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Abstract. Wang et al. introduced Lp radial Blaschke-Minkowski homomorphisms based on Schuster’s
radial Blaschke-Minkowski homomorphisms. In 2018, Feng and He gave the concept of (p, q)-mixed ge-
ominimal surface area according to the Lutwak, Yang and Zhang’s (p, q)-mixed volume. In this article,
associated with the (p, q)-mixed geominimal surface areas and the Lp radial Blaschke-Minkowski homo-
morphisms, we establish some inequalities including two Brunn-Minkowski type inequalities, a cyclic
inequality and two monotonic inequalities.

1. Introduction

We useKn to denote the set of convex bodies, that is compact, convex subsets with nonempty interiors
in Euclidean space Rn. For the set of convex bodies containing the origin in their interiors, we write Kn

o .
For the set of star bodies (about the origin) in Rn, we write Sn

o . As usual, V(K) denotes the n-dimensional
volume of a body K, B the standard unit ball and Sn−1 the unit sphere in Rn.

For each K ∈ Sn
o , the intersection body, IK, of K is a star body symmetric with respect to origin whose

radial function on Sn−1 is given by (see [16]):

ρ(IK,u) = vn−1(K ∩ u⊥),

for all u ∈ Sn−1. Here vn−1 is (n − 1)-dimensional volume and K ∩ u⊥ denotes the intersection of K with the
subspace u⊥ that passes through the origin and is orthogonal to u.

Based on the properties of intersection bodies, Schuster ([20]) introduced the notion of radial Blaschke-
Minkowski homomorphisms as follows:
Definition 1.1. A map Ψ: Sn

o → S
n
o is called a radial Blaschke-Minkowski homomorphism if it satisfies the following

conditions:
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(a) Ψ is continuous.
(b) For all K,L ∈ Sn

o ,

Ψ(K+̂L) = ΨK+̃ΨL,

where ΨK+̃ΨL denotes the radial Minkowski addition of ΨK and ΨL (see (11)), K+̂L denotes the radial Blaschke
addition of star bodies K and L (see (12)).

(c) For all K ∈ Sn
o and every ϑ ∈ SO(n), Ψ(ϑK) = ϑΨK.

Here, SO(n) is the group of rotations in n dimensions.
In 2011, Wang, Liu and He ([24]) introduced the notion of Lp radial Blaschke-Minkowski homomor-

phisms as follows:
Definition 1.2. A map Ψp: Sn

o → S
n
o is called an Lp radial Blaschke-Minkowski homomorphism if it satisfies the

following conditions:
(a*) Ψp is continuous.
(b*) For all K,L ∈ Sn

o ,

Ψp(K+̂pL) = ΨpK+̃pΨpL,

where K+̂pL denotes the Lp radial Blaschke addition of star bodies K and L, and ΨpK+̃pΨpL denotes the Lp radial
Minkowski addition of ΨpK and ΨpL.

(c*) For all K ∈ Sn
o and every ϑ ∈ SO(n), Ψp(ϑK) = ϑΨpK.

Remark 1.1. The Lp intersection body is a special case of the Lp radial Blaschke-Minkowski homomorphism,
it was first introduced by Haberl and Ludwig (see [10]): For K ∈ Sn

o and 0 < p < 1, the Lp-intersection body,
IpK, of K is the origin-symmetric star body whose radial function was defined by

ρ(IpK,u)p =
1

2(n − p)

∫
Sn−1
| u · v |−p ρ(K, v)n−pdS(v),

for all u ∈ Sn−1. Here u · x denotes the standard inner product of u and x.
Schuster ([20]) also introduced the notion of Blaschke-Minkowski homomorphisms, Wang ([23]) ex-

tended this notion to Lp version later. Regarding the studies of Lp radial Blaschke-Minkowski homomor-
phisms and Lp Blaschke-Minkowski homomorphisms, many results have been found in [1, 5–7, 13, 14, 26, 31–
36].

In 2016, Huang, Lutwak, Yang and Zhang ([11]) constructed the dual curvature measures in the dual
Brunn-Minkowski theory. These measures are dual to Federer’s curvature measures which are fundamental
in the classical Brunn-Minkowski theory. In 2018, Lutwak, Yang and Zhang ([18]) took a further major step
and introduced the Lp dual curvature measures. Based on this concept, they defined the following (p, q)-
mixed volumes.

