characteristic function of A.

Let f : X −→ Y be a function. We define f→ : LX
−→ LY and f← : LY

−→ LX [16] by f→(µ)(y) =
∨

f (x)=y µ(x)
for µ ∈ LX and y ∈ Y, and f←(ν)(x) = ν( f (x)) for ν ∈ LY and x ∈ X.

Let µ, ν be L-fuzzy sets in X. The subsethood degree [6] of µ, ν, denoted by SX(µ, ν), is defined by

SX(µ, ν) =
∧
x∈X

(µ(x)→ ν(x)).

The following theorem collects some basic properties of subsethood degree, they can be found in many place
such as [6, 8, 9, 20, 24, 28, 41, 42, 44].

Lemma 2.2. Let f : X −→ Y be a function and µi, νi ∈ LX, wi ∈ LY (i = 1, 2). Then
(1) µ1 ≤ µ2⇔SX(µ1, µ2) = >;
(2) SX(µ1, µ2) ∗ SX(µ2, ν1) ≤ SX(µ1, ν1);
(3) SX(µ1, ν1) ∧ SX(µ2, ν2) ≤ SX(µ1 ∧ µ2, ν1 ∧ ν2);
(4) ν1 ≤ ν2 ⇒ SX(µ1, ν1) ≤ SX(µ1, ν2), SX(ν1, µ1) ≥ SX(ν2, µ1);
(5) SX(µ1, ν1) ≤ SY( f→(µ1), f→(ν1)),SY(w1,w2) ≤ SX( f←(w1), f←(w2)).

2.3. >-Filters.
The notion of filter has been extended to the fuzzy setting in two approaches: prefilters (or >-filters more

general) and L-filters. Both prefilters ( >-filters) and L-filters play important roles in (lattice-valued) fuzzy
topology, see e.g. Lowen [30–32], Höhel [16, 17], Gutiérrez Garcı́a [11],Fang [9], Jäger [22], Lai [23], Li [27]
and Pang [34].

Definition 2.3. ([16]) A non-empty subset F ⊆ LX is called a >-filter on the set X whenever:
(TF1)

∨
x∈X

λ(x) = > for all λ ∈ F,

(TF2) λ ∧ µ ∈ F for all λ, µ ∈ F,
(TF3) if λ ∈ LX such that

∨
µ∈F

SX(µ, λ) = >, then λ ∈ F.

The set of all >-filters on X is denoted by F>L (X).

Definition 2.4. ([16]) A non-empty subset B ⊆ LX is called a >-filter base on the set X provided:
(TB1)

∨
x∈X

λ(x) = > for all λ ∈ B.

(TB2) if λ, µ ∈ B, then
∨
ν∈B

SX(ν, λ ∧ µ) = >.

Each >-filter base generates a >-filter FB defined by FB := {λ ∈ LX
|
∨
µ∈B

SX(µ, λ) = >}.

Lemma 2.5. ([36, Lemma 3.1]) Let F ∈ F>L (X) and B be a >-filter base of F. Then for any λ ∈ LX,
∨
µ∈B

SX(µ, λ) =∨
µ∈F

SX(µ, λ).

Example 2.6. ([16]) Let f : X −→ Y be a function, F ∈ F>L (X) and G ∈ F>L (Y). Then:
(1) The family { f→(λ)|λ ∈ F} forms a >-filter base on Y, and the >-filter f⇒(F) generated by it is called

the image of F under f . It is easy to check that µ ∈ f⇒(F) iff f←(µ) ∈ F.
(2) The family { f←(µ)|µ ∈ G} forms a >-filter base on Y iff

∨
y∈ f (X)

µ(y) = > holds for all µ ∈ G, and the

>-filter f⇐(G) (if it exists) generated by it is called the inverse image of G under f .
(3) For each x ∈ X, [x]> = {λ ∈ LX

|λ(x) = >} is a >-filter on X.

Lemma 2.7. ([9, Lemma 2.11]) Let f : X −→ Y be a function, F ∈ F>L (X) and and G ∈ F>L (Y).
(1) If B is a >-filter base of F, then { f→(λ)|λ ∈ B} is a >-filter base of f⇒(F). Thus, f⇒(F) can be calculated by

f⇒(F) = {λ ∈ LY
|
∨
µ∈B SY( f→(µ), λ) = >}.

(2) If B is a >-filter base of G and f⇐(G) exists, then { f←(µ)|µ ∈ B} is a >-filter base of f⇐(G). Thus, f⇐(G) can
be calculated by f⇐(G) = {λ ∈ LX

|
∨
µ∈B SY( f←(µ), λ) = >}.
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Remark 2.8. Although the results in this subsection are stated for complete MV-algebra or complete Heyting
algebra in [9, 16, 36], it is not difficult to check that the results still hold for general complete residuated
lattice since for any {ai|i ∈ I}, {b j| j ∈ J} ⊆ L with

∨
i∈I

ai = >,
∨
j∈J

b j = >, it holds that

> =
∨
i∈I

ai ∗
∨
j∈J

b j =
∨

i∈I, j∈J

(ai ∗ b j) ≤
∨

i∈I, j∈J

(ai ∧ b j).

2.4. Stratified L-Filters

Stratified L-filter is also a lattice-valued extension of crisp filter.

Definition 2.9. ([16]) A stratified L-filter on a set X is a function F : LX
−→ L such that:

(LF1) F (⊥) = ⊥, F (>) = >;
(LF2) ∀λ, µ ∈ LX, F (λ) ∧ F (µ) = F (λ ∧ µ);
(LFs) ∀λ ∈ LX, ∀α ∈ L, F (α ∗ λ) ≥ α ∗ F (λ).
The set of all stratified L-filters on X is denoted by F s

L (X).

Example 2.10. ([16]) Let f : X −→ Y be a function and F ∈ F s
L (X), G ∈ F s

L (Y).
(1) The function f⇒(F ) : LY

−→ L defined by µ 7→ F (µ ◦ f ) is a stratified L-filter on Y.
(2) If L is meet-continuous, then the function f⇐(G) : LY

−→ L defined by f⇐(G)(λ) =
∨
{G(µ)| f←(µ) ≤ λ}

is a stratified L-filter on Y whenever f←(µ) = ⊥ implies G(µ) = ⊥[when proving that f⇐(G) fulfills (LF2), the
meet-continuity is used].

(3) For any x ∈ X, the function [x] : LX
−→ L, [x](λ) = λ(x) is a stratified L-filter on X.

3. >-Neighborhood Spaces and their Relationships to Neighborhood Spaces

In this section, we shall study the categorical properties of >-neighborhood spaces and their categorical
relationships to neighborhood spaces. The main results are two: (1) the category of >-neighborhood spaces
is a topological category; (2) neighborhood spaces can be embedded in>-neighborhood spaces as a reflective
subcategory, and if L is continuous, then neighborhood spaces can embed in >-neighborhood spaces as a
simultaneously reflective and coreflective subcategory.

3.1. >-Neighborhood Spaces

Definition 3.1. ([16]) A >-neighborhood space is a pair (X,U := {Ux
}x∈X) satisfies

(TN1) ∀x ∈ X,Ux
⊆ LX is a >-filter, and

(TN2) ∀x ∈ X,Ux
⊆ [x]>.

ThenU is called a >-neighborhood system on X.

