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On the D, Spectral Radius of Strongly Connected Digraphs

Weige Xi?

?College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.

Abstract. Let G be a strongly connected digraph with distance matrix D(G) and let Tr(G) be the diagonal
matrix with vertex transmissions of G. For any real a € [0, 1], define the matrix D,(G) as

Du(G) = aTrG) + (1 — a)D(G).

The D,, spectral radius of G is the spectral radius of D,(G). In this paper, we first give some upper and lower
bounds for the D, spectral radius of G and characterize the extremal digraphs. Moreover, for digraphs
that are not transmission regular, we give a lower bound on the difference between the maximum vertex

transmission and the D, spectral radius. Finally, we obtain the D, eigenvalues of the join of certain regular
digraphs.

1. Introduction

Let G = (V(G), E(G)) be a digraph with vertex set V(G) = {v1,0y,...,v,} and arc set E(G). If there is an
arc from v; to v;, we denote this by writing (v;, v)), call v; and v; the head and the tail of (v;, v;), respectively.
The loop is an arc which starts and ends at a same vertex. The multiarcs are the arcs which start at a same
vertex v; and end at a same vertex v, where v; # v;. A digraph is simple if it has no loops and multiarcs. A
digraph G is strongly connected if for every pair of vertices v;, v; € V(G), there exists a directed path from
v; to v;. The complete digraph is a digraph in which every pair of vertices is connected by an arc. For a
digraph G with vertex set V(G), if S € V(G), then we use G[S] to denote the subdigraph of G induced by S.
Let H be a subdigraph of G, if G[V(H)] is a complete subdigraph of G, then H is called a clique of G. We
follow [4, 5, 11] for terminology and notations. Throughout this paper, we only consider simple strongly
connected digraphs.

For any vertex v; € V(G), N*(v;) = {vj : (v;,v;) € E(G)} is called the set of outneighbors of v;. Let
di(vi) = IN"(v;)| denote the outdegree of v;, (we simply write d*(v;) if it is clear from the context.) A digraph
is called regular if each of its vertex has the same outdegree. For a strongly connected digraph G, the
distance from v; to vj, denoted by dUin or simply d;;, is defined as the length of the shortest directed path

from v; to v; in G. The diameter of the strongly connected digraph G, denoted by diam(G), is the maximum
d;j over all ordered pairs of vertices v;, v;.
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Let A(G) = (aij)uxn be the adjacency matrix of G, where a;; = 1if (v;,v;) € E(G) and a;; = 0 otherwise. The
signless Laplacian matrix of G is Q(G) = Diag(G) + A(G), where Diag(G) = diag(d* (v1),d* (v2),...,d*(vy)) is
the diagonal matrix with outdegrees of vertices of G. For any real « € [0, 1], the A, matrix of G is introduced
by J.P. Liu et al. [18] below. The matrix A,(G) = aDiag(G) + (1 — a)A(G) is called A, matrix of G, which
reduces to merging the adjacency spectral and signless Laplacian spectral theories.

The distance matrix of G, denoted by D(G), is defined as D(G) = (dij)uxn, Where d;; is defined as the
length of the shortest directed path from v; to v; in the strongly connected digraph G. The transmission
of a vertex v;, denoted by Tr¢(v;) or Tr;, is defined as the sum of distances from v; to all other vertices in

n
G, thatis, Trg(v;) = Tr; = Y. d;; (i = 1,2,...,n). In fact, for 1 < i < n, the transmission of vertex v; is just
=1

the i-th row sum of D(G). A strongly connected digraph G is k-transmission regular if T7; = k for each
v; € V(G); otherwise, G is non-transmission regular. The second transmission of v;, denoted by T;, is given

n
by T; = ), dyTr:. Let Tr(G) = diag(Tr1, Iy, ..., Tr,) be the diagonal matrix with vertex transmissions of G.
t=1

Then D9(G) = Tr(G) + D(G) is called the distance signless Laplacian matrix of G. The spectral radius of D(G)
is called the distance spectral radius of G, and the spectral radius of D?(G) is called the distance signless
Laplacian spectral radius of G. The distance spectral radius and distance signless Laplacian spectral radius
of undirected graphs are well treated in the literature, see [1-3, 8, 14].

In [21], it was proposed to study the convex combinations D, (G) of Tr(G) and D(G), defined by

Da(G) = aT#(G) + (1 - @)D(G), 0<a < 1.

Since D(G) = Dy(G), Tr(G) = D1(G) and D(G) = ZD%(G), the matrices D,(G) can underpin a unified
theory of D(G) and D?(G). We call the eigenvalue with largest modulus of D,(G) the D, spectral radius
of G, denoted by p,(G). The collection of eigenvalues of D,(G) together with multiplicities are called the
D,-spectrum of G. If a = 1, D1(G) = Tr(G) the diagonal matrix with vertex transmissions of G which is not
interesting. Unless stated otherwise, we assume that 0 < & < 1 in the rest of this paper. Since G is a strongly
connected digraph, then D,(G) is a nonnegative irreducible matrix. It follows from the Perron Frobenius
Theorem that 1,(G) is an eigenvalue of D,(G), and there is a positive unit eigenvector corresponding to
ta(G). The positive unit eigenvector corresponding to u,(G) is called the Perron vector of D,(G). The D,
spectral radius of undirected graphs has been studied in the literature, see [6, 7, 9, 16]. We are interested in
the D, spectral radius of digraphs.