For p, q ∈ R, K,Q ∈ Kn
o and L ∈ Sn

o , the (p, q)-mixed volume, Ṽp,q(K,Q,L), is defined by

Ṽp,q(K,Q,L) =
1
n

∫
Sn−1

(hQ

hK

)
(αK(u))pρK(u)qρL(u)n−qdu, (1)

where αK is the radial Gauss map.
By (1), they also gave the following special cases:

Ṽp,q(K,Q,K) = Vp(K,Q), (2)

Ṽp,n(K,Q,L) = Vp(K,Q). (3)

Using the (p, q)-mixed volumes, Feng and He ([3]) introduced the concept of (p, q)-mixed geominimal
surface areas as follows:
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Definition 1.3. For p, q ∈ R, K ∈ Kn
o and L ∈ Sn

o , the (p, q)-mixed geominimal surface area, G̃p,q(K,L), of K and L
is defined by

ω
p
n
n G̃p,q(K,L) = inf{nṼp,q(K,Q,L)V(Q∗)

p
n : Q ∈ Kn

o }. (4)

If L = K or q = n in (4), then from (2) or (3) we see that the definition is just Lutwak’s Lp geominimal surface
area for p ≥ 1 (see [17]). For the studies of Lp geominimal surface areas, some results have been obtained in
these articles (see e.g., [2, 4, 12, 21, 22, 25, 27–30, 37–39]).

In this paper, associated with the (p, q)-mixed geominimal surface areas, we sequentially research the
Lp radial Blaschke-Minkowski homomorphisms. Firstly, we establish the following two related Brunn-
Minkowski type inequalities.
Theorem 1.1. For K ∈ Kn

o and L1,L2 ∈ S
n
o , let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism.

If 0 < n − q < p, then

G̃p,q(K,Ψp(L1+̂pL2))
p

n−q ≥ G̃p,q(K,ΨpL1)
p

n−q + G̃p,q(K,ΨpL2)
p

n−q , (5)

with equality if and only if L1 and L2 are dilates. Here +̂p denotes the Lp-radial Blaschke addition.
Theorem 1.2. For K ∈ Kn

o and L1,L2 ∈ S
n
o , let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism.

If 0 < p < n and 0 < (n − p)(n − q) < p(n + p), then

G̃p,q(K,Ψp(L1 ∓p L2))
p(n+p)

(n−p)(n−q)

V(L1 ∓p L2)
≥

G̃p,q(K,ΨpL1)
p(n+p)

(n−p)(n−q)

V(L1)
+

G̃p,q(K,ΨpL2)
p(n+p)

(n−p)(n−q)

V(L2)
, (6)

with equality if and only if L1 and L2 are dilates. Here ∓p denotes the Lp-harmonic Blaschke addition.
Then, we give a cyclic inequality for Lp radial Blaschke-Minkowski homomorphisms as follows:

Theorem 1.3. Let Ψp : Sn
o → S

n
o be an Lp radial Blaschke-Minkowski homomorphism. If K ∈ Kn

o , L ∈ Sn
o and

1 ≤ r < s < t, then

G̃p,s(K,ΨsL)t−r
≤ G̃p,r(K,ΨrL)t−sG̃p,t(K,ΨtL)s−r, (7)

with equality if and only if ΨrL, ΨsL and ΨtL are dilates each other.
Finally, together with the Lp radial Blaschke-Minkowski homomorphisms, we obtain two monotonic

inequalities for the (p, q)-mixed geominimal surface areas.
Theorem 1.4. Let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism. For K ∈ Kn

o , L1,L2 ∈ S
n
o

and 0 < q < n, if L1 ⊆ L2, then

G̃p,q(K,ΨpL1) ≤ G̃p,q(K,ΨpL2), (8)

equality holds when L1 = L2.
Theorem 1.5. Let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism. For K,L1,L2 ∈ K

n
o and

0 < q < n, if L1 ⊆ L2, then

G̃p,q(K,Ψ∗pL1) ≥ G̃p,q(K,Ψ∗pL2), (9)

equality holds when L1 = L2. Here Ψ∗p denotes the polar of Lp radial Blaschke-Minkowski homomorphisms.