Remark 3.2. Let L = ([0, 1], ∗) be the Łukasiewicz t-norm. It is mentioned in [23, Remark 3.11] that a >-filter
(i.e., L-saturated prefilter consisting of inhabited fuzzy sets) is precisely a saturated prefilter in the sense of
Lowen [32]. It follows easily that a >-neighborhood space is precisely a fuzzy neighborhood space dropping
the topological condition (N3) in [32, Definition 2.1]. Hence, >-neighborhood space is an extension of
Lowen’s fuzzy neighborhood space.

A function f : (X,U) −→ (Y,V) between >-neighborhood spaces is said to be continuous at x if ν ∈ V f (x)

implies f←(ν) ∈ Ux, and f is said to be continuous if it is continuous at each x ∈ X.
The following lemma about continuity is obviously.

Lemma 3.3. Let f : (X,U) −→ (Y,V) be a function between >-neighborhood spaces and B be a >-neighborhood base
ofV f (x) for x ∈ X. Then f is continuous at x iff for any λ ∈ B, f←(λ) ∈ Ux.

Let TNS denote the category of >-neighborhood spaces and continuous functions. The notions of source,
sink, initial structure and final structure in TNS can be defined similarly as for NS.
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Theorem 3.4. Each source (X
f j
−→ (X j,U j)) j∈J in TNS has an initial structure.

Proof. We consider the pair (X,U) defined by

∀x ∈ X,Ux =
{
µ ∈ LX

∣∣∣ ∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

SX(
∧
j∈F

f←j (µ j), µ) = >
}
.

Firstly, we prove that (X,U) is a >-neighborhood space.
(TF1): Note that (TN2) implies (TF1), so we need only check (TN2). Let x ∈ X and µ ∈ Ux. Then

> =
∨

F∈2(J),∀ j∈F,µ j∈U
f j(x)

j

SX(
∧
j∈F

f←j (µ j), µ)

≤

∨
F∈2(J),∀ j∈F,µ j∈U

f j(x)

j

((∧
j∈F

f←j (µ j)(x)
)
→ µ(x)

)
, by µ j( f j(x)) = >

=
∨

F∈2(J),∀ j∈F,µ j∈U
f j(x)

j

(> → µ(x)) = µ(x).

Thus µ(x) = >.
(TF2): Let µ, ν ∈ Ux. Then∨

F∈2(J),∀ j∈F,µ j∈U
f j (x)

j

SX(
∧
j∈F

f←j (µ j), µ) = >,
∨

G∈2(J),∀k∈G,νk∈U
fk (x)
k

SX(
∧
k∈G

f←k (νk), ν) = >.

It follows that

> =
[ ∨

F∈2(J),∀ j∈F,µ j∈U
f j (x)

j

SX(
∧
j∈F

f←j (µ j), µ)
]
∗

[ ∨
G∈2(J),∀k∈G,νk∈U

fk (x)
k

SX(
∧
k∈G

f←k (νk), ν)
]

≤

∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

∨
G∈2(J),∀k∈G,νk∈U

fk (x)
k

(
SX(

∧
j∈F

f←j (µ j), µ) ∧ SX(
∧
k∈G

f←k (νk), ν)
)

≤

∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

∨
G∈2(J),∀k∈G,νk∈U

fk (x)
k

SX

(∧
j∈F

f←j (µ j) ∧
∧
k∈G

f←k (νk), µ ∧ ν
)

by H := F ∪ G ∈ 2(J)
≤

∨
H∈2(J),∀ j∈H,w j∈U

f j (x)

j

SX(
∧
j∈H

f←j (w j), µ ∧ ν),

where the first inequality holds since ∗ distributes over arbitrary joins and ∗ ≤ ∧. Thus µ ∧ ν ∈ Ux.
(TF3): Let µ ∈ LX satisfy the condition

∨
ν∈Ux

SX(ν, µ) = >. Note that for any ν ∈ Ux we have

∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

(
SX(

∧
j∈F

f←j (µ j), ν)
)

= >,
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then

> =
∨
ν∈Ux

(
SX(ν, µ) ∗

∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

(
SX(

∧
j∈F

f←j (µ j), ν)
))

=
∨
ν∈Ux

∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

(
SX(

∧
j∈F

f←j (µ j), ν) ∗ SX(ν, µ)
)

≤

∨
F∈2(J),∀ j∈F,µ j∈U

f j (x)

j

SX(
∧
j∈F

f←j (µ j), µ).

Thus µ ∈ Ux.
Now, we have proved thatU satisfies (TN1) and (TN2), so (X,U) is a >-neighborhood space.
Secondly, we prove the initial conditions.

(1) Each f j : (X,U) −→ (X j,U j) is continuous. Indeed, let µ j ∈ U
f j(x)
j then

> = SX( f←j (µ j), f←j (µ j)) ≤
∨

F∈2(J),∀i∈F,µi∈U
fi (x)
i

SX(
∧
i∈F

f←i (µi), f←j (µ j)).

Thus f←j (µ j) ∈ Ux.
(2) Let f : (Y,V) −→ (X,U) be a function between >-neighborhood spaces. Then f is continuous iff each

f j ◦ f is continuous. Obviously, if f is continuous, then each f j ◦ f is continuous. Conversely, let y ∈ Y and
µ ∈ U f (y), i.e.,

> =
∨

F∈2(J),∀ j∈F,µ j∈U
f j ( f (y))

j

SX(
∧
j∈F

f←j (µ j), µ)

≤

∨
F∈2(J),∀ j∈F,µ j∈U

f j ( f (y))

j

SY( f←(
∧
j∈F

f←j (µ j)), f←(µ)), continuity of f j ◦ f implies ν := f←(
∧
j∈F

f←j (µ j)) ∈ Vy

≤

∨
ν∈Vy

SY(ν, f←(µ)).

Hence f←(µ) ∈ Vy, and so f is continuous at y.

From the above theorem we get the following corollary.

Corollary 3.5. The category TNS is topological over the category Set.

Remark 3.6. (1) For a source (X
f j
−→ (X j,U j)) j∈J in TNS, the initial >-neighborhood systemUx at x, is indeed

the >-filter generated by

{

∧
j∈F

f←j (µ j)|F ∈ 2(J),∀ j ∈ F, µ j ∈ U
f j(x)
j }

as a base.

(2) Corollary 3.5 shows that each sink ((X j,U j)
f j
−→ X) j∈J in TNS has a final structure. Here we give the

construction of the final structure (X,U) for later use.

∀x ∈ X,Ux =


[x]>, x <

⋃
j∈J

f j(X j);⋂
j∈J, f j(x j)=x

f⇒j (Ux j

j ), otherwise.
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Let (X,Ui) (i = 1, 2) be >-neighborhood spaces. Then we sayU1 is finer thanU2 orU2 is coarser thanU1,
and denoted asU2 ≤ U1 if the function idX : (X,U1) −→ (X,U2) is continuous, that is ∀x ∈ X,Ux

2 ⊆ U
x
1.

Let TN(X) denote the set of >-neighborhood systems on X.

Corollary 3.7. (TN(X),≤) forms a complete lattice.

Proof. Obviously, (TN(X),≤) is a partially ordered set. For any collection {U j} j∈J ⊆ TN(X), letU be the initial

structure on X w.r.t. the source (X
f j
−→ (X j,U j)) j∈J with each f j = idX. It is easily seen from Theorem 3.4 that

U is the coarsest >-neighborhood systems on X finer than allU j. ThusU is the supremum (so denoteU as∨
j∈JU j) of {U j} j∈J. Hence (TN(X),≤) forms a complete lattice.