Recently, the distance spectral radius and distance signless Laplacian spectral radius of digraphs have
been studied in some papers. For example, Lin et al. [17] characterized the extremal digraphs with the
minimum distance spectral radius among all digraphs with given vertex connectivity. Lin and Shu [15]
first gave sharp upper and lower bounds for the distance spectral radius of strongly connected digraphs,
they then characterized the digraphs having the maximal and minimal distance spectral radii among all
strongly connected digraphs, and they also determined the extremal digraphs with the minimal distance
spectral radius among all strongly connected digraphs with given arc connectivity and dichromatic number,
respectively. Xi and Wang [23] determined the strongly connected digraphs minimizing distance spectral
radius among all strongly connected digraphs with given diameter 4, for d = 1,2,3,4,5,6,7,n — 1. Li
et al. [12] gave sharp upper and lower bounds for the distance signless Laplacian spectral radius of
strongly connected digraphs, they also determined the extremal digraph with the minimum distance
signless Laplacian spectral radius among all strongly connected digraphs with given dichromatic number.
Li et al. [13], Xi and Wang [20] independently characterized the digraph minimizes the distance signless
Laplacian spectral radius among all strongly connected digraphs with given vertex connectivity. Xi et al.
[22] characterized the extremal digraph achieving the minimum distance signless Laplacian spectral radius
among all strongly connected digraphs with given arc connectivity.

Compared with the much studied on distance and distance signless Laplacian spectral radius of di-
graphs, the study of generalized distance spectral radius has just been proposed by Xi et al. in [21]. Some
basic spectral properties of generalized distance matrix of strongly connected digraphs are established and
bounds for the generalized distance spectral radius were obtained. In [21], Xi et al. also determined the
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digraphs which attain the minimum D, spectral radius among all strongly connected digraphs with given
parameters such as dichromatic number, vertex connectivity or arc connectivity.

In this paper, we first give some upper and lower bounds on D, spectral radius of strongly connected
digraphs. Moreover, for digraphs that are not transmission regular, we give a lower bound on the difference
between the maximum vertex transmission and the D,, spectral radius. Finally, we obtain the D, eigenvalues
of the join of certain regular digraphs.

2. Bounds for the D, spectral radius of strongly connected digraphs

In this section, we give some upper and lower bounds on the D, spectral radius of digraphs.

Lemma 2.1. ([10]) Let M = (mj;) be an n X n nonnegative matrix with spectral radius p(M), and let R;(M) be the
i-th row sum of M. Then

min{R;(M) : 1 <i < n} < p(M) < max{R;(M) : 1 <i<n}.
Moreover, if M is irreducible, then any equality holds if and only if Ri(M) = Rpy(M) = --- = R,(M).
From Lemma 2.1, we have the following corollary.

Corollary 2.2. Let G be a strongly connected digraph with V(G) = {v1,v2,...,v,}. Then

in /aTr? —a)T; < < \JaTr? - a)T;
vfrenvl(%) aTrs + (1= a)Ti < pa(G) < v?\?()é) alr: + (1= a)T;,

n n
where Tr; = Y, dijand T; = Y diTry are the transmission and 2-transmission of the vertex v;, respectively.
]':1 t=1

Proof. Since D,(G) = aTr(G) + (1 — @)D(G), by a simple calculation, we have

Ri(Da(G)) = Tri, RADG)THG)) = ), dTry = T,
t=1

R{(D*(G)) = Zn: i didyj = i Zn: digdyj = Zn: dit Zn: dij = Zn: diTry = T
=1 =1 =1

j=1 t=1 =1 j=1
Then

Ri(D3(G)) = Ri(aTr(G)(aTr(G) + (1 — a)D(G)))
+ Ri(a(1 — a)D(G)Tr(G)) + Ri((1 — a)*D*(G))
= aTriRi(Da(G)) + a(l = )T; + (1 — a)*T;
=aTrr +(1- )T

Hence, by Lemma 2.1, we have

ta(G) < max \aTr? + (1 —a)T;.

The proof of the other part is similar. [

Lemma 2.3. Let B = (bjj) be an n X n real matrix, and let y be an eigenvalue of B with a left eigenvector X all of
whose entries are nonnegative. Then

min{R;(B): 1 <i<n} <u<max{Ri(B):1<i<n},

where R;(B) is the i-th row sum of B.
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n
Proof. Since X"B = uX". Without loss of generality, we may assume that Y, xj = 1. Then
j=1

n

U= nyl Zyxj szlb”_zleb”_lezb” Zx,R(B)

j=1 i=1 i=1 j=1 i=1
In other words, since the entries of X are nonnegative and sum to 1, p is a convex combination of the row
sums of B. Therefore, min{R;(B) : 1 <i<n} <p<max{R;B):1<i<n}. O
From Lemma 2.3, we have the following corollary which is necessary for the proof of Theorem 2.5
(below).

Corollary 2.4. Let G be a strongly connected digraph with V(G) = {v1,va,...,v,). Let p(x) be a polynomial on x,
ta(G) be the spectral radius of D,(G). Then

min(R(p(Da (G < p(Ha(G)) < max{R(p(D(G),
where R;i(p(D,(G))) is the i-th row sum of matrix p(D,(G)). Moreover, if the row sums of p(D,(G)) are not all equal,
then both inequalities are strict.