2. Preliminaries

Our work belongs to the new and developed rapidly dual Brunn-Minkowski theory, we collect some
interrelated backgrounds and notations.

For K ∈ Kn, then the support function of K, hK = h(K, ·) : Rn
→ R, is defined by (see [8])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,
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where x · y denotes the standard inner product of x and y in Rn.
If K is a compact star-shaped (about the origin) in Rn, its radial function of K, ρK = ρ(K, ·) : Rn

\ {0} →
[0,+∞), is given by (see [19])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn
\ {0}.

If ρK is positive and continuous, K will be called a star body (with respect to the origin). Two star bodies K
and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent of any u ∈ Sn−1.

If E is a nonempty subset in Rn, then the polar set, E∗, of E is defined by (see [8, 19])

E∗ = {x ∈ Rn : x · y ≤ 1, y ∈ E}.

Meanwhile, it is easy to get that (K∗)∗ = K for all K ∈ Kn
o .

From the above definitions, we know that if K ∈ Kn
o , then (see [8, 19])

h(K∗, ·) =
1

ρ(K, ·)
, ρ(K∗, ·) =

1
h(K, ·)

. (10)

Associated with (10), if K,L ∈ Kn
o and K ⊆ L, then K∗ ⊇ L∗.

For K,L ∈ Sn
o , p > 0 and λ, µ ≥ 0 (not both zero), the Lp-radial Minkowski combination, λK+̃pµL, of K

and L is given by (see [9])

ρ(λK+̃pµL, ·)p = λρ(K, ·)p + µρ(L, ·)p, (11)

where λK denotes the Lp-radial Minkowski scalar multiplication. When p = 1, it is just the classical
counterpart.

For K,L ∈ Sn
o , n > p > 0 and λ, µ ≥ 0 (not both zero), the Lp-radial Blaschke combination, λ ◦ K+̂pµ ◦ L,

of K and L is given by (see [9])

ρ(λ ◦ K+̂pµ ◦ L, ·)n−p = λρ(K, ·)n−p + µρ(L, ·)n−p, (12)

where +̂p denotes the Lp-radial Blaschke addition, λ◦K denotes the Lp-radial Blaschke scalar multiplication

and λ ◦K = λ
1

n−p K. When λ = µ = 1, K+̂pL is called Lp-radial Blaschke sum. When p = 1, it’s the classic case.
From the definitions of above two combinations, we easily see

λK+̃n−pµL = λ ◦ K+̂pµ ◦ L. (13)

For K,L ∈ Sn
o , p > 0 andλ, µ ≥ 0 (not both zero), the Lp-harmonic Blaschke combination, λ∗K∓pµ∗L ∈ Sn

o ,
of K and L is defined by (see [15])

ρ(λ ∗ K ∓p µ ∗ L, ·)n+p

V(λ ∗ K ∓p µ ∗ L)
= λ

ρ(K, ·)n+p

V(K)
+ µ

ρ(L, ·)n+p

V(L)
, (14)

where the operation ‘∓p’ is called Lp-harmonic Blaschke addition, λ ∗K denotes Lp-harmonic Blaschke scalar

multiplication and λ ∗ K = λ
1
p K. When λ = µ = 1, K ∓p L is called Lp-harmonic Blaschke sum.

3. Proofs of Theorems

In this section, we will prove Theorems 1.1-1.5. To complete the proof of Theorem 1.1, we require the
following lemma.
Lemma 3.1. Let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism. For K ∈ Kn

o and L1,L2 ∈ S
n
o ,

if 0 < n − q < p, then

Ṽp,q(K,Q,Ψp(L1+̂pL2))
p

n−q ≥ Ṽp,q(K,Q,ΨpL1)
p

n−q + Ṽp,q(K,Q,ΨpL2)
p

n−q , (15)
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with equality if and only if L1 and L2 are dilates.
Proof. Since 0 < n − q < p, thus 0 < n−q

p < 1. From the definition of Lp radial Blaschke-Minkowski
homomorphism and definition (1), according to the Minkowski’s integral inequality (see [16]), we get that
for any Q ∈ Kn

o ,

Ṽp,q(K,Q,Ψp(L1+̂pL2))
p

n−q =
[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(Ψp(L1+̂pL2),u)n−qdu
] p

n−q

=
[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)
(
ρ(ΨpL1+̃pΨpL2,u)p

) n−q
p

du
] p

n−q

=
[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)
(
ρ(ΨpL1,u)p + ρ(ΨpL2,u)p

) n−q
p

du
] p

n−q

≥

[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(ΨpL1,u)n−qdu
] p

n−q

+
[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(ΨpL2,u)n−qdu
] p

n−q

= Ṽp,q(K,Q,ΨpL1)
p

n−q + Ṽp,q(K,Q,ΨpL2)
p

n−q .