In addition, it is easily seen from Remark 3.6 (2) that the final structure on X w.r.t. the sink ((X j,U j)
f j
−→ X) j∈J

with all f j = idX, defined as
∧

j∈JU j, is the infimum of {U j} j∈J.

3.2. Embedding of Neighborhood Spaces in >-Neighborhood Spaces as a Reflective and Coreflective Subcategory
For a given F ∈ F (X), it is easily seen that the family {>A|A ∈ F } forms a >-filter base, the >-filter

generated by it is denoted as ω(F ). Indeed,

ω(F ) = {λ ∈ LX
|

∨
A∈F

SX(>A, λ) = >}.

Particularly, for any x ∈ X, ω(ẋ) = [x]>.

Lemma 3.8. Let f : X −→ Y be a function and F ∈ F (X). Then ω( f (F )) = f⇒(ω(F )).

Proof. Note that ω( f (F )) has a>-filter base {> f (A)|A ∈ F }, and f⇒(ω(F )) has a>-filter base { f→(>A)|A ∈ F }.
It is easy to check that > f (A) = f→(>A). Hence, ω( f (F )) and f⇒(ω(F )) have a common >-filter base, and so
they are equal.

Definition 3.9. Let (X,U ) be a neighborhood space. Then it is not difficult to prove that the pair (X, ω(U )) is
a >-neighborhood space, where ∀x ∈ X, ω(U )x = ω(U x). A >-neighborhood space (X,U) is called generated
by a neighborhood space (X,U ) ifU = ω(U ).

Lemma 3.10. Let f : X −→ Y be a function and (X,U ) and (Y,V ) be neighborhood spaces. Then f : (X,U ) −→ (Y,V )
is continuous if and only if f : (X, ω(U )) −→ (Y, ω(V )) is continuous.

Proof. Assume that f : (X,U ) −→ (Y,V ) is continuous at x ∈ X. Then for any A ∈ V f (x), we have f−1(A) ∈ U x,
and so f←(>A) = > f−1(A) ∈ ω(U )x. It follows by Lemma 3.3 that f : (X, ω(U )) −→ (Y, ω(V )) is continuous at x.
Conversely, let f : (X, ω(U )) −→ (Y, ω(V )) be continuous at x. Then for any B ∈ V f (x), we have >B ∈ ω(V ) f (x)

and so > f−1(B) = f←(>B) ∈ ω(U )x. That means
∨

A∈U x SX(>A,> f−1(B)) = >, i.e., there exists an A ∈ U x such
that A ⊆ f−1(B). Hence f−1(B) ∈ U x and so f : (X,U ) −→ (Y,V ) is continuous at x ∈ X.

It is easily seen that the correspondence (X,U ) 7→ (X, ω(U )) defines an embedding functor ω : NS −→
TNS. The following theorem shows that ω preserves the initial structures.

Theorem 3.11. Let U be the initial structure w.r.t. the source (X
f j
−→ (X j,U j)) j∈J in NS. Then ω(U ) is the initial

structure w.r.t. the source (X
f j
−→ (X j, ω(U j))) j∈J in TNS.

Proof. Since it has been known that ω(U ) is a >-neighborhood system on X, we need only check the initial
conditions.

(1) Each f j : (X, ω(U )) −→ (X j, ω(U j)) is continuous. Indeed, it follow immediately by Lemma 3.10 and
the continuity of f j : (X,U ) −→ (X j,U j).

(2) Let f : (Y,V) −→ (X, ω(U )) be a function between >-neighborhood spaces. Then f is continuous iff
each f j ◦ f is continuous.
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Obviously, if f is continuous, then each f j ◦ f is continuous.
Conversely, let each f j ◦ f is continuous. For any y ∈ Y, note that

{

⋂
j∈F

f−1
j (A j)|F ∈ 2(J),∀ j ∈ F,A j ∈ U

f j( f (y))
j }

forms a base of U f (y). Then for any λ ∈ ω(U ) f (y), it follows by Lemma 2.5 that

> =
∨

F∈2(J),∀ j∈F,A j∈U
f j( f (y))

j

SX(>⋂
j∈F

f−1
j (A j), λ)

=
∨

F∈2(J),∀ j∈F,A j∈U
f j ( f (y))

j

SX(
∧
j∈F

f←j (>A j ), λ), by >A j ∈ ω(U j) f j( f (y))

≤

∨
F∈2(J),∀ j∈F,µ j∈ω(U j)

f j ( f (y))

SX(
∧
j∈F

f←j (µ j), λ), by Lemma2.2(5)

≤

∨
F∈2(J),∀ j∈F,µ j∈ω(U j)

f j ( f (y))

SY

(
f←(

∧
j∈F

f←j (µ j)), f←(λ)
)

=
∨

F∈2(J),∀ j∈F,µ j∈ω(U j)
f j ( f (y))

SY

(∧
j∈F

( f j ◦ f )←(µ j), f←(λ)
)
, by continuity of f j ◦ f in NS

≤

∨
F∈2(J),∀ j∈F,ν j∈Vy

SY

(∧
j∈F

ν j, f←(λ)
)
, by (TF2)

≤

∨
ν∈Vy

SY

(
ν, f←(λ)

)
,

i.e., f←(λ) ∈ Vy. Hence f is continuous at y.

Definition 3.12. Let f : X −→ Y be a function and (Y,V) (resp., (Y,V )) be a >-neighborhood space (resp.,
neighborhood space). Then f : X −→ (Y,V) (resp., f : X −→ (Y,V )) can be regarded as a source in TNS (resp.,
NS) consisting of one function. We denote the corresponding initial structure as f⇐(V) (resp., f−1(V )), i.e.,

∀x ∈ X, f⇐(V)x := f⇐(V f (x)) (resp., f−1(V )x = f−1(V f (x))).

Note that f⇐(V f (x)) exists since λ( f (x)) = > for any λ ∈ V f (x)
⊆ [ f (x)]>.

Corollary 3.13. (1) For any {U j} j∈J ⊆ N(X), we have ω(
∨
j∈J

U j) =
∨
j∈J
ω(U j).

(2) For a function f : X −→ Y and a neighborhood space (Y,V ), we have ω( f−1(V )) = f⇐(ω(V )).
(3) For a continuous function f : (X,U) −→ (Y,V) in TNS, we have f⇐(V) ≤ U.

Proof. (1) It follows from Theorem 3.11 by considering the source (X
idX
−→ (X,U j)) j∈J in NS.

(2) It follows from Theorem 3.11 by considering the source X
f
−→ (Y,V ) in NS.

(3) Note that f = f ◦ idX : (X,U) −→ (X, f⇐(V)) −→ (Y,V) is continuous, then by the initial condition (2),
we get that idX : (X,U) −→ (X, f⇐(V)) is continuous, so f⇐(V) ≤ U.

Lemma 3.14. Let f : X −→ Y be a function and {U j} j∈J be a family of >-neighborhood systems on Y. Then
f⇐(

∨
j∈J
U j) =

∨
j∈J

f⇐(U j). A similar result for neighborhood spaces also holds.
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Proof. Obviously, f⇐(
∨
j∈J
U j) ≥

∨
j∈J

f⇐(U j). On the other hand, for any x ∈ X, let λ ∈ f⇐(
∨
j∈J
U j)x = f⇐(

∨
j∈J
U

f (x)
j ).

