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Abstract. In this paper we introduce a new iterative algorithm for approximating fixed points of
a — YP—contractive type mappings in CAT(0) spaces. We prove a A-convergence theorem under suitable
conditions. The result we obtain improves and extends several recent results stated by many others; they
also complement many known recent results in the literature. We then provide some numerical examples
to illustrate our main result and to display the efficiency of the proposed algorithm.

1. Introduction

The Banach contraction principle states that every contraction on a complete metric space has a unique
fixed point, moreover, the fixed point can be approximated by the Picard’s iterates. F. E. Browder [5] and D.
Gohde [13] independently proved in 1965 that every nonexpansive self-mapping of a closed, convex, and
bounded subset of a uniformly convex Banach space has a fixed point. W. A. Kirk (see [16, 17]) studied for
the first time the fixed point theory in Cartan-Alexandrov-Toponogov spaces, or briefly, in CAT(0) spaces.
He proved that every nonexpansive mapping defined on a bounded closed convex subset of a complete
CAT(0) space has a fixed point. Many others studied concerning fixed point theorems for various mappings
in CAT(0) space [11, 18, 20, 22, 26, 27].

Let (X, d) be a metric space and x, y be two fixed elements in X such that d(x,y) = I. A geodesic path
from x to y is an isometry c : [0,]] — ¢([0,1]) € X such that ¢(0) = x, c(I) = y. The image of a geodesic
path between two points is called a geodesic segment. A metric space (X, d) is called a geodesic space if
every two points of X are joined by a geodesic segment. A geodesic triangle represented by A(x, y,z) in
a geodesic space consists of three points x, y,z and the three segments joining each pair of the points. A
comparison triangle of a geodesic triangle A(x, y,z), denoted by A(x, y,z) or A(X,¥,2), is a triangle in the
Euclidean space R? such that d(x, y) = dr:(X, V), d(x,z) = dr(%,Z), and d(y, z) = dre(,Z). This is obtainable
by using the triangle inequality, and it is unique up to isometry on IR?. Bridson and Haefliger [6] have
shown that such a triangle always exists. A geodesic segment joining two points x, i in a geodesic space X
is represented by [x, y]. Every point z in the segment is represented by ax @ (1 — a)y, where « € [0, 1], that
is, [x,y] .= {ax® (1 —a)y : a € [0,1]}. A subset C of a metric space X is called convex if for all x,y € C,
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[x,y] € C. A geodesic space is called a CAT(0) space if for every geodesic triangle A and its comparison
triangle A, the following inequality, called CAT(0) inequality, is satisfied: d(x, y) < dr:(X, ) for all x,y € A
and ¥,y € A. Complete CAT(0) spaces are often called Hadamard spaces (see [15] and [23]). Examples of
CAT(0) spaces include the R-tree, Hadamard manifold, and Hilbert ball equipped with hyperbolic metric.
For more details on these spaces, see for example [2, 4, 7]. A geodesic space (X, d) is called hyperbolic (see
[12, 24]) if, for any x, i,z € X,

1 1 1 1 1
d(iz ® Ex, EZ @ Ey) < Ed(x, ).

Also, Bruhat and Tits [8] proved (CN) inequality in CAT(0) spaces as below:

d(mﬂ

2 1 2 1 2_1 2
> 2) < 5d06,2)° + 2 d(y, 2 ~ 7d(x, )

The class of hyperbolic spaces include the normed spaces, CAT(0) spaces, and some others. Bashir Ali in
[3] presented an example of a hyperbolic space that is not a normed space. Therefore the class of hyperbolic
spaces is more general than the class of normed spaces.

We now turn to recall some well-known iteration processes. The Mann iteration process is defined by
the sequence {x,},

X1 € C,
Xpe1 = (1 —ap)xy + a,T(x,), n=>1,

(o)

where {a,}”, is a sequence in (0, 1).
Further, the Ishikawa iteration process is defined

x1 €C,
X1 = (1 = an)x, + anT(yn)/
yn = (1 _ﬁl’l)xfl + ,BWT(le)/ n 2 1/

where {a,}” | and {,} | are some sequences in (0, 1).
Let C be a nonempty subset of (X, d). A mapping T : C — C is said to be mean nonexpansive if

d(Tx, Ty) <ad(x,y) + bd(x, Ty), Vx,yeC,

where 2 and b are two nonnegative real numbers such thata + b < 1.
In 2017 Abkar and Rastgoo iteration process [1] is defined

x1 €C,

zp = (1 = an)xn @ ay T(xn),
Yu = T((1 = Bn)zn ® BuT(zn)),
Xn+l = T(]/n);

where T is a mean nonexpansive mapping and {a,}” ; and {f,},", are some sequences in (0, 1).