This yields inequality (15).
By the equality condition of the Minkowski’s integral inequality, we see that equality holds in (15) if

and only if L1 and L2 are dilates. �
Proof of Theorem 1.1. For K ∈ Kn

o , L1,L2 ∈ S
n
o and 0 < n − q < p, then by (4) and (15), we have[

ω
p
n
n G̃p,q(K,Ψp(L1+̂pL2))

] p
n−q

=
[

inf
{
nṼp,q(K,Q,Ψp(L1+̂pL2))V(Q∗)

p
n : Q ∈ Kn

o

}] p
n−q

≥

[
inf

{
nṼp,q(K,Q,ΨpL1)V(Q∗)

p
n : Q ∈ Kn

o

}] p
n−q

+
[

inf
{
nṼp,q(K,Q,ΨpL2)V(Q∗)

p
n : Q ∈ Kn

o

}] p
n−q

=
[
ω

p
n
n G̃p,q(K,ΨpL1)

] p
n−q

+
[
ω

p
n
n G̃p,q(K,ΨpL2)

] p
n−q

,

i.e.,

G̃p,q(K,Ψp(L1+̂pL2))
p

n−q ≥ G̃p,q(K,ΨpL1)
p

n−q + G̃p,q(K,ΨpL2)
p

n−q ,

This gives inequality (5).
According to the equality condition of inequality (15), we see that the equality holds in (5) if and only if

L1 and L2 are dilates. �
Notice thatλK+̃n−pµL = λ◦K+̂pµ◦L (see(13)), we obtain a Brunn-Minkowski inequality for the Ln−p-radial

Minkowski combination.
Corollary 3.1. For K ∈ Kn

o and L1,L2 ∈ S
n
o , let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism.

If 0 < n − q < p, then

G̃p,q(K,Ψp(L1+̃n−pL2))
p

n−q ≥ G̃p,q(K,ΨpL1)
p

n−q + G̃p,q(K,ΨpL2)
p

n−q ,

with equality if and only if L1 and L2 are dilates.
Because of the Lp intersection body is a special example of the Lp radial Blaschke-Minkowski homomor-

phisms, from Theorem 1.1 we obtain the following result:
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Corollary 3.2. For K ∈ Kn
o , L1,L2 ∈ S

n
o and 0 < n − q < p, then

G̃p,q(K, Ip(L1+̂pL2))
p

n−q ≥ G̃p,q(K, IpL1)
p

n−q + G̃p,q(K, IpL2)
p

n−q ,

with equality if and only if L1 and L2 are dilates.

Lemma 3.2 ([24]). A map Ψp : Sn
o → S

n
o be an Lp radial Blaschke-Minkowski homomorphism if and only if there is

a non-negative measure µ ∈ M(Sn−1, ê) such that

ρ(ΨpK, ·)p = ρ(K, ·)n−p
∗ µ. (16)

From (16), we easily know that ΨpK = ΨpL if and only if K = L.

Lemma 3.3. If K,L ∈ Sn
o , 0 < p < n, then for any u ∈ Sn−1,

ρ(Ψp(K ∓p L),u)
p(n+p)

n−p

V(K ∓p L)
≥
ρ(ΨpK,u)

p(n+p)
n−p

V(K)
+
ρ(ΨpL,u)

p(n+p)
n−p

V(L)
, (17)

with equality if and only if K and L are dilates.