Then by Remark 3.6 (1) and Lemma 2.7 (2)

> =
∨

F∈2(J),∀ j∈F,µ j∈U
f (x)
j

SX(
∧
j∈F

f←(µ j), λ), by f←(µ j) ∈ f⇐(U f (x)
j ) = f⇐(U j)x

≤

∨
F∈2(J),∀ j∈F,ν j∈ f⇐(U j)x

SX(
∧
j∈F

ν j, λ),

i.e., λ ∈
∨
j∈J

f⇐(U j)x. Hence, f⇐(
∨
j∈J
U j) ≤

∨
j∈J

f⇐(U j).

Given a >-neighborhood space (X,U), define ρ(U) =
∨
{U ∈ N(X)|ω(U ) ≤ U}. Note that (N(X),≤) forms

a complete lattice. Hence ρ(U) is a neighborhood system on X, i,e., (X, ρ(U)) is a neighborhood space.

Proposition 3.15. Let f : X −→ Y be a continuous function between >-neighborhood spaces (X,U) and (Y,V). Then
f is also continuous between (X, ρ(U)) and (Y, ρ(V)).

Proof. Since f : (X,U) −→ (Y,V) is continuous, then f⇐(V) ≤ U by Corollary 3.13 (3). Hence,

f−1(ρ(V)) = f−1(∨{V |V ∈ N(Y), ω(V ) ≤ V}), by Lemma3.14
= ∨{ f−1(V )|V ∈ N(Y), ω(V ) ≤ V}, by Corollary3.13(2)
≤ ∨{ f−1(V )|V ∈ N(Y), ω( f−1(V )) = f⇐(ω(V )) ≤ f⇐(V) ≤ U}
≤ ∨{ f−1(V )|V ∈ N(Y), ω( f−1(V )) ≤ U}
≤ ∨{U |U ∈ N(X), ω(U ) ≤ U}
= ρ(U).

Therefore, f : (X, ρ(U)) −→ (Y, ρ(V)) is continuous.

It is easily seen that the correspondence (X,U) 7→ (X, ρ(U)) defines a concrete functor ρ : TNS −→ NS.

Theorem 3.16. The pair (ρ,ω) is a Galois correspondence and ρ is a left inverse of ω. Hence the category NS can be
embedded in the category TNS as a reflective subcategory.

Proof. Given (X,U ) ∈ NS and (X,U) ∈ TNS.
(1) Since ω is an embedding, then ω(V ) ≤ ω(U ) ⇔ V ≤ U . Hence, ρ ◦ ω(U ) =

∨
{V ∈ N(X)|ω(V ) ≤

ω(U )} =
∨
{V ∈ N(X)|V ≤ U } = U .

(2) ω ◦ ρ(U) ≤ U. Indeed,

ω ◦ ρ(U) = ω(∨{V |V ∈ N(X), ω(V ) ≤ U}), by Corollary3.13(1)
= ∨{ω(V )|V ∈ N(X), ω(V ) ≤ U} ≤ U.

The following Theorem 3.18 shows that ω preserves the final structures. But first we start with the
following:

Lemma 3.17. Let (X, {U j}) j∈J be a family of neighborhood spaces. If L is continuous, then ω(
∧
j∈J

U j) =
∧
j∈J
ω(U j).

Proof. Obviously, ω(
∧
j∈J

U j) ≤
∧
j∈J
ω(U j).
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Let x ∈ X and λ ∈
⋂
j∈J
ω(U j)x. Then for any j ∈ J,

∨
A j∈U x

j
SX(>A j , λ) = >, and {SX(>A j , λ)|A j ∈ U x

j } is a

directed subset in L. Hence

> =
∧
j∈J

∨
A j∈U x

j

SX(>A j , λ), by continuous condition (CC)

=
∨
h∈N

∧
j∈J

SX(>h( j), λ),where N = { f : J −→
⋃
j∈J

U x
j |∀ j ∈ J, f ( j) ∈ U x

j }

=
∨
h∈N

SX(
∨
j∈J

>h( j), λ), by
∨
j∈J

h( j) ∈
⋂
j∈J

U x
j

≤

∨
B∈

⋂
j∈J

U x
j

SX(>B, λ),

i.e., λ ∈ ω(
∧
j∈J

U j)x. Hence ω(
∧
j∈J

U j) ≥
∧
j∈J
ω(U j).

Theorem 3.18. Let U be the final structure w.r.t. the sink ((X j,U j)
f j
−→ X) j∈J in NS. If L is continuous, then

(X, ω(U )) is the final structure w.r.t. the sink ((X j, ω(U j))
f j
−→ X) j∈J in TNS.

Proof. Since it has been known that ω(U ) is a >-neighborhood system on X, we need only check the final
conditions.

(1) Each f j : (X j, ω(U j)) −→ (X, ω(U )) is continuous. Indeed, it follow immediately by Lemma 3.10 and
the continuity of f j : (X j,U j) −→ (X,U ).

(2) Let f : (X, ω(U )) −→ (Y,V) be a function between >-neighborhood spaces. Then f is continuous iff
each f ◦ f j is continuous.

Obviously, if f is continuous, then each f ◦ f j is continuous.
Conversely, let each f ◦ f j is continuous. For any x ∈ X, it has two cases.
Case 1: x <

⋃
j∈J

f j(U j), then ω(U )x = ω(ẋ) = [x]>. For any λ ∈ V f (x), since V f (x)
⊆ [ f (x)]> we have

f←(λ)(x) = λ( f (x)) = >, so f←(λ) ∈ ω(U )x. Hence f is continuous at x.
Case 2: x ∈

⋃
j∈J

f j(U j), then

ω(U )x = ω(U x) = ω
( ⋂

j∈J, f j(x j)=x

f j(U
x j

j )
)

= (by Lemma3.17)
⋂

j∈J, f j(x j)=x

ω( f j(U
x j

j )).

For any λ ∈ V f (x), we have λ ∈ V f ( f j(x j)) for any x j ∈ X j with f j(x j) = x. By f ◦ f j is continuous at x j we get

f←j ( f←(λ)) = ( f ◦ f j)←(λ) ∈ ω(U x j

j ),

so f←(λ) ∈ f⇒j (ω(U x j

j )) = (by Lemma3.8)ω( f j(U
x j

j )), and then f←(λ) ∈
⋂

j∈J, f j(x j)=x
ω( f j(U

x j

j )) = ω(U )x. Hence f

is continuous at x.

Definition 3.19. Let f : X −→ Y be a function and (X,U ) be a neighborhood space (resp., (X,U) be a
>-neighborhood space). Then f : (X,U ) −→ Y (resp., f : (X,U) −→ Y) can be regarded as a sink in NS (resp.,
TNS) consisting of one function. We denote the corresponding final structure as f (U ) (resp., f⇒(U)), i.e.,

∀y ∈ Y, f (U )y =

 ẏ, y < f (X);⋂
f (x)=y

f (U x), otherwise. (resp., f⇒(U)y =

 [y]>, y < f (X);⋂
f (x)=y

f⇒(Ux), otherwise. ).
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Corollary 3.20. Let f : X −→ Y be a function and L be continuous.
(1) For any (X,U ) ∈ NS, we have ω( f (U )) = f⇒(ω(U )).
(2) For a continuous function f : (X,U) −→ (Y,V) in TNS, we have f⇒(U) ≥ V.