In this paper, we give the definition of a new type of mappings, namely, a — {)—contractive mappings
and prove some fixed point theorem for this type of mappings in CAT(0) spaces. Then, we introduce
a new iterative algorithm for approximating fixed points of a — {)—contractive type mappings in CAT(0)
spaces. Under suitable conditions, we prove a A-convergence theorem for our algorithm. To be more
precise, Let (X, d) be a complete CAT(0) space and C be a nonempty bounded closed convex subset of X and
T : C — C be a given mapping. We say that T is an a — {)—contractive mapping if there exist two functions
a:XxX —[0,00)and ¢ € ¥ such that

alx, d(T(x), T(y)) < P(d(x,y)), forall x, y € X.
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The following example shows that there are @ —i)—contractive mappings which are not mean nonexpansive,
therefore the results of this paper cannot be deduced from results already appeared in [1].

Example 1. Let X = [0, 1] be endowed with the usual metric d(x, y) = [x — y|. Define T : X — X by T(x) = 1
if x is rational, and T(x) = 0 if x is irrational.

1 x € [0, 1] is rational;
Tx =
0 x € [0,1] is irrational.

Now, we consider the mapping o : X X X — [0, 1] by
x — vl

alxy) =~

Clearly T is an a — ip—contractive mapping with i(t) = £ for all f > 0, but not mean nonexpansive; suppose
that T is mean nonexpansive, then

d(Tx, Ty) <ad(x,y) + bd(x, Ty), Vx,yeC, (1)

where g and b are two nonnegative real numbers such thata+b < 1. Now, letx = 0and y € [0, 1] is irrational,
so due to the above inequality we can write: 1 < ay, but sincea <1 and 0 < y < 1, this is a contradiction.

The above example shows that this paper improves and extends several recent results in the literature,
in particular, the result in [1]. Finally, we provide some numerical examples to illustrate our main result,
displaying on this way the efficiency of our proposed algorithm.

2. Preliminaries

Throughout this article, (X, d) will stand for a metric space. We denote by IN the set of positive integers
and by R the set of real numbers.
Let {x,} be abounded sequence in a CAT(0) space X and let C be a closed convex subset of X which contains

{xn}. Suppose ®(x) = limsup, _,  d(x,, x) [(D :C— IR]. We denote the notation
{xy}) = v = O(w) = iné D(x).
Xxe

We start by recalling some basic Lemmas and definitions.

Lemma 2.1. ([21], Lemma 2.1) Let (X, d) be a CAT(0) space. Then
Al -a)x®ay,z) < (1 -a)dx,z)+ad(y, z)

foralla €[0,1] and x,y,z € X.

Lemma 2.2. ([21], Lemma 4.5) Let x be a given point in a CAT(0) space (X, d) and {t,} be a sequence in a closed
interval [a, bl with0 <a<b<land0<a(l-b) < % Suppose that {x,} and {y,} are two sequences in X such that
1. limsup, ,  d(x,,x) <,

2. limsup, , d(y,,x) <7,
3. limsup, ,  d((1 —t)x, @ tuyn, X) =7

for some r > 0. Then limy,_,c d(xy, yu) = 0.

Definition 2.3. Let {x,} be a bounded sequence in a CAT(0) space (X, d).
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1. The asymptotic radius r({x,}) of {x,} is given by
r({xn}) == inf{r(x, {x, )},
xeX

where r(x, {x,}) := limsup, _,  d(x,, x).
2. The asymptotic center A({x,}) of {x,} is the set

A(fxn}) := {x € X0 r(x, {xa}) = r({xa ).

In 2006, Dhompongsa et al proved that for each bounded sequence {x,} in a CAT(0) space, A({x,}) consists
of exactly one point (see Proposition 7 in [10]). This motivates the following notion of A-convergence which
is regarded as some sort of weak convergence in CAT(0) spaces; of course this analogy is by no means
complete.

Definition 2.4. [18] Let (X, d) be a CAT(0) space. A sequence {x,} in X is said to A-converge to x € X if and only if
x is the unique asymptotic center of all subsequences of {x,}. In this case, we write A — lim,_,c X, = x and call x the
A-limit of {x,,}.

We recall that a bounded sequence {x,} in X is said to be regular if r({x,}) = r({u,}) for every subsequence
{u,) of {x,}.

Proposition 2.5. ([21], Proposition 3.12). Let {x,} be a bounded sequence in a CAT(0) space (X, d) and let C C X be
a closed convex subset which contains {x,}. Then,

(i) A -lim,_,e X, = x implies {x,} — x;

(ii) if {x,} is regular, then {x,} — x implies A — lim, e X, = X.
Lemma 2.6. The following assertions in a CAT(0) space hold:
(i) [19] Every bounded sequence in a complete CAT(0) space has a A-convergent subsequence.

(ii) [9]If {x,} is a bounded sequence in a closed convex subset C of a complete CAT(0) space (X, d), then the asymptotic
center of {x,} is in C.

(iii) [19] If {x,} is a bounded sequence in a complete CAT(0) space (X, d) with A({x,}) = {p}, {v.} is a subsequence of
{x,} with A({vy,}) = {v}, and the sequence {d(x,, v)} converges, then p = v.

3. A A-Convergence Theorem

We begin this section by recalling the notion of mean nonexpansive mappings; we then compare this
latter with the class of a — i-contractive mappings.

Definition 3.1. Let C be a nonempty subset of (X, d). A mapping T : C — C is said to be mean nonexpansive if
d(Tx, Ty) <ad(x,y) + bd(x, Ty), Vx,yeC,
where a and b are two nonnegative real numbers such that a +b < 1.

In 2012 Samet, C. Vetro, P. Vetro [25] introduced the notion of a — Y—contractive type operator and
proved some fixed point results. Then let us introduce this notion in CAT(0) spaces.
Denote with W the family of nondecreasing functions ¢ : [0, +c0) — [0, +o0) such that ), "(t) < +oo for
each t > 0, where ¢ is the n-th iterate of ¢.

Lemma 3.2. [25] For every function 1 : [0, +00) — [0, +00) the following holds:
if Y is nondecreasing, then for each t > 0, lim,, . " (t) = 0 implies Y(t) < t.
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Definition 3.3. Let (X,d) be a complete CAT(0) space and C be a nonempty bounded closed convex subset of X
and T : C — C be a given mapping. We say that T is an o — p—contractive mapping if there exist two functions
a:XxX —[0,00)and p € ¥ such that

a(x, Y)d(T(x), T(y)) < P(d(x,y)), forall x,y € X.
Definition 3.4. Let f : X — Xand a : X X X — [0;1). We say that f is a-admissible if

ax,y) 21 =a(f(x), f(y) 21, Vx,yeX

Theorem 3.5. ([14]) Let (X, d) be a complete metric space and T : X — X be an a — y—contractive type mapping
satisfying the following conditions:

(i) T is a-admissible;

(i1) there exists xo € X such that a(xg, Txg) > 1;

(iii) if {x,} is a sequence in X such that a(x,, Xp+1) 2 1 for all n and x, — x € X as n — +oo, then a(x,, x) > 1 for
all n.

Then, T has a fixed point.

Further let us give a fixed point result concerning o — »—contractive mapping in CAT(0) space.

Theorem 3.6. Let (X, d) be a complete CAT(0) space and C be a nonempty closed convex subset of X. Let T : C — C
be a a — Y—contractive type mapping with a(x, y) = 1, and let {x,} C X be an approximate fixed point sequence (i.e.,
limy, 00 d(x,,, Tx,) = 0) and {x,} = w. Then T(w) = w.

Proof. Since {x,} is an approximate fixed point sequence, we define:

®(x) = limsup d(T"x,,x) VYm > 1. (2)

n—oo

We claim that ®(Tx) < O(x) holds for each x € C. In fact, if m = 1, by the definition of a — i—contractive
type mappings whit a(x, y) > 1 and (2),

O(Tx) = limsup d(Tx,, Tx)

n—oo

< lim sup a(x,, x)d(Tx,, Tx)

n—oo

< limsup d(x,, x)

= O(x).

By continuing this process, we conclude that @(T™x) < ®(x) holds for any positive integer m. In particular,
we have

r}i_{go D(T"w) < D(w), 3)

Assume by contradiction that {T"w} contains no norm-convergent subsequence, we can assume that there
exists €y > 0 such that

AdT"w, T"w) > €y, n+#m. 4)

For the above ¢y, we can take 6 > 0 such that

(D(w) + 0)? < D(w)* + 64&2. (5)

By the definition of @ and (3), there exists N, M € IN such that for any m > M
AdT"w,x,) < P(w)+ 60 Vn>=N.
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Hence, the (CN) inequality, (4) and (5) imply that

d( TMo & T’”Za)lxn)z <

1
> A(T™ w, x,)* + %d(Tmza), xn)? — Zd(T’”‘w ®T™w)?

— N -

< E(q)(a)) +0) + %(CD(a)) +6) - }1602
< O(w)?

holds for any my,m; > M. Let z = w ,then z € C and z # w , we have got a contradiction with

D(w) = infrec P(x). So {T"w} contains norm-convergent subsequence, denoted by {T" w}. We may assume
that

T"w — w’, then

limsup d(w’, x,) = limsup lim d(T"w, x,) = lim ®(T"w) < O(w).

Since P(w) = infyec P(x), hence @’ = w . So T"w — w . Again using the definition of a — {—contractive
type mappings whit a(x, y) > 1, we have

AdT"w, Tw) < (T w, w)d(T" w, Tw)
<YPd(T" " w, w))
<d(T" ' w, w)

Taking the limit of both sides, then d(w, Tw) < d(w, ). So we obtain w = Tw, thus w is a fixed point of T, i.e.
To=w. O

By using Theorem 3.6 and Proposition 2.5 we conclude the following theorem:

Theorem 3.7. Let C be a nonempty closed convex subset of a complete CAT(0) space (X,d)and T : C — C bea
a—p—contractive type mapping. If {x,} is a sequence in C such that im, e d(x,,, T(x,)) = 0and A—lim,, e X, = p,
then T(p) = p.

Next, let us give the main result of this section-a A-convergence theorem for & —1—contractive mappings
in CAT(0) spaces. Then, we introduce a new iterative algorithm to approximate the fixed point of our

mapping.

Theorem 3.8. Let (X,d) be a complete CAT(0) space and C be a nonempty closed convex subset of (X,d). Let
T : C — C bea a—p—contractive type mapping with a(x, y) > 1 forall x,y € X. Let {an})” 1, k) Aty ABuk ey
and {y,}, be sequences in (0,1) also {a,} be a sequence in a closed interval [c,d] with 0 < ¢ < d < 1 and

0<c(l-d)< % Then {x,}'. | defined by

x1 €C,

Zn = (1 = an)xy ® @, T(xy),

Yn = 1- M — [Jn)xn @ T]nT(xn) @ [JnT(Zn)/

X1 = (1= Bu = Yn)T(xn) © BuT(z0) ® Y T(Yn),

is A-convergent to some point p € Fix(T).

Proof. By using Theorem 3.5, we conclude that Fix(T) # 0. Now, we will divide the proof into three steps.
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Step 1. First, we will prove that lim,,_, d(x,, p) exists for each p € Fix(T), where {x,} is defined by (6).
For this purpose, let p € Fix(T). By Lemma 2.1 and using the fact that {a,,},” , € (0, 1) we obtain

d(zn, p) = d((1 — an)xn ® anT(xy), p)
< (1= an)d(xy, p) + and(T(xn), p)
< (1= an)d(xn, p) + ana(xn, p)a(T(xy), p)
< (1 = ayn)d(x,, p) + and(x,, p)
< d(xu,p), (7)

for all n € IN. This together with the fact that {8,}" ; € (0,1) yields

A(Yn,p) = d((1 = 1y = un)xn ® 1, T(x) ® unT(zu), p)
< (1 =10 = wn)d(xn, p) + 0,d(T(x0), p) + pnd(T(2), p)
< (1 =10 = pn)dCn, p) + Mua(xn, p)A(T(xn), p) + pna(zn, P)A(T(21), p)
< (1 - T]n - Hn)d(xn/ P) + T]ﬂllj(d(xnr P)) + Hnl;l}(d(zn/ P))
< (1= 1n = pn)d(Xn, p) + 10 (X, p) + pind(zn, p)
< (1 —Mn — ,Un)d(xnr P) + nnd(xnr P) + ,und(xn/ P)
< d(xy,p), 8)

for each n € IN. It now follows that

A(xur1,p) = d((1 = By = ) T(xn) ® BuT(20) © YuT(Yn), p)
< (1= Bu = ywd(T(xn), p) + Bud(T(zn), p) + ynd(T(yn), p)
< (1= Bu = yn)a(xn, p)A(T(xn), p) + Bu(zn, P)A(T(zn), p) + Yn(Yn, PYAT(Yn), p)
< (1= Bu = y)¥A(xn, ) + Butp(d(zn, ) + Yn0(@d(Yu, p))
< (1 - ﬁn - YH)d(xnr P) + ﬁnd(znr P) + Vnd(ynr P)
< (1 =Bu = yu)d(xn, p) + Bud(xXu, p) + Ynd(xn, p)
< d(xy, p). )