Proof. Because of 0 < p < n implies 0 < n−p
n+p < 1, thus by (16) and the Minkowski’s integral inequality

(see [16]), we have for any u ∈ Sn−1,

ρ(Ψp(K ∓p L),u)
p(n+p)

n−p

V(K ∓p L)
=

[
ρ(Ψp(K ∓p L),u)p

] n+p
n−p

V(K ∓p L)
=

[
ρ(K ∓p L,u)n−p

∗ µ
] n+p

n−p

V(K ∓p L)

=
[(ρ(K ∓p L,u)n+p

V(K ∓p L)

) n−p
n+p

∗ µ
] n+p

n−p

=
[(ρ(K,u)n+p

V(K)
+
ρ(L,u)n+p

V(L)

) n−p
n+p

∗ µ
] n+p

n−p

≥

[ρ(K,u)n−p
∗ µ

V(K)
n−p
n+p

] n+p
n−p

+
[ρ(L,u)n−p

∗ µ

V(L)
n−p
n+p

] n+p
n−p

=
ρ(ΨpK,u)

p(n+p)
n−p

V(K)
+
ρ(ΨpL,u)

p(n+p)
n−p

V(L)
.

This deduces inequality (17).
From the equality condition of the Minkowski’s integral inequality, we know that equality holds in (17)

if and only if K and L are dilates. �

Lemma 3.4. For K ∈ Kn
o and L1,L2 ∈ S

n
o . If 0 < p < n and 0 < (n − p)(n − q) < p(n + p), then

Ṽp,q(K,Q,Ψp(L1 ∓p L2))
p(n+p)

(n−p)(n−q)

V(L1 ∓p L2)
≥

Ṽp,q(K,Q,ΨpL1)
p(n+p)

(n−p)(n−q)

V(L1)
+

Ṽp,q(K,Q,ΨpL2)
p(n+p)

(n−p)(n−q)

V(L2)
, (18)

with equality if and only if L1 and L2 are dilates.

Proof. Since 0 < p < n and 0 < (n − p)(n − q) < p(n + p), thus 0 < (n−p)(n−q)
p(n+p) < 1. Using definition (1),
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inequality (17) and the Minkowski’s integral inequality (see [16]), we have for any Q ∈ Kn
o ,

Ṽp,q(K,Q,Ψp(L1 ∓p L2))
p(n+p)

(n−p)(n−q)

V(L1 ∓p L2)
=

[
1
n

∫
Sn−1 ( hQ

hK
)p(αK(u))ρq

K(u)ρ(Ψp(L1 ∓p L2),u)n−qdu
] p(n+p)

(n−p)(n−q)

V(L1 ∓p L2)

=
[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)
(ρ(Ψp(L1 ∓p L2),u)

p(n+p)
n−p

V(L1 ∓p L2)

) (n−p)(n−q)
p(n+p)

du
] p(n+p)

(n−p)(n−q)

≥

[1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)
(ρ(ΨpL1,u)

p(n+p)
n−p

V(L1)
+
ρ(ΨpL2,u)

p(n+p)
n−p

V(L2)

) (n−p)(n−q)
p(n+p)

du
] p(n+p)

(n−p)(n−q)

≥

[
1
n

∫
Sn−1 ( hQ

hK
)p(αK(u))ρq

K(u)ρ(ΨpL1,u)n−qdu
] p(n+p)

(n−p)(n−q)

V(L1)

+

[
1
n

∫
Sn−1 ( hQ

hK
)p(αK(u))ρq

K(u)ρ(ΨpL2,u)n−qdu
] p(n+p)

(n−p)(n−q)

V(L2)

=
Ṽp,q(K,Q,ΨpL1)

p(n+p)
(n−p)(n−q)

V(L1)
+

Ṽp,q(K,Q,ΨpL2)
p(n+p)

(n−p)(n−q)

V(L2)
.

From this, inequality (18) is obtained.
By the equality conditions of inequality (17) and the Minkowski integral inequality, we see that equality

holds in (18) if and only if L1 and L2 are dilates. �

Proof of Theorem 1.2. From 0 < p < n and 0 < (n − p)(n − q) < p(n + p), we know that 0 < (n−p)(n−q)
p(n+p) < 1.