Proof. (1) It follows from Theorem 3.18 by considering the sink (X,U )
f
−→ Y in NS.

(2) Note that f = idY ◦ f : (X,U) −→ (Y, f⇒(U)) −→ (Y,V) is continuous, then by the final condition (2),
we get that idY : (Y, f⇒(U)) −→ (Y,V) is continuous, so f⇒(U) ≥ V.

Let (X,U) be a >-neighborhood space, define

ι(U) = ∧{U ∈ N(X)|ω(U ) ≥ U}.

Note that (N(X),≤) forms a complete lattice. Hence ι(U) is a neighborhood system on X, i,e., (X, ι(U)) is a
neighborhood space.

Lemma 3.21. Let f : X −→ Y be a function and {U j} j∈J ⊆ N(X). Then f (
∧
j∈J

U j) =
∧
j∈J

f (U j).

Proof. Let y < f (X). Then f (
∧
j∈J

U j)y = ẏ =
∧
j∈J

f (U j)y. Let y ∈ f (X). Then

f (
∧
j∈J

U j)y =
⋂

f (x)=y

f (
⋂
j∈J

U x
j ) =

⋂
f (x)=y

⋂
j∈J

f (U x
j ) =

⋂
j∈J

⋂
f (x)=y

f (U x
j ) =

∧
j∈J

f (U j)y.

Proposition 3.22. If L is continuous and f : X −→ Y is a continuous function between >-neighborhood spaces (X,U)
and (Y,V), then f is also continuous between (X, ι(U)) and (Y, ι(V)).

Proof. Note that

f (ι(U)) = f (∧{V ∈ N(X)|V ∈ N(X), ω(V ) ≥ U}), by Lemma3.21
= ∧{ f (V )|V ∈ N(X), ω(V ) ≥ U}
≥ ∧{ f (V )|V ∈ N(X), f⇒(ω(V )) ≥ f⇒(U)}, by Corollary3.20(1)
= ∧{ f (V )|V ∈ N(X), ω( f (V )) ≥ f⇒(U)}, by Corollary3.20(2)
= ∧{ f (V )|V ∈ N(X), ω( f (V )) ≥ f⇒(U) ≥ V}
≥ ∧{ f (V )|V ∈ N(X), ω( f (V )) ≥ V}
≥ ∧{W |W ∈ N(Y), ω(W ) ≥ V} = ι(V).

Hence, for any x ∈ X, it holds that

ι(V) f (x)
⊆ f (ι(U)) f (x) =

⋂
f (z)= f (x)

f⇒(ι(U)z) ⊆ f⇒(ι(U)x).

Therefore, f : (X, ι(U)) −→ (Y, ι(V)) is continuous at x.

It is easily seen that the correspondence (X,U) 7→ (X, ι(U)) defines a concrete functor ι : TNS −→ NS.

Theorem 3.23. If L is continuous, then the pair (ω, ι) is a Galois correspondence and ι is a left inverse of ω. Thus the
category NS can be embedded in the category TNS as a coreflective subcategory.

Proof. Given (X,U ) ∈ NS and (X,U) ∈ TNS.
(1) Since ω is an embedding, then ω(V ) ≥ ω(U ) ⇔ V ≥ U . Hence, ι ◦ ω(U ) = ∧{V ∈ N(X)|ω(V ) ≥

ω(U )} = ∧{V ∈ N(X)|V ≥ U } = U .
(2) By ω preserving ∧, it holds that

ω ◦ ι(U) = ω(∧{V |V ∈ N(X), ω(V ) ≥ U} = ∧{ω(V )|V ∈ N(X), ω(V ) ≥ U} ≥ U.
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From Theorem 3.16 and Theorem 3.23 we conclude the following corollary.

Corollary 3.24. If L is continuous, then the category NS can be embedded in the category TNS as a simultaneously
reflective and coreflective subcategory.

4. Stratified L-Neighborhood Spaces and their Relationships to >-Neighborhood Spaces

In this section, we shall focus on the categorical properties of stratified L-neighborhood spaces and their
categorical relationships to >-neighborhood spaces. The main results are: (1) the category of stratified
L-neighborhood spaces is a topological category; (2) if L is meet-continuous, then >-neighborhood spaces
is embedded in stratified L-neighborhood spaces as a reflective subcategory, and if L is continuous, then
>-neighborhood spaces is embedded in stratified L-neighborhood spaces as a simultaneously reflective and
coreflective subcategory.

4.1. Stratified L-Neighborhood Spaces
Definition 4.1. ([16]) A stratified L-neighborhood space is a pair (X,U := {Ux

}x∈X), where
(LN1) ∀x ∈ X,Ux is a stratified L-filter; and
(LN2) ∀x ∈ X,Ux

≤ [x].
ThenU is called a stratified L-neighborhood system on X.

Let (X,U) and (Y,V) be stratified L-neighborhood spaces. Then a function f : (X,U) −→ (Y,V) is said to
be continuous at x ifV f (x)(ν) ≤ Ux( f←(ν)) for any ν ∈ LY, and f is said to be continuous if it is continuous at
each x ∈ X.

Let SLNS denote the category of stratified L-neighborhood spaces and continuous functions. The notions
of source, sink, initial structure and final structure in SLNS can be defined similarly as for NS.

Theorem 4.2. Each sink ((X j,U j)
f j
−→ X) j∈J in SLNS has a final structure.

Proof. We consider the pair (X,U) defined by ∀x ∈ X:

U
x =


[x], x <

⋃
j∈J

f j(X j);∧
j∈J, f j(x j)=x

f⇒j (Ux j

j ), otherwise.

Obviously, (X,U) is a stratified L-neighborhood space. Next, we prove the final conditions.
(1) Each f j : (X j,U j) −→ (X,U) is continuous. Indeed, for any x j ∈ X j and any µ ∈ LX, it holds that

U
f j(x j)(µ) =

∧
j∈J, f j(z j)= f (x j)

f⇒j (Uz j

j ) ≤ f⇒j (Ux j

j )(µ) =U
x j

j ( f←(µ)).

Thus f j is continuous at x.
(2) Let f : (X,U) −→ (Y,V) be a function between stratified L-neighborhood spaces. Then f is continuous

iff each f ◦ f j is continuous. Obviously, if f is continuous, then each f ◦ f j is continuous. Conversely, let
x ∈ X and µ ∈ LY. If x <

⋃
j∈J

f j(X j), then

V
f (x)(µ) ≤ [ f (x)](µ) = µ( f (x)) = f←(µ)(x) = [x]( f←(µ)) =Ux( f←(µ)).

If x ∈
⋃
j∈J

f j(X j), then for any x j ∈ X j with f j(x j) = x, from the continuity of f ◦ f j, we have

V
f (x)(µ) =V f◦ f j(x j)(µ) ≤ Ux j (( f ◦ f j)←(µ)) = f⇒j (Ux j )( f←(µ)),

it follows that
V

f (x)(µ) ≤
∧

f j(x j)=x

f⇒j (Ux j )( f←(µ)) =Ux( f←(µ)).

Hence f is continuous at x.
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From the above theorem we get the following corollary.

Corollary 4.3. The category SLNS is topological over Set.

Remark 4.4. Corollary 4.3 shows that each source (X
f j
−→ (X j,U j)) j∈J in SLNS has an initial structure. When

∗ = ∧, Mufarrij and Ahsanullah [3, Theorem 2.17] proved that SLNS is topological over Set by constructing
the initial structure of source in SLNS. But their approach seems to be hard to generalize to the case of ∗ , ∧.
Therefore, Corollary 4.3 extends the result in [3] from the lattice-context.