Proof. Since D,(G) is a nonnegative irreducible matrix, there exists a left positive vector X = (x1, %2, ..., xn)T
such that XTD,(G) = ta(G)XT. Then

X"p(Da(G)) = p(pa(G)X".
Hence, by Lemma 2.3, the result follows. O

Theorem 2.5. Let G = (V(G), E(G)) be a strongly connected digraph on n vertices with transmission sequence
{Tr1,Try, ..., Try). Let Trmax and Trmin denote the maximum and minimum vertex transmission of G, respectively.
Then

(I =a)(Trmin = 1) + \/(1 — @ (Trmin — 1)? +4[aTr2, + (1 = a)W(G) — (1 — a)(n — 1) T7min]
2 4

ta(G) 2
and ifa € [3,1),

(1 - a)(Trmax - 1) + \/(1 - a)Z(Trmax - 1)2 + 4[0‘Tr%nax + (1 - OZ)W(G) - (1 - 06)(1’1 - 1)Trmax]

a(G) < 5

where W(G) = i )E dij.
i=1j=1

Proof. Since D,(G) = aTr(G) + (1 — @)D(G), by a simple calculation, we have
D2(G) = a®Tr*(G) + a(1 — a)Tr(G)D(G)) + a(1 — a)D(G)Tr(G) + (1 — @)*D*(G).
Therefore, from the proof of Corollary 2.2, the i-th row sum of D3(G) is
R{(DA(G)) = aTr? + (1 - )T,

n n n
where T; = ¥, d;Tr;. However, let W(G) = }. ¥, d;j, then
=1 i=1 j=1

det ZTrt Z(d,t DTr, = W(G) = Tri + Z s —1)Tr

t=1,t#i

> WE) =T+ Train Y (s =1)
t=1,t#i

=W(G) = Tr; + TrminTri — (n — 1) Trmin
= W(G) + (Trmin — D)Tri — (n — D)Trmin,
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and

Z diyTry = W(G) - Tr; + Z (dig — 1)Tr,
=1 t=1,t#i

SW(G) = Tt + Trmay Y | (di=1)
t=1,t#i

=W(G) = Tr; + TrmaxTri — (n — 1) Trmax

= W(G) + (Trmax — 1)Tri — (n — 1) Trmax-

Therefore, we have

R(D%(G)) = aTr? + (1 - a) Z diTry > aTr? + (1 — @)[W(G) + (Trmin — D)Tri — (1 = 1) Trmin], (1)
t=1
and
R{(D3(G)) < aTr? + (1 = )[W(G) + (Trmax — 1)Tri = (n — 1) Trmax]. ()

Let p(x) = x> — (1 — @)(T*min — 1)x. Then the i-th row sum of p(D,(G)) is
Ri(p(Da(G))) = Ri(D(G) = (1 = @)(Trmin = 1)Da(G))
= Ri(D3(G)) = (1 = @)(Trmin = DRi(Da(G))
= Ri(D(G)) = (1 = a)(Trmin = DT7i.
Furthermore, combining (1), we have
Ri(p(Da(G))) 2 aTr; + (1 = )[W(G) + (Trmin = )Tr; = (1 = 1) Trmin] = (1 = @)(Trmin = )Tr;
=aTrl + (1 - a)W(G) - (1 — a)(n — 1) Trmin.
From the above inequality, fori =1,2,...,n, we have
Ri(p(Da(G))) = aTr, + (1 = a)W(G) = (1 = @)(n = 1)Trmin.
From this inequality and Corollary 2.4, we get
P(Ua(G)) = P3(G) = (1 = &)(Trmin = Dta(G) 2 aTriy, + (1 = )W(G) — (1 = @)1t = 1) Trmin,

which can reduce that

1-a)(Trmn—1)+ \/(1 — @)% (Trmin — 12 +4[aTr>. + (1 —a)W(G) — (1 — a)(n — 1) Trmin]

min
2

Similarly, using the polynomial p(x) = x> — (1 = @)(Trmax — 1)x and (2), we can obtain the upper bound in
the theorem. [J

1a(G) 2

Now, we give a lower and upper bound on the D, spectral radius of digraphs in terms of the maximum
transmission, the maximum second transmission, the minimum transmission and the minimum second
transmission of G.

Theorem 2.6. Let G be a strongly connected digraph with V(G) = {v1,v2,...,v,). Then

. 2 — .
ATTmin + \/ a?Tr, + 41 = a) T AT oy + 2T +4(1 — ) Tax
> < pa(G) < > ,

where Ttyayx and Tty are the maximum transmission and the minimum transmission of G, respectively, Ty and
Tyin are the maximum second transmission and the minimum second transmission of G, respectively.
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Proof. Since D,(G) = aTr(G) + (1 — a)D(G), from the proof of Corollary 2.2, we get

Ri(DA(G)) = aTriRi(Da(G)) + a(1 = a)T; + (1 — a)*T;
< aT7axRi(Da(G)) + (1 — a) Ty

So we have
Ri(D?(G) — aT7maxDa(G)) < (1 = a) Ty

Since G is a strongly connected digraph, there is a positive left eigenvector X corresponding to 1, (G).
Hence D2(G) — aT7maxDa(G) has an eigenvalue 12(G) — aT7maia(G) with positive left eigenvector X. By
Lemma 2.3, we have

#i(G) - aTrmaan(G) < {nax R,(Di(G) - aTrmaxDa(G)) < (1 - a)Tmax/

that is

ATV pax + 2T + 4(1 = @) Tax

pa(G) < >

The proof of the other part is similar. [

Next, we present another upper bound on the D,, spectral radius of digraphs.

Theorem 2.7. Let G = (V(G), E(G)) be a strongly connected digraph on n > 2 vertices with V(G) = {v1,v2, ..., 04},
the diameter d and transmission sequence {Try,Tra, ..., Try}, where Try > Try > -+ = Try. Let ¢1 = Try and for
2<1<mn,

-1
aTri+Tr— (1 —a)d + \/(Tr, —aTri+ (1 —a)d)? +4(1 —a)d Y. (Try — Try)
k=1

qbl = 5 ’ 3)

and ¢s = lrn<li<r111{c¢>1}for some s € {1,2,...,n}. Then u,(G) < ¢s. Moreover, u,(G) = ¢ if and only if G is a

transmission regular digraph.

