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Abstract. The main object of this paper is to construct a new Durrmeyer variant of the λ-Bernstein type
operators which have better features than the classical one. Some results concerning the rate of convergence
in terms of the first and second moduli of continuity and asymptotic formulas of these operators are given.
Moreover, we define a bivariate case of these operators and investigate the approximation degree by means
of the total and partial modulus of continuity and the Peetre’s K-functional. A Voronovskaja type asymptotic
and Grüss-Voronovskaja theorem for the bivariate operators is also proven. Further, we introduce the
associated GBS (Generalized Boolean Sum) operators and determine the order of convergence with the aid
of the mixed modulus of smoothness for the Bögel continuous and Bögel differentiable functions. Finally
the theoretical results are analyzed by numerical examples.

1. Introduction

In 1912, Bernstein defined his polynomials in order to prove Weierstrass’s fundamental theorem. Bern-
stein polynomials attracted the most interest because of their remarkable and notable approximation prop-
erties. For more details we refer the readers to the excellent recent monographs e.g. [10], [19] and [23]. For
Bernstein operators, the order of approximation has been studied in great detail for a long time, starting
with the pioneer works of Popoviciu, Lorentz and Sikkema. In order to study the order of approximation,
a new technique was introduced by Esser [16]. He gave the convergence estimates using the second order
modulus of continuity. Different types of Bernstein operators, their combinations and generalizations were
studied over the time, underlining the importance and usefulness of these famous operators.

For f ∈ C(I), the space of continuous functions on I = [0, 1] endowed with the sup-norm, Cai et al. [12]
introduced a new Bernstein type operator depending on the parameter λ ∈ [−1, 1]

Bn,λ( f ; x) =

n∑
k=0

b̃n,k(λ; x) f
(

k
n

)
, (1)
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where b̃n,k are defined as follows:
b̃n,0(λ; x) = bn,0(x) − λ

n+1 bn+1,1(x),

b̃n,i(λ; x) = bn,i(x) + λ
(

n−2i+1
n2−1 bn+1,i(x) − n−2i−1

n2−1 bn+1,i+1(x)
)
, 1 ≤ i ≤ n − 1,

b̃n,n(λ; x) = bn,n(x) − λ
n+1 bn+1,n(x),

(2)

and 0 ≤ x ≤ 1. In [27], Ye et al. introduced these new Bernstein-Bézier bases
{
b̃n,k

}
, k = 0, 1, . . . ,n, in order

to obtain more flexibility by adding the shape parameter λ. Note that for λ = 0, we retrieve the Bernstein
basis polynomials.