LetUi (i = 1, 2) be two stratified L-neighborhood systems on X. Then we sayU1 is finer thanU2 orU2 is
coarser thanU1, and writeU2 ≤ U1 if the function idX : (X,U1) −→ (X,U2) is continuous, that isUx

2 ≤ U
x
1

for all x ∈ X.
Let LN(X) denote the set of stratified L-neighborhood systems on X.

Corollary 4.5. (LN(X),≤) forms a complete lattice.

Proof. Obviously, (LN(X),≤) is a partial ordered set. For any collection {U j} j∈J ⊆ LN(X), it is easily seen

from Theorem 4.2 that the final structure on X w.r.t. the sink ((X j,U j)
f j
−→ X) j∈J with all f j = idX, defined by∧

j∈JU j, is the infimum of {U j} j∈J. Thus (LN(X),≤) forms a complete lattice. Similarly, letU be the initial

structure on X w.r.t. the source (X
f j
−→ (X j,U j)) j∈J with each f j = idX. Then U is the coarsest stratified

L-neighborhood systems on X finer than allU j, and thenU is the supremum (so denoteU as
∨

j∈JU j) of
{U j} j∈J.

4.2. Embedding of >-Neighborhood Spaces in Stratified L-Neighborhood Spaces as a Reflective and Coreflective
Subcategory

Let L be meet-continuous and F ∈ F>L (X). Then it is proved in [23] that the function ω> : LX
−→ L defined

by
∀λ ∈ LX, ω>(F)(λ) =

∨
µ∈F

SX(µ, λ)

is a stratified L-filter on X [when we prove thatω>(F) satisfies (LF2), the meet-continuity is used]. Particularly,
ω>([x]>) = [x] for any x ∈ X.

In this subsection, we always assume that L to be meet-continuous if not otherwise statement.

Lemma 4.6. Let f : X −→ Y be a function and F ∈ F>L (X). Then ω>( f⇒(F)) = f⇒(ω>(F)).

Proof. It is similar to Lemma 3.8.

Definition 4.7. Let (X,U) be a >-neighborhood space. A stratified L-neighborhood space (X,U) is said to be
generated by a >-neighborhood space ifU = ω>(U).

In [27], the author and co-author proved that (X, ω>(U)) is a stratified L-neighborhood space, where
∀x ∈ X, ω>(U)x = ω>(Ux).

Lemma 4.8. Let f : X −→ Y be a function and (X,U) and (Y,V) be>-neighborhood spaces. Then f : (X,U) −→ (Y,V)
is continuous iff f : (X, ω>(U)) −→ (Y, ω>(V)) is continuous.

Proof. Assume that f : (X,U) −→ (Y,V) is continuous at x ∈ X. It follows from [27] that (X, ω>(U)) is a
stratified L-neighborhood space, where ∀x ∈ X, ω>(U)x = ω>(Ux). Then for any λ ∈ LY,

ω>(V) f (x)(λ) =
∨

µ∈V f (x)

SY(µ, λ)

≤

∨
µ∈V f (x)

SX( f←(µ), f←(λ)), by f←(µ) ∈ Ux

≤

∨
ν∈Ux

SX(ν, f←(λ)) = ω>(U)x( f←(λ)).
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Hence, f : (X, ω>(U)) −→ (Y, ω>(V)) is continuous at x. Conversely, let f : (X, ω>(U)) −→ (Y, ω>(V))
be continuous at x. Then for any λ ∈ V f (x), we have > = ω>(V) f (x)(λ) ≤ ω>(U)x( f←(λ)), which means
f←(λ) ∈ Ux. Hence, f : (X,U) −→ (Y,V) is continuous at x ∈ X.

It is easily seen that the correspondence (X,U) 7→ (X, ω>(U)) defines an embedding functorω> : TNS −→
SLNS.

The following theorem shows that ω> preserves the initial structures.

Theorem 4.9. Let U be the initial structure of the source (X
f j
−→ (X j,U j)) j∈J in TNS. Then ω>(U) is the initial

structure of the source (X
f j
−→ (X j, ω>(U j))) j∈J in SLNS.

Proof. Since it is known that (X, ω>(U)) is a stratified L-neighborhood space, we need only check the initial
conditions.

(1) Each f j : (X, ω>(U)) −→ (X j, ω>(U j)) is continuous. Indeed, it follow immediately by Lemma 4.8 and
the continuity of f j : (X,U) −→ (X j,U j).

(2) Let f : (Y,V) −→ (X, ω>(U)) be a function between stratified L-neighborhood spaces. Then f is
continuous iff each f j ◦ f is continuous. Obviously, if f is continuous, then each f j ◦ f is continuous.
Conversely, let λ ∈ LX and y ∈ Y. Remark 3.6 (1) shows that

∀x ∈ X, {
∧
j∈F

f←j (µ j)|F ∈ 2(J),∀ j ∈ F, µ j ∈ U
f j(x)
j }

is a base ofUx. Then

ω>(U f (y))(λ) =
∨

µ∈U f (y)

SX(µ, λ), by Lemma2.5

=
∨

F∈2(J),∀ j∈F,µ j∈U
f j( f (y))

j

SX(
∧
j∈F

f←j (µ j), λ), by ω>(U f j( f (y))
j )(µ j) = >

=
∨

F∈2(J),∀ j∈F,µ j∈U
f j( f (y))

j

(
[
∧
j∈F

ω>(U f j( f (y))
j )(µ j)] ∗ SX(

∧
j∈F

f←j (µ j), λ)
)

≤

∨
F∈2(J),∀ j∈F,µ j∈L

Xj

(
[
∧
j∈F

ω>(U f j( f (y))
j )(µ j)] ∗ SX(

∧
j∈F

f←j (µ j), λ)
)
, by continuity of f j ◦ f

≤

∨
F∈2(J),∀ j∈F,µ j∈L

Xj

(
[
∧
j∈F

V
y
(
( f j ◦ f )←(µ j)

)
] ∗ SX(

∧
j∈F

f←j (µ j), λ)
)
, by Lemma2.2(5)

≤

∨
F∈2(J),∀ j∈F,µ j∈L

Xj

(
[
∧
j∈F

V
y
(
( f j ◦ f )←(µ j)

)
] ∗ SY

(
f←[

∧
j∈F

f←j (µ j)], f←(λ)
))

=
∨

F∈2(J),∀ j∈F,µ j∈L
Xj

(
[
∧
j∈F

V
y
(
( f j ◦ f )←(µ j)

)
] ∗ SY

(∧
j∈F

( f j ◦ f )←(µ j), f←(λ)
))
, by (LFs)

≤ V
y( f←(λ)).

Hence f : (Y,V) −→ (X, ω>(U)) is continuous at y.

Definition 4.10. Let f : X −→ Y be a function and (Y,V) be a stratified L-neighborhood space. Then
f : X −→ (Y,V) can be regarded as a source in SLNS consisting of one function. We denote the corresponding
initial structure as f⇐(V), i,e.,

∀x ∈ X, f⇐(V)x = f⇐(V f (x)).

Note that f⇐(V f (x)) exists since for any µ ∈ LY with f←(µ) = ⊥, we have V f (x)(µ) ≤ [ f (x)](µ) = µ( f (x)) =
f←(µ)(x) = ⊥.