Proof. Firstly, we will show that u,(G) < ¢; forall1 <1< n.
Casel: [ =1.
It is obvious that y,(G) < Tr; = ¢ by Lemma 2.1 and the definition of D,(G).
Case2:2<I<n.

-1
By (3), it is obvious that ¢; > aTr; — (1 —a)d, and (¢; — aTr1 + (1 —a)d) (P — Tr) = (1 —a)d Y., (Tre — Try).
k=1

Let U = diag{x1,x2,...,x-1,1,1,...,1} be an n X n diagonal matrix, where x; = 1 + % > 1 for

€l{1,2,...,1-1}. Then
X12x =2 2x-121,

a- adZ(xk— =(1- a)dz — T fél o3 =9 =T 4)

and
u'ts= diag{x[l,xgl, e X 1,1 1,...,1}%L

Let Dy (G) = (wij)uxn = aTr(G) + (1 - @)D(G) be the generalized distance matrix of G and P = Uu-'D,(G)U.
Obviously, P and D,(G) have the same eigenvalues, thus 1,(G) = p(P), where p(P) denotes the spectral
radius of matrix P. Let R;(P) be the i-th row sum of P, 1 <i < n. Now we will prove that R;(P) < ¢, for any
1<i<n.
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Subcase2.1: 1 <i<[-1.

X 1
Ri(P) = —’fwik T ; == 2<xk ~ Do+ — szk
k=1 "
-1
1 1
= —Tri+— -1
x; 1 X; ka(xk )C‘)zk
-1
1 1
= ;Tri o (xi = Daw;ii + Z (xx — 1)wik]
! : k=1k#i

IA
ol

H
=

+
I

1 1 -1
ST | = Dari+ Z (xk—l)(l—a)d]

k=1,k#i

In
2

ﬂ
=

+
I

-1
@ = DaTr + Z (e — 1)(1 —u)d]

k=1,k#i

-1
_1 [Trl + (= 1)(aTr — (1 —a)d) + (1 — a)d Z(xk - 1)]

k=1

_ l ) _ _ T TT’[ .

= (Trl + (aTr1 — (1 —a)d) o —aTn + (=) + ¢ - Tr,) (using (4))
3 ¢r—aTri+ (1 -a)d ¢ —aTri + (1 —a)d + Tr; — Try)
B (P[ aTr1 + (1 a)d + TT, - T?’[ (p[ - aTrl + (1 - Oé)d

= ¢y,
with equality if and only if (i) and (ii) hold:
() xi=1orw; =aTr forx; > 1,
() xx=1lorwyg=1-a)dforx,>1if1 <k<l-1withk#i
Subcase 2.2: [ <i<n.
-

R(P X k+Za),k = Z(Xk— 1)a)ik+iw,~k
k=1

,_.

TA»
>—‘H

PII1

(Xk - 1)wl~k + Ti’l'

— =
[l
_ =

< (xk - 1)w,~k + T?’]

=~
_

-1

<(1-a)d Z(xk — 1)+ Tr, = ¢, (using (4)),
k=1

with equality if and only if (i7i) and (iv) hold:
(lll) Tr; =T,
()xx=1lorwg=1-a)dforx,>1if1 <k<I-1.
Hence, by Lemma 2.1, 11,(G) = p(P) < max Ri(P) < ¢ forany 2 <1 < n. Thus u,(G) = p(P) < max Ri(P) <
min ¢;.

2<I<n

Combining the above two cases, p,(G) < 1mlm o1
<I<n

In the following, we will give the sufficient and necessary condition of the equality. Let ¢s = mm qbl for

somes € {1,2,...,n}. Then we consider the following two cases.
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Casel:s=1.

It is obvious that 1,(G) = ¢1 = Trq if and only if G is a transmission regular digraph by Lemma 2.1.

Case2:2<s<mn.

Clearly, D,(G) and P are irreducible nonnegative matrices because G is a strongly connected digraph.
Then p,(G) = ¢ if and only if ¢1 > ¢, p(P) = max Ri(P) and max Ri(P) = ¢s. Noting that p(P) = max R;(P) if

<i< < <i<n
and only if the row sums of P, R1(P), Ro(P), ..., R,(P) are all equal by Lemma 2.1. Hence, we have p,(G) = ¢s
if and only if Ry(P) = Ry(P) = --- = Ry(P) = ¢s and ¢1 > ¢s.
Noting that R;(P) = Ry(P) = --- = Ry(P) = ¢, if and only if P satisfies the following four conditions:

() x;=1orw; =aTr forx; >1holdsforall1 <i<s-1,

M xx=1lorwg=1-a)dforxy>1if1 <k<s—-1withk#iholdsforalll <i<s-1,

@) Trs =Trepr =---=Try,

()xy=1lorwy=(1-a)dforx,>1if1 <k<s—1holdsforalls <i<n.

Thus we only need to show that (i) — (iv) hold if and only if G is a transmission regular digraph.
If (i) — (iv) hold, we consider the following cases.

Subcase 2.1: x; =1

Thenxi =x = =x-1=1byx; 2x > >2x_ 21, and thus Try = Tr, = --- = Trsq = Trs.
Furthermore, from (iii), we have G is a transmission regular digraph.

Subcase2.2: x; > x> --->x; 1 >1landx; =--- =xs_1 =1 forsomete€{2,...,s}.