Thus by (4) and (18) we obtain that[
ω

p
n
n G̃p,q(K,Ψp(L1 ∓p L2))

] p(n+p)
(n−p)(n−q)

V(L1 ∓p L2)

=

[
inf

{
nṼp,q(K,Q,Ψp(L1 ∓p L2))V(Q∗)

p
n : Q ∈ Kn

o

}] p(n+p)
(n−p)(n−q)

V(L1 ∓p L2)

≥ inf
{[ [nṼp,q(K,Q,ΨpL1)]

p(n+p)
(n−p)(n−q)

V(L1)
+

[nṼp,q(K,Q,ΨpL2)]
p(n+p)

(n−p)(n−q)

V(L2)

]
V(Q∗)

p2(n+p)
n(n−p)(n−q) : Q ∈ Kn

o

}

≥

[
inf{nṼp,q(K,Q,ΨpL1)V(Q∗)

p
n : Q ∈ Kn

o }

] p(n+p)
(n−p)(n−q)

V(L1)

+

[
inf{nṼp,q(K,Q,ΨpL2)V(Q∗)

p
n : Q ∈ Kn

o }

] p(n+p)
(n−p)(n−q)

V(L2)

=

[
ω

p
n
n G̃p,q(K,ΨpL1)

] p(n+p)
(n−p)(n−q)

V(L1)
+

[
ω

p
n
n G̃p,q(K,ΨpL2)

] p(n+p)
(n−p)(n−q)

V(L2)
.

This gives inequality (6). In addition, equality holds in inequality (6) if and only if L1 and L2 are dilates.
�
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Together with Lp intersection bodies, we immediately have another Brunn-Minkowski type inequality.
Corollary 3.3. For K ∈ Kn

o and L1,L2 ∈ S
n
o . If 0 < p < n and 0 < (n − p)(n − q) < p(n + p), then

G̃p,q(K, Ip(L1 ∓p L2))
p(n+p)

(n−p)(n−q)

V(L1 ∓p L2)
≥

G̃p,q(K, IpL1)
p(n+p)

(n−p)(n−q)

V(L1)
+

G̃p,q(K, IpL2)
p(n+p)

(n−p)(n−q)

V(L2)
,

with equality if and only if L1 and L2 are dilates.
Lemma 3.5. Let Ψp : Sn

o → S
n
o be an Lp radial Blaschke-Minkowski homomorphism. If K ∈ Kn

o , L ∈ Sn
o and

1 ≤ r < s < t, then

Ṽp,s(K,Q,ΨsL)t−r
≤ Ṽp,r(K,Q,ΨrL)t−sṼp,t(K,Q,ΨtL)s−r, (19)

with equality if and only if ΨrL, ΨsL and ΨtL are dilates each other.
Proof. Since 1 ≤ r < s < t and ΨrL,ΨtL ∈ Sn

o , there exists ΨsL ∈ Sn
o such that

ρ(ΨsL,u)(n−s)(t−r) = ρ(ΨrL,u)(n−r)(t−s)ρ(ΨtL,u)(n−t)(s−r). (20)

Notice that t−r
t−s > 1, according to the Hölder’s integral inequality (see [8]), (1) and (20), we arrive at

Ṽp,r(K,Q,ΨrL)
t−s
t−r Ṽp,t(K,Q,ΨtL)

s−r
t−r =

[1
n

∫
Sn−1

(
((

hQ

hK
)p(αK(u))ρr

K(u)ρ(ΨrL,u)n−r)
t−s
t−r

) t−r
t−s

du
] t−s

t−r

·

[1
n

∫
Sn−1

(
((

hQ

hK
)p(αK(u))ρt

K(u)ρ(ΨtL,u)n−t)
s−r
t−r

) t−r
s−r

du
] s−r

t−r

≥
1
n

∫
Sn−1

(
(
hQ

hK
)p(αK(u))ρr

K(u)ρ(ΨrL,u)n−r
) t−s

t−r

·

(
(
hQ

hK
)p(αK(u))ρt

K(u)ρ(ΨtL,u)n−t
) s−r

t−r

du

= Ṽp,s(K,Q,ΨsL).

This yields inequality (19).
From the equality condition of Hölder’s integral inequality, we know that equality holds in (19) if and

only if ΨrL, ΨsL and ΨtL are dilates each other. �
Proof of Theorem 1.3. Since 1 ≤ r < s < t, hence by (4) and (19), we obtain[
ω

p
n
n G̃p,r(K,ΨrL)

]t−s[
ω

p
n
n G̃p,t(K,ΨtL)

]s−r

=
[

inf
{
nṼp,r(K,Q,ΨrL)V(Q∗)

p
n : Q ∈ Kn

o

}]t−s

·

[
inf

{
nṼp,t(K,Q,ΨtL)V(Q∗)

p
n : Q ∈ Kn

o

}]s−r

≥

[
inf

{
nṼp,s(K,Q,ΨsL)V(Q∗)

p
n : Q ∈ Kn

o

}]t−r

=
[
ω

p
n
n G̃p,s(K,ΨsL)

]t−r

.