L. Li et al. / Filomat 35:4 (2021), 1267–1287 1283

Corollary 4.11. (1) For any {U j} j∈J ⊆ TN(X), we have ω>(
∨
j∈J
U j) =

∨
j∈J
ω>(U j).

(2) For a function f : X −→ Y and a >-neighborhood space (Y,V), we have ω>( f⇐(V)) = f⇐(ω>(V)).
(3) For a continuous function f : (X,U) −→ (Y,V) in TNS, we have f⇐(V) ≤ U.

Proof. It is similar to Corollary 3.13.

Given a stratified L-neighborhood space (X,U), define ρ>(U) =
∨
{U ∈ TN(X)|ω>(U) ≤ U}. Note that

(TN(X),≤) forms a complete lattice. Hence ρ>(U) is a >-neighborhood system on X, i,e., (X, ρ>(U)) is a
>-neighborhood space.

Proposition 4.12. Let f : X −→ Y be a continuous function between >-neighborhood spaces (X,U) and (Y,V).
Then f is also continuous between (X, ρ>(U)) and (Y, ρ>(V)).

Proof. Assume that f : (X,U) −→ (Y,V) is continuous. Then

f⇐(ρ>(V)) = f⇐(∨{V|V ∈ TN(Y), ω>(V) ≤ V}), by Lemma3.14
= ∨{ f⇐(V)|V ∈ TN(Y), ω>(V) ≤ V}, by Corollary4.11(2), (3)
≤ ∨{ f⇐(V)|V ∈ TN(Y), ω>( f⇐(V)) = f⇐(ω>(V)) ≤ f⇐(V) ≤ U}
≤ ∨{ f⇐(V)|V ∈ TN(Y), ω>( f⇐(V)) ≤ U}
≤ ∨{U|U ∈ TN(X), ω>(U) ≤ U}
= ρ>(U).

It follows that for any λ ∈ ρ>(V) f (x), we have f←(λ) ∈ ρ>(U)x. Therefore, f : (X, ρ>(U)) −→ (Y, ρ>(V)) is
continuous.

It is easily seen that the correspondence (X,U) 7→ (X, ρ>(U)) defines a concrete functor ρ> : SLNS −→
TNS.

Theorem 4.13. The pair (ρ>, ω>) is a Galois correspondence and ρ> is a left inverse of ω>. Thus the category TNS is
embedded in the category SLNS as a reflective subcategory.

Proof. Given (X,U) ∈ TNS and (X,U) ∈ SLNS.
(1) Since ω> is an embedding, then ω>(V) ≤ ω>(U) ⇔ V ≤ U. Hence, ρ> ◦ ω>(U) =

∨
{V ∈

TN(X)|ω>(V) ≤ ω>(U)} =
∨
{V ∈ TN(X)|V ≤ U} = U.

(2) ω> ◦ ρ>(U) ≤ U. Indeed,

ω> ◦ ρ>(U) = ω>(∨{V|V ∈ TN(X), ω>(V) ≤ U}, by ω> preserving ∨
= ∨{ω>(V)|V ∈ TN(X), ω>(V) ≤ U} ≤ U.

The following Theorem 4.15 shows that ω> preserves the final structures. But first we begin with the
following:

Lemma 4.14. Let (X, {U j}) j∈J be a family of >-neighborhood spaces. If L is continuous, then ω>(
∧
j∈J
U j) =

∧
j∈J
ω>(U j).
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Proof. Obviously, ω>(
∧
j∈J
U j) ≤

∧
j∈J
ω>(U j). On the other hand, let x ∈ X and λ ∈ LX. Note that the set

{SX(µ j, λ)| j ∈ J, µ j ∈ Ux
j } is a directed subset in L. Hence,∧

j∈J

ω>(U j)x(λ) =
∧
j∈J

∨
µ j∈Ux

j

SX(µ j, λ), by continuous condition (CC)

=
∨
h∈N

∧
j∈J

SX(h( j), λ), where N = { f : J −→
⋃
j∈J

Ux
j |∀ j ∈ J, f ( j) ∈ Ux

j }

=
∨
h∈N

SX(
∨
j∈J

h( j), λ), by
∨
j∈J

h( j) ∈
⋂
j∈J

Ux
j

≤

∨
ν∈

⋂
j∈J
Ux

j

SX(ν, λ) = ω>(
∧
j∈J

U j)x(λ).

Therefore, ω>(
∧
j∈J
U j) ≥

∧
j∈J
ω>(U j).

Theorem 4.15. Let U be the final structure w.r.t. the sink ((X j,U j)
f j
−→ X) j∈J in TNS. If L is continuous, then

(X, ω>(U)) is the final structure w.r.t. the sink ((X j, ω>(U j))
f j
−→ X) j∈J in SLNS.

Proof. Since it is well-known that ω>(U) is a stratified L-neighborhood system on X, we need only check the
final conditions.

(1) Each f j : (X j, ω>(U j)) −→ (X, ω>(U)) is continuous. Indeed, it follow immediately by Lemma 4.8 and
the continuity of f j : (X j,U j) −→ (X,U).

(2) Let f : (X, ω>(U)) −→ (Y,V) be a function between >-neighborhood spaces. Then f is continuous iff
each f ◦ f j is continuous.

Obviously, if f is continuous, then each f ◦ f j is continuous.
Conversely, let each f ◦ f j is continuous. For any x ∈ X, it has two cases.
Case 1: x <

⋃
j∈J

f j(U j), then ω>(U)x = ω>([x]>) = [x]. For any λ ∈ LY, we have V f (x)(λ) ≤ [ f (x)](λ) =

f←(λ)(x) = [x]( f←(λ)) = ω>(U)x( f←(λ)). Hence f is continuous at x.
Case 2: x ∈

⋃
j∈J

f j(U j), then

ω>(U)x = ω>(Ux) = ω>
( ∧

j∈J, f j(x j)=x

f⇒j (Ux j

j )
)

= (by Lemma4.14)
∧

j∈J, f j(x j)=x

ω>( f⇒j (Ux j

j )).

For any λ ∈ LY and any x j ∈ X j with f j(x j) = x, by f ◦ f j is continuous at x j we get

V
f (x)(λ) =V f ( f j(x j))(λ) ≤ ω>(Ux j

j )( f←j ( f←(λ))) = f⇒j (ω>(Ux j

j ))( f←(λ)) = (by Lemma4.6)ω>( f⇒j (Ux j

j ))( f←(λ)),

so
V

f (x)(λ) ≤
∧

j∈J, f j(x j)=x

ω>( f⇒j (Ux j

j ))( f←(λ)) = ω>(U)x( f←(λ)).

Hence f is continuous at x.

Definition 4.16. Let f : X −→ Y be a function and (X,U) be a stratified L-neighborhood space. Then
f : (X,U) −→ Y can be regarded as a sink in SLNS consisting of one function. We denote the corresponding
final structure as f (U), i.e.,

∀y ∈ Y, f (U)y =

 [y], y < f (X);∧
f (x)=y

f⇒(Ux), otherwise.
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Corollary 4.17. Let f : X −→ Y be a function and L be continuous.
(1) For any (X,U) ∈ TNS, we have ω>( f⇒(U)) = f⇒(ω>(U)).
(2) For a continuous function f : (X,U) −→ (Y,V) in SLNS, we have f⇒(U) ≥ V.