Then w;; = aTr; = aTryfor1 <i <t-1by (i), and Try = --- = Tre_y = Try = --- = Tr, by (iii). Thus
Tri =Trp = =Trq >Try = -+ = Trey = Trs = --- = Tr,. By (i) and (iv), we have wy = (1 — a)d

forallk € {1,2,...,t =1} and i € {1,2,...,n}\{k}, which implies that dj = d for all k € {1,2,...,t — 1} and
iefl,2,...,n\[k}. If d > 2, it is obvious that such digraphs are not exist. If d = 1, then G is a complete

digraph, Try =Trp = -+ =Tryy =Tty =-+-- = Tr_y = Trs = --- = Tr,, which is a contradiction. Therefore,
there are no digraphs in this case.
Conversely, if G is a transmission regular digraph, then Try = Tr, = - =Tr,and 1 = o = -+ = P, =

Trq, the result follows. [

In the next theorem, we show the equivalence between the A, spectrum and the D, spectrum of a
strongly connected regular digraph of diameter two.

Lemma 2.8. ([10]) Let A be an n X n real matrix, which has eigenvalues A1, Ay, ..., A, in any prescribed order,
and let X be a unit vector such that AX = MX. Then, there is a unitary matrix U = [X, By, ..., Pn] such that
UAU =T = (t;j) is an upper triangular matrix with diagonal entries t;; = A;,i=1,2,...,n.

Theorem 2.9. Let G be a strongly connected r-regular digraph on n vertices with diameter d < 2. If r, A2, . AL are
the eigenvalues of the matrix A,(G) of G, then the D, eigenvalues of Gare2n -2 —rand 2an—-2-A7A,,i=2,3,...,n.

Proof. 1f d =1, then G is a complete digraph, the result is trivial.
Now, let G be a digraph of diameter 2. Then, A,(G) = arl + (1 - a)A(G), D(G) = 2(J -1 - A(G)) + A(G) =
2] — 21 — A(G). The transmission of each vertex u € V(G) is

Trw)=dt(w) +2n-1-d*(w) =r+2mn—-1-r)=2n-2-r.
Furthermore,
D,(G) = aTr(G) + (1 - a)D(G) = a@n —r—=2)I + (1 — a)(2] — 21 — A(G))
=QRan—ar-2)[+2(1 —a)] - (1 - a)A(G)
= Qan -2+ 2(1 —a)] — (arl + (1 — a)A(G))
= QRan —2)[+2(1 — a)] — A.(G).

Since G is an r-regular digraph, 1 = (1,1,..., 1T is an eigenvector of the matrix A,(G) corresponding to

the eigenvalue r. Let z = \/iﬁl, then by Lemma 2.8, there exists a unitary matrix U = [z,2,...,z,4] such
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that U"A,(G)U = T = (t;;) is an upper triangular matrix with diagonal entries t;; = 7, t;; = Al i=2,...,n
Therefore,
U'D,(G)U = U (an - 2)I + 2(1 — a)] — A(G)U
=QRan—-2)[+2(1 - a)U'JU - U"A,(G)U
= (2an - 2)I + 2(1 — a)diag{n,0,...,0} = T.
Hence, the eigenvalues of D,(G) are 2n —2 —r and 2an — 2 — Al,i=2,3,...,n. O

Corollary 2.10. Let G be a strongly connected r-reqular digraph on n vertices with diameter 2. If {r, g2, - - - , qn} are the
eigenvalues of the adjacency matrix A(G) of G, then the D, eigenvalues of G are 2n -2 —r and 2an—ar-2—(1-a)q;,
1=2,3,...,n

Proof. From Theorem 2.9, we get
Dy(G) = Ran—ar-2)I+2(1 — a)] — (1 — a)A(G).
Hence, the eigenvalues of D,(G) are2n -2 —rand 2an —ar-2-(1-a)g;,1=2,3,...,n. O

Theorem 2.11. Let G = (V(G), E(G)) bea strongly connected digraph onn > 2 vertices with V(G) = {v1,v2,..., 04},
transmission sequence {Try, Tra, ..., Try}. if S = {v1,02,...,0p} is a clique of G such that N*(v;)\S = N*(v;)\S for
alli,j€{1,2,...,p}, thenv = Tr; = Trj forall i,j € {1,2,...,p} and av — (1 — ) is an eigenvalue of D,(G) with
multiplicity at least p — 1.

Proof. Since the vertices in S share the same outneighborhoods in V(G)\S, any vertex v; in S is at the same
distance from v; to all vertices in V(G)\S, and any vertex in S is at distance 1 to any other vertex in S. Thus
all vertices in S have the same transmission, say v. To show that av — (1 — a) is an eigenvalue of D,(G) with
multiplicity p — 1, it suffices to observe that the matrix (av — (1 — a))I,, — D,(G) contains p identical rows. [

3. Lower bound on the difference between the maximum vertex transmission and the D, spectral radius
Lemma 3.1. ([19]) Ifa,b > O, then a(x — y)* + by? > abx?/(a + b) with equality if and only if y = ax/(a + b).
Theorem 3.2. Let G = (V(G), E(G)) be a strongly connected non-transmission irregular digraph on n vertices with
n
transmission sequence {Tr1,Tro, ..., Try}, where Try > Try > -+ > Try. Let Tr; = Y. dji. If Try 2 Tr;, for all
j=1

i=1,2,...,n, then
A -a)n+2)Tri(nTr; — W(G))

AW(G)(nTry — W(G)) + (1 — a)(n + 2)nTr,’

1 — ta(G) >

where W(G) =

||M=

Proof. Letx = (xl, X2,...,%;)T be the Perron vector of D,(G) corresponding to 1,(G), where x; corresponding

to the vertex v;. Obviously, x3 + x3 + --- + x5 = 1. Suppose that u, v are two vertices satisfying x, = maxx;
1<i<n
n

and x, = {mn x;, respectively. Taking W(G) = }, Z djj. Since G is not transmission regular, we have x, > x,
<isn i=1j=1

and thus

Ua(G) = x'Dy(G)x = Z Trlx +(1-«a Z Z dijxix;

i=1 j=1
< aZTr,xu +(1- a)ZZd”x

i=1 j=1
=aW(G )xu +(1- oz)W(G)xu,
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which implies that x2 > % And we have