Consequently, we have d(x,.+1,p) < d(x,, p) for all n > 1. This implies that {d(x,, p)} is a decreasing sequence
of real numbers. Since this sequence is bounded below, it follows that lim,,_,« d(x,, p) exists. Thus, {x,} is
bounded.

Step 2. We will prove that lim,,_, d(x,, T(x,)) = 0. Without loss of generality, we may assume that

r:= lim d(x,, p). (10)

Therefore

limsup d(T(x,), p) < lim sup a(x,, p)d(T(x,), p)

n—o0o n—o0

< lim sup Y(d(x,, p))

n—oo

<d(x,,p) =r. (11)
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According to (7), we also have

limsup d(z,, p) = limsup d((1 — an)x, ® @, T(x,), p)

n—oo n—oo

< (1 - ay)limsupd(x,, p) + a, limsup d(T(x,), p)

n—oo n—oo

< (1= ay)limsup d(x,, p) + a, lim sup a(x,, p)d(T(x,), p)

< (1 - ay)limsupd(x,, p) + a, limsup d(x,, p)

<limsupd(x,,p) =r. (12)

n—oo

On the other hand, using (8) we can write

r = lim sup A(xXp41, P) = lim sup a(1- Bn — Vn)T(xn) ® ﬁnT(Zn) S VnT(]/n)/ P)

n—oo n—oo

<A =Bn = yn)d(T(xn),p) + ud(T(zn), p) + Vnd(T(yn), p)

< (1= Bu = yw)a(xn, p)A(T(xy), p) + Buct(zu, P)A(T(2n), p) + Y (Yn, P)A(T(Yn), p)
< (1= Bu = y)Y(d(xn, p)) + Butp(d(zn, p)) + Yu(d(yn, p))

<(1- Pn = y”)d(xn/ P) + ﬁnd(znr P) + Ynd(yn/ P)

<@1- Bn — Vn)d(xXu, p) + ﬁnd(znr p) + Yud(xXy, p)

< (1= Bu)d(xn, p) + Bnd(zn, p)

< (1= Bu)r + Bud(z, p)

which implies that

r = lim sup d(z,,, p). (13)
Therefore,

r = limsup d(z,, p) = limsup d((1 — an)x, ® @, T(xy), p). (14)

By using Lemma 2.2 together with (10), (11) and (14), we have
lim d(x,, T(x,)) = 0. (15)

Therefore, we are done.
Step 3. Define

Q)= ) Allva) € Fix(D).

{va) S}

We claim that the sequence {x,} is A-convergent to a fixed point of T and that Q,(x,) consists of exactly
one point. To this end, we assume that v € Q,(x,). It follows from the definition of Q,(x,) that there
exists a subsequence {v,} of {x,} such that A({v,}) = {v}. Now, use the assertion (i) in Lemma 2.6 to obtain a
subsequence {p,} of {v,} such that

A=limp,=peC.

n—oo

It now follows from Theorem 3.7 that p € Fix(T). Since the sequence {d(v,, p)} is convergent, it follows from
the assertion (ii) in Lemma 2.6 that v = p. Therefore Q,(x,) C Fix(T). Finally, we show that Q,(x,) consists
of exactly one point. Let {v,} be a subsequence of {x,} such that A({v,}) = {v} and let A({x,}) = {x}. We
have already seen that v = p € Fix(T). Since {d(x,, p)} converges, by assertion (iii) in Lemma 2.6, we have
x = p € Fix(T), that is, Q.(x,) = x. This completes the proof. [
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4. Numerical Results

In the following, we supply a numerical example of a @ — 1p—contractive type Mapping satisfying
the conditions of Theorem 3.8, and some numerical experiment results to explain the conclusion of our
algorithm.

Obviously, every a—1—contractive type mapping satisfies the Banach contraction principle, (with a(x, y) = 1
for all x, y € X and 1(t) = kt for all t > 0 and some k € [0, 1) ). Note that a @ — 1)—contractive type mapping
is not necessarily contraction.

Example 2. Suppose that X = R endowed with the standard metric d(x, y) = |x — y| for all x, y € R. Define
the mapping T : X — X by

1
JZ—C—Z x>1,
Tx= 2 0<x<1;
0 x < 0.

Now, we define the mapping o : X X X — [0, +o0) by

15 x,y€[0,1];

a(x,y) =
1 otherwise.

Clearly T is an & — {—contractive mapping with ¢(t) = 5 forall t > 0.
Moreover, Clearly T is @-admissible.
Now, all the hypotheses of Theorem 3.8 are satisfied. Consequently, T has a fixed point. In this example, 0

is fixed points of T. Put
1
= P = = e = = 5 g

By using MATHEMATICA, we computed the iterates of algorithm (6) for x; = 0.5 € [-1, 1]. Finally, by the
numerical experiments we compared Mann iteration and Ishikawa iteration process with our algorithm
(6) (see Table 1). Moreover, the convergence behaviors of these algorithms for five different initial points
x =0.5, =15, 0, 1, 1.5 € [-1, 1] are shown in Figure 1. We conclude that x,, converges to 0.
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Numerical Results

Step Our Algorithm Mann Algorithm Ishikawa Algo-
rithm
1 0.5 0.5 0.5
2 0.124972 0.496287 0.492602
3 0.0312363 0.492638 0.485384
4 0.00780743 0.489051 0.478341
5 0.00195145 0.485524 0.471467
6 0.000487763 0.482056 0.464756
7 0.000121916 0.478645 0.458202
8 0.0000304731 0.47529 0.451802
9 7.6168 x 107 0.47199 0.445548
10 1.90384 x 107° 0.468742 0.439438
11 4.75871 x 1077 0.465546 0.433466
12 1.18946 x 10778 0.4624 0.427628
13 297312 x 1078 0.459304 0.42192
14 7.43148 x 1077 0.456255 0.416338
15 1.85755 x 107 0.453254 0.410878
16 4.64308 x 10710 0.450298 0.405536
17 1.16058 x 10710 0.447386 0.400309
18 2.90096 x 1071 0.444519 0.395193
19 7.25124 x 10712 0.441693 0.390186
20 1.81252 x 10712 0.438909 0.385283
21 4.53059 x 10712 0.436166 0.380482
22 1.13247 x 10712 0.433463 0.37578
23 2.83076 x 10714 0.430798 0.371174
24 7.07584 x 1071 0.428171 0.366661
25 1.7687 x 1071° 0.425581 0.362239
26 442111 x 1071 0.423028 0.357905
27 1.10512 x 10716 0.42051 0.353657
28 2.76242 x 107V 0.418027 0.349492
29 6.9051 x 10718 0.415577 0.345409
30 1.72604 x 10718 0.413161 0.341404

Table 1: Numerical results corresponding to x; = % for 30 steps.
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Figure 1: Convergence behaviors corresponding to x; = 0.5, —1.5, 0, 1, 1.5 for 30 steps.

Example 3. Consider X = R? equipped with the Euclidean norm. Let x = (x1,x;) € R?, then the squared
distance of x from the origin, O, is

2_ .2, .2
x| = x7 + 3.

Consider C = [-1, 1] x [-1, 1] which is a bounded, closed, and convex subset of X. We define the mapping
K:C— Cby

1 1
K(xq,x2) = (gxl, gxz)

K'is a @ — ip—contractive type Mapping with a(x, y) = 1 and i(x) = 5. Clearly, zero is the only fixed point
of the mapping K. In this case, our algorithm is the following:

xay = (xay,, xay,) €C,

Zmyr Zony) = (L= @)Xy, X)) + An Ky, s X)) (16)
Yy Ynr) = (U= 1 = )Xy X)) + 10 K(Xyy s X)) + n Ky, Z2,)),

(X(re1), x(n+1)2) = (1= Bn = y) KXy, X(n),)) + BuK(Z(), Z(Vl)z)) + VnK((}/(n)l/ Yin)))-

1
n+100° 11
Using MATHEMATICA, we have computed the iterates of the algorithm (16) for x(;) = (E' E) € C for 500

steps. Finally, by the numerical experiments we compared Ishikawa iteration process with our algorithm
(16). The convergence behaviors of these algorithms are shown in Figure 2. The conclusion is that x,
converges to (0,0).

Put a, = By = 1 = pn = Y =
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Figure 2: Convergence behaviors corresponding to x(1) = (5' E) for 500 steps.
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