Proof. It is similar to Corollary 3.20.

Let (X,U) be a stratified L-neighborhood space, define

ι>(U) = ∧{U ∈ TN(X)|ω>(U) ≥ U}.

Note that (TN(X),≤) forms a complete lattice. Hence ι>(U) is a >-neighborhood system on X, i,e., (X, ι>(U))
is a >-neighborhood space.

Lemma 4.18. Let f : X −→ Y be a function and {U j} j∈J ⊆ TN(X). Then f⇒(
∧
j∈J
U j) =

∧
j∈J

f⇒(U j).

Proof. Let y < f (X). Then f⇒(
∧
j∈J
U j)y = [y]> =

∧
j∈J

f⇒(U j)y. Let y ∈ f (X). Then

f⇒(
∧
j∈J

U j)y =
⋂

f (x)=y

f⇒(
⋂
j∈J

Ux
j ) =

⋂
f (x)=y

⋂
j∈J

f⇒(Ux
j ) =

⋂
j∈J

⋂
f (x)=y

f⇒(Ux
j ) =

∧
j∈J

f⇒(U j)y.

Proposition 4.19. Let f : X −→ Y be a continuous function between stratified L-neighborhood spaces (X,U) and
(Y,V). Then f is also continuous between (X, ι>(U)) and (Y, ι>(V)).

Proof. Note that

f⇒(ι>(U)) = f⇒(∧{V|V ∈ TN(X), ω>(V) ≥ U}), by Lemma4.18
= ∧{ f⇒(V)|V ∈ TN(X), ω>(V) ≥ U}
≥ ∧{ f⇒(V)|V ∈ TN(X), f⇒(ω>(V)) ≥ f⇒(U)}, by Corollar4.17(1)
= ∧{ f⇒(V)|V ∈ TN(X), ω>( f⇒(V)) ≥ f⇒(U)}, by Corollary4.17(2)
≥ ∧{ f⇒(V)|V ∈ TN(X), ω>( f⇒(V)) ≥ V}
≥ ∧{W|W ∈ TN(Y), ω>(W) ≥ V} = ι>(V).

Hence, for any x ∈ X,

ι>(V) f (x)
≤ f⇒(ι>(U)) f (x) =

∧
f (z)= f (x)

f⇒(ι>(U)z) ≤ f⇒(ι>(U)x).

Therefore, f : (X, ι>(U)) −→ (Y, ι>(V)) is continuous at x.

It is easily seen that the correspondence (X,U) 7→ (X, ι>(U)) defines a concrete functor ι> : SLNS −→ TNS.

Theorem 4.20. If L is continuous, then the pair (ω>, ι>) is a Galois correspondence and ι> is a left inverse of ω>.
Thus the category TNS is embedded in the category SLNS as a coreflective subcategory.

Proof. Given (X,U) ∈ TNS and (X,U) ∈ SLNS.
(1) Sinceω> is an embedding, thenω>(V) ≥ ω>(U)⇔ V ≥ U. Hence, ι>◦ω>(U) = ∧{V ∈ TN(X)|ω>(V) ≥

ω>(U)} = ∧{V ∈ TN(X)|V ≥ U} = U.
(2) By ω> preserving ∧,

ω> ◦ ι>(U) = ω>(∧{V|V ∈ TN(X), ω>(V) ≥ U} = ∧{ω>(V)|V ∈ TN(X), ω>(V) ≥ U} ≥ U.

From Theorem 4.13 and Theorem 4.20 we conclude the following:
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Corollary 4.21. If L is continuous, then the category TNS is embedded in the category SLNS as a simultaneously
reflective and coreflective subcategory.

Remark 4.22. For L = ([0, 1],∧), the well-known Lowen functors ωL, ιL [30] play an important role in the
study of the connection between topological spaces and stratified L-topological spaces. Precisely, for a
topological space (X, τ), a function λ : X −→ L is called lower semicontinuous if

∀x ∈ X, λ(x) =
∨

A∈U x
τ

∧
y∈A

λ(y), where U x
τ is the neighborhood system associated with τ.

Then the family ωL(τ) := {λ ∈ LX
|λ is a lower semicontinuous function} forms a stratified L-topology on X,

and the correspondence (X, τ) 7→ (X, ωL(τ)) defines a concrete functor from the category Top of topological
spaces to the category SLTop of stratified L-topological spaces. Conversely, for a stratified L-topological
space (X,T ), define ιL(T ) as the finest topology on X such that all λ ∈ T are lower semicontinuous. Then the
correspondence (X,T ) 7→ (X, ιL(T )) defines a concrete functor from the category SLTop to the category Top.
It has been known that the pair (ωL, ιL) is a Galois correspondence and ιL is a left inverse of ωL. Nowadays,
these two functors have been extended by many scholars from different aspects [11, 17, 25, 40, 47]. In the
following, we will show that the functor ω> ◦ ω considered in this paper can be regarded as an extension of
the Lowen functor ωL. Indeed, for a topological space (X, τ), note that

∀λ ∈ LX, [ωL ◦ ω](Uτ)x(λ) = [ωL ◦ ω](U x
τ )(λ) =

∨
µ∈ω(U x

τ )

SX(µ, λ) = (by Lemma2.5)
∨

A∈U x
τ

SX(>A, λ) =
∨

A∈U x
τ

∧
y∈A

λ(y).

In addition, it has been known in [23, Proposition 4.6] that there is a bijection between stratified L-topologies
and stratified L-neighborhood systems on a set X. Furthermore, the stratified L-topology T associated with
the stratified L-neighborhood systems [ω> ◦ ω](Uτ) is given by

λ ∈ T ⇐⇒ ∀x ∈ X, [ω> ◦ ω](Uτ)x(λ) = λ(x)⇐⇒ ∀x ∈ X,
∨

A∈U x
τ

∧
y∈A

λ(y) = λ(x)⇐⇒ λ ∈ ωL(τ).

This means that if we distinguish no (stratified L-)topological spaces and (stratified L-)topological neigh-
borhood spaces, then [ω> ◦ ω]|Top = ωL. Because L = [0, 1] is continuous, it follows by Theorem 3.23 and
Theorem 4.20 that (ω> ◦ ω, ι ◦ ι>) is a Galois correspondence and ι ◦ ι> is a left inverse of ω> ◦ ω, and so
ι ◦ ι>|SLTop = ιL. Hence, we say that the functors ω> ◦ ω and ι ◦ ι> can be regarded as extensions of Lowen
functors ωL and ιL.

5. Conclusion

In this paper, under a more general lattice-context, we discussed the categorical properties and categorical
relationships about two types of lattice-valued neighborhood spaces. The main results can be summarized
as below:

TNS and SLNS are all topological category over Set;
NS r

↪→ TNS; and when L is meet-continuous TNS r
↪→ SLNS;

NS
r,c
↪→ TNS

r,c
↪→ SLNS, when L is continuous;

where r, c mean, respectively, reflective and coreflective.
In the future, we shall introduce a category of >-neighborhood groups, which is expected to characterize

precisely strong L-topological groups. The results in this paper will help us to establish the relationships
between new category and related (lattice-valued) topological group categories.

Acknowledgment

The authors thank the editor and the reviewers for their valuable comments and suggestions.



L. Li et al. / Filomat 35:4 (2021), 1267–1287 1287

References

[1] A. Arhangel’skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press World Scientific, Paris, 2008.
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