2Try — 2ua(G) = 2Tr — 2x" Dy (G)x

=2Tr; — 2« Z Trlx -2(1-a) Z Z dijxix;

i=1 j=1

=2Tr12xf—2aZTrlx +(1- a)ZZd,](xz—xj)
i=1 j=1
~(1-a) Z Z dij(x? +22).

i=1 j=1

n
Taking Tr; = 2 dj;, then Z Z dij(x? + x2) Z Trix? + Y, Tr; x2. Therefore,
i=1j=1 =1 i=1

2Try — 2110(G) = Z(m —(L+Q)Tri —(1—)Tr )2 + (1 - a) Z Z dij(x; — x))?

i=1 i=1 j=1

> Z(zm —(+)Tri— (1 —a)Tr )2+ (1 - a)Z Z di(x; — x;)?
i=1 j=1
= 2nTr — (1 + )W(G) — (1 — a)W(G))x2 + (1 — ) dij(x;i — xj)
i=1 j=1

= (@nTr - 2W(G)X% + (1 — ) Z Z dij(x; — x))%.

i=1 j=1

Suppose P = v10; ... 0541 be the shortest directed path from v and u, where v; = v, ;.1 = u,and s > 1. Now

n n
we need to estimate Y, Y, d;j(x; — x;)*. Obviously,

i=1 j=1
noon n n
Z Z dij(xi — x))° = Z Z dij(xi = x))* + Z 2 dij(xi = x))*
i=1 j=1 v;€eP j=1 v;eV(G)\P j—l
> Z Z dz] x]) + Z dzu(xz - xu) + dlv(xi - xv) )
v;€P v;eP v;€V(G)\P

For any v; € V(G)\P, by Cauchy-Schwarz inequality, we have
(i = 30 + s = 30 2 (= %02 + (= %) = 55— %),

and then

1 n—s—1
(i =) + dioli = x)") = ) S —x)’ = ———
0,€V(G)\P 0:€V(G)\P

(xu — xv)z-

Then we consider the following two cases.
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Case 1: s = 1. In this case, we have

2Try — 20a(G) = @nTr, — 2W(G)22 + (1 — a) Z Z dij(x; - x;)?

i=1 j=1
> 2(nTr, — W(G)¥2 + (1 — av) Z Z dii = x) + (1 — o) 2 e — )2
v:eP v,eP
>2(nTr, — W(G))x +2(1 = a)(x, — x,)* + (1 - a) (xu —x,)?
=2(nTry — W(G)x2 + (1 — a) (xu - x,)?
> 4(211(;,;1 (i)g\l/ (E?))T(T{l—_al)/{;(j—))b x2 (using Lemma 3.1).
Then we have Try — u,(G) > 4(31Tf?(’x(22;(;;38 Z\)/((Slz) 2 Recall that x2 > %((g; Therefore,

(1-a)(n+2)(nTr; = W(G)  pal(G)
AnTr - WG) + (1—a)n+2) W(G)’

r = ,Ua(G) >

ie.,
A -a)n+2)Tri(nTr; — W(G))
AW(G)(nTr1 — W(G)) + (1 — a)(n + 2)nTry
Case 2: s > 2. For the vertex vj41 (1 < i < s — 1) of the shortest directed path P from v and u, by
Cauchy-Schwarz inequality, we get

r = Ha(G) >

oo (X1 = Xi41)? + Aoy, (Xir1 — Xs41)? = minfi, s — i((x1 — Xi1)* + (X1 — X541)7)

IS .
> 3 min{i, s — i}(x1 — xs+1)2/
and thus
il —x )2 > d _ 24d _ 2444 — 2
I](xz x]) v1vz(x1 x2) 1/1‘03(xl X3) U1Us+1 (X1 x5+1)
v;€P v;eP

+ g0, (X2 — X3)% + doyo, (X2 = Xa)* + -+ + dop, (X2 — Xer1)?
+ dv3v4 (xB - X4)2 + dvgvs (X3 - X5)2 +e dv3vs+1 (X3 - xs+1)2
+eet dvsvsu (xs - xs+1)2

s—1

2 2 2
> dvlvsn (xl - xs+1) + Z (dvlvm (xl - xi+1) + dz],‘+1vs+l (xi+1 - xs+l) )
i=1

-1
5 minl s - s - o

i=1

NIH

>s(xp — xs+1)2 +

Subcase 2.1: 5 > 2 is even. Based on the above inequality, we have

YN i =) > s 3 + 1= Xon)” xS“) [(1+2+...+§)+(1+2+...+—)]
vi€P v;eP
248

3 (2w — xv)z-
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Furthermore, we get

—s-1
2Try = 210(G) > 2nTrs = WGE + (1 =) Y. Y diji = )% + (1 = ) (= x0)°
2
v;€P v;eP
2 $% +8s 9 n—-s-1 )
> 2nTr =2W(G)x, + (1 —a) 3 (xy —xp)"+ (1 — @) > (o, — xp)
2 _
= @nTr - 2W(G)A2 + (1 - a)wW _x,)?

2(1 — a)(s? + 4s + 4n — 4)(nTr; — W(G))

2 .
" T6(nTr - W(G) + (1 —a)(s? + 4s 1 4n &) (using Lemma 3.1).