This gives

G̃p,s(K,ΨsL)t−r
≤ G̃p,r(K,ΨrL)t−sG̃p,t(K,ΨtL)s−r.

This deduces (7).
According to the equality condition of inequality (19), we see that the equality of the above inequality

holds if and only if ΨrL, ΨsL and ΨtL are dilates each other. �
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According to Theorem 1.3, we may obtain a related cyclic inequality for Lp intersection bodies.
Corollary 3.4. If K ∈ Kn

o , L ∈ Sn
o and 1 ≤ r < s < t, then

G̃p,s(K, IsL)t−r
≤ G̃p,r(K, IrL)t−sG̃p,t(K, ItL)s−r,

with equality if and only if IrL, IsL and ItL are dilates each other.
Proof of Theorem 1.4. For K ∈ Kn

o , L1,L2 ∈ S
n
o and 0 < q < n. From (16), then

L1 ⊆ L2 ⇐⇒ ΨpL1 ⊆ ΨpL2. (21)

This means

ρ(ΨpL1, ·) ≤ ρ(ΨpL2, ·). (22)

Thus, together with (1) and (22), we obtain that

Ṽp,q(K,Q,ΨpL1) =
1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(ΨpL1,u)n−qdu

≤
1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(ΨpL2,u)n−qdu

= Ṽp,q(K,Q,ΨpL2).

(23)

And equality holds in (23) if and only if L1 = L2.
Therefore, from definition (4) and (23), we get

ω
p
n
n G̃p,q(K,ΨpL1) = inf

{
nṼp,q(K,Q,ΨpL1)V(Q∗)

p
n : Q ∈ Kn

o

}
≤ inf

{
nṼp,q(K,Q,ΨpL2)V(Q∗)

p
n : Q ∈ Kn

o

}
= ω

p
n
n G̃p,q(K,ΨpL2),

i.e.,

G̃p,q(K,ΨpL1) ≤ G̃p,q(K,ΨpL2).

This yields inequality (8).
By the equality condition of inequality (23), there exists equality in (8) when L1 = L2. �
Associated with the Lp intersection bodies, we have the following inequality.

Corollary 3.5. For K ∈ Kn
o , L1,L2 ∈ S

n
o and 0 < q < n, if L1 ⊆ L2, then

G̃p,q(K, IpL1) ≤ G̃p,q(K, IpL2),

equality holds when L1 = L2.
Proof of Theorem 1.5. For K,L1,L2 ∈ K

n
o , L1 ⊆ L2 and 0 < q < n. Using (21), we get that

h(ΨpL1, ·) ≤ h(ΨpL2, ·), (24)

with equality if and only if L1 = L2.
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Combined with (10), (1) and inequality (24), we have

Ṽp,q(K,Q,Ψ∗pL1) =
1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(Ψ∗pL1,u)n−qdu

=
1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)h(ΨpL1,u)−(n−q)du

≥
1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)h(ΨpL2,u)−(n−q)du

=
1
n

∫
Sn−1

(
hQ

hK
)p(αK(u))ρq

K(u)ρ(Ψ∗pL2,u)n−qdu

= Ṽp,q(K,Q,Ψ∗pL2),

i.e.,

Ṽp,q(K,Q,Ψ∗pL1) ≥ Ṽp,q(K,Q,Ψ∗pL2). (25)

According to the equality condition of inequality (24), we know that equality holds in (25) if and only if
L1 = L2.

By (4) and (25), similar to the proof of Theorem 1.4, we obtain

G̃p,q(K,Ψ∗pL1) ≥ G̃p,q(K,Ψ∗pL2).

This yields (9).
From the equality condition of inequality (24) and (25), we see that equality holds in (9) when L1 = L2. �
From Theorem 1.5, we may obtain another monotonic inequality for Lp intersection bodies.

Corollary 3.6. For K,L1,L2 ∈ K
n
o and 0 < q < n, if L1 ⊆ L2, then

G̃p,q(K, I∗pL1) ≥ G̃p,q(K, I∗pL2),

equality holds when L1 = L2.
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