Then we have
(1 = a)(s® + 4s + 4n — 4)(nTr; — W(G)) 2
16(nTr; —W(G)) + (1 —a)(s2 +4s+4n—4)" "

Tr1 — ua(G) >

. 2 Ua(G)
Since x; > gy, we have

(1 —a)(s® +4s +4n — 4)(nTr; — W(G))  1a(G)

11O > T~ W@ + (1 - )& + 45+ 40— §) W(G)'

ie.,
(1 - a)(s® + 4s + 4n — 4)Try(nTr, — W(G))

T = #alO) > TG Try — W) + (- ) + 45 + 4n— dyuTry

1-a)(4n+H)Try (n'Tr1~W(G . . . . .
Suppose f(H) = 1z ((G) (:%(mﬁ/\’)( (;;)(:l (1’1 0 4(71+)2)71T"1 . Then we can easily known that f(t) is monotonically increasing

function on ¢ > 0. Therefore, we get

(1-a)@dn+8)Tri(nTr — W(G))
16W(G)(nTr1 — W(G)) + (1 — a)dn + 8)nTry
B A -a)n+2)Tri(nTr — W(G))

T AW(G)(nTr — W(G)) + (1 — a)(n + 2)nTry

Tr1 — ua(G) >

Subcase 2.2: s > 3 is odd. Then we have

ZZdij(xi—xj)z>s(x1—xs+1)2+M[ZX(PFZJ“*%)]

v;€P v;eP 2
s2+8—1

3 (oxu — xv)z-

Furthermore, we get

2Try = 20(G) > 2nTrs = WG + (1) Y. Y difrs = x)? + (1 — )= ; ~ L = 1)
v;€P v;eP
2 _ —_q—
> 2(nTr — W(G)2 + (1 - a)$(xu xR+ (1 - a)nTSl(xu —x,)?

2+4s+4n -5
T(‘xu - xv)z

2(1 —a)(s* +4s + 4n —5)(nTry — W(G)) ,
” 16(iTr —W(G)) + (1 —a)(s? + 4s + 4n —5) "

=2(nTr; — W(G)x2 + (1 — a)

(using Lemma 3.1).
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Thus, as early, we get
(1 = a)(s? + 4s + 4n — 5)(nTr; — W(G)) 2
16(nTr; — W(G)) + (1 — a)(s> + 4s + 4n — 5)

(1 —a)(s® +4s +4n — 4)(nTr; — W(G))  1a(G)
16(nTry — W(G)) + (1 — a)(s2 + 4s + 4n — 4) W(G)’

Tr1 — pa(G) >

which implies,
(1 = a)(s® + 4s + 4n — 5)Tri(nTr, — W(G))
16W(G)(nTri — W(G)) + (1 — a)(s? + 4s + 4n — 5)nTry

(1-a)(4n+t)Tr1(nTri-W(G))
16W(G)(nTr1—W(G))+(1—a)(@n+tnTr, ’

Tr1 — pa(G) >

we obtain

By the monotonicity of f(t) =

(1 -a)dn+16)Tri(nTry — W(G))
16W(G)(nTr; — W(G)) + (1 — a)(dn + 16)nTr;
_ 1 -a)n+4)Tri(nTr, — W(G))
~ AW(G)(nTry — W(G)) + (1 — a)(n + 4)nTry

1 -a)n+2)Tri(nTr, — W(G))
AW(G)(nTry — W(G) + (1 — a)(n + 2)nTr,

Try — pa(G) >

Therefore, the result follows by combining Cases 1 and 2. [

4. The D,-spectrum of the join of digraphs

Let G1 and G, be two disjoint digraphs, the join of G; and G, denoted by G; V G, is the digraph such
that V(G1 V Gp) = V(G1) U V(Gy) and E(G1 V G2) = E(G1) U E(G2) U {(1,0), (v, 1) : u € V(G1) and v € V(G)}.

In this section, we give the D,-spectrum of the join of two regular digraphs. For the rest of this section,
I'and | denote the unit and the all-one matrices of corresponding orders, respectively. Let M be an n X n
matrix. The characteristic polynomial of M is defined as pm(A) = det(AI — M), where det(+) denotes the
determinant of *.

Theorem 4.1. Let G; be ri-reqular strongly connected digraph with order n;, for i = 1,2. Then the characteristic
polynomial of Do(G1 V Gy) is

PAH(GI)(CWIZ + Zanl -2- A)PAA(GZ)(anl + 20&1’12 -2- A)
(A —any —2am +r1 +2)(A —any —2any + 1y + 2)

Pp,Gve)(A) = (=1)n™™ fA),

where f(A) = (A —ang —2n1 + 11+ 2)(A —any — 2ny + 15 + 2) — (1 — @)?nyno.

Proof. One can easily see

Do"(c;‘1 V; G2) — ( (Xl’lzlm +M1 (1 - a)]annz ),

(1 - a)]nzxn] 0(1’11[,12 + M2
where M; = a(2n; — 1; = 2)I, + 2(1 — a)(J, — I,) — (1 = )A(G;) = Qan; — 2)L,, + 2(1 — @) ], — Aa(G)).
Then the characteristic polynomial of D,(G; V Gy) is

P ) = ALy, — analy, — My —(1 = )]s
Da(G1VG2) - —(1 = @) J5n, ALy, —anil,, — My

: )

Letmy = A —any —a@ny —r; —2) and my = A — any — a(2ny — r, — 2). We use A(G1) = (aj)n,xn, denotes the
adjacency matrix of G; and A(G;) = (az’.j)nzxn2 denotes the adjacency matrix of G,. The determinant (5) can
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be written as

m Sl-a)@-an) - ~(-0R-aw) (- “U-a) e -(-a)

(1 - @)@ a2) my v —(-d)2-am)  -(-a) “(i-a) - -(-a)

Q- @)2=an)) ~(1 - Q)@ =an) - - —(1-a) A-a) —(1-a) 6
~(1-a) “A-a) e (-0 s “A-a)@-dy) - -1-a)e-d,) | ©
-1-a) -1-a) v -1-a) -1-a)2-a}) My e —(1I-a)(2- ”énz)
~(1-a) “1ma) e —-a) —(-@)@-d) -(-a@-a,) - -

We now perform the number of transformations that leave the value of the determinant (6) unchanged.
Subtract the row (11 + 1) from the rows (11 + 2), (n1 + 3),..., (11 + ny) of (6). Later on, adding the columns
(m +2),(n1 +3),...,(n1 + ny) to the column (n; + 1) of the obtained matrix, we arrive at the following
determinant

Pp,GivGy)(A) = [W1lIR|, (7)
where
my -1-a)2-a2) - —-(1-a)2-a1) -1 -,
-(1-a)2-an) my o =(1=a)(2—az) -(1-any
IRl = : : : : ,
—(1 - a)(2 - 11,111) —(1 — CY)(Z - an12) ce mq —(1 — Ck)nz
-(1-a) -(1-a) -(1-a) my — (1 - a)(2ny — 1, - 2)
my+(1-a)2-a,) —-(1-a)a;—ay,) - —-(1- cv)(ain2 - a;nz)
-1-a)d), —a}) m+(1-a)2-a) - —-(1- oz)(a’ll12 - aénz)
Wi = : . .
(1 -a)a), - a;zz) -(1-a)a), - “;123) oomp+(1-a)2 - ainz)

For the determinant |R| in (7), subtract the first row from the rows 2,3, ...,n;. Later on, adding columns
2,3,...,n to the first column of the obtained matrix, then we get the following determinant:

my — (1 - 0()(2?11 -1 - 2) —(1 — a)(2 - alz) cee —(1 - 0()(2 — alnl) —(1 - 0()1/12
0 my + (1 — 6\5)(2 — ﬁllz) v —(1 — Dt)(am] — azm) 0
IRl = s : : ; . ®
0 -1-a)az —ap2) -+ m+1-a)(2—-a1) 0
-1-a)m -1-a) e -1-a) my = (1= a)(2ny — 1 — 2)
Expand the determinant in (8) along the last column to obtain
IRl = [(m1 — (1 - a)(2n1 — 11 — 2))(m2 — (1 — @)(2n2 — 12 — 2)) — (1 — a)*minz]|Whl, )
where
m+(1-a)2-ap) -(1-a)az—ap) - —1-a)(ayw —aw)
—1-a)(az —az) m+1A-a)2-a3) --- —(1-a)a, —asn)
Wal = : | :
~(1-a)@n —ay2) -(1-a)as—ays) - m+1-a)2-ay,)

Furthermore, by (9), (7) can be written as

Pp,GivG,)(A) = [(ml —(1-a)2n; -1 =2))mx— (1 -a)2ny =12 —2)) — (1 - 04)2711”2] [Wol|Whl. (10)
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For the determinant |W|, we have

1
Wal =0 I-a)n+2)
mq + (1 — 06)(1’1 + 2) (1 - 0()6112 (1 — 0()&13 s (1 — a)alm
0 m+1-a)2-ap) -1-a)asz—as) - —1-a)aw, —am)
0 -1-a)an—a) m+1-a)2-a3) - —(1-a)aw, —as,)
0 S ) —an)  —(1— @) — ) oo 1+ (L= @)2 = ann)

(11)

Therefore, by subtracting the columns 2,3, ...,n; of the determinant (11) from the first column, and later
on, add the first row of the obtained matrix to the rows 2,3, ...,n;, we get

1
el = A am D~
my +2(1-a) (1-a)ar (1-a)ass e (1 - a)an,
(1 - a)an my +2(1 — a) (1 - a)ays ‘e (1 - a)azy,,
(1 - a)as (1 - a)as, m+2(l-a) --- (1 - a)azy,,
1- (;z)u,,ll 1- c.t)amz 1- &)an]g, .- my + 2.(1 - )
_ (="
B my + (1 — Ck)(ﬁ + 2)
-mp—2(1-a) —(1-a)ap -1-aaz - —(1-a)a,
-l-a)any -m-2(1-a) -(Q-a)as - —(1-a)y,
—(1 - a)as -1-a)azp, -m-2(1-a) -+ —(1-a)azy,
- —(-ams  —(-aas e —m—2(1-a)
(1"

T+ (L—a)(r + 2)PAa<c1>(anz +2am =2 = A). (12)

Similar as the calculate of the determinant [W,|, we get the determinant |W;]| is

B (=1
Wil = my + (1—a)(r +2)

PAQ(GZ)(anl + 20(1’[2 -2 A) (13)

Substituting (12), (13), m; and m, in (10), we get the desired result. [

For two strongly connected regular digraphs G1 and G, the previous theorem establishes the relationship
between the D, eigenvalues of G; V G, and the A, eigenvalues of G1, G,. Since G,; is r;-regular, it follows
that A,(G;) = aril,, + (1 - a)A(G;), which implies that A is an eigenvalue of A(G;) if and only if ar; + (1 —a)A is
an eigenvalue of A,(G;). Combining this observation and Theorem 4.1, we can easily obtain the following
result.

Corollary 4.2. Let G; be ri-regular strongly connected digraph with order n;, for i = 1,2. Then the D, eigenvalues
of G1 V G are as follows:

2ni+ny—r)a-2->1- (X)Ak(A(Gl))fOV 2<k<m,
ny+m —r)a—2-(1-a)A(A(Gy)) for 2 <k < ny,

and the remaining two D, eigenvalues of G1 V G, are the two roots of the equation (A —any —2ny + 11 + 2)(A —ang —
21y + 12 +2) — (1 — a)?nyng = 0, where A(A(G))) for 2 < k < n; denote the eigenvalues of the adjacency matrix A(G;)
except for r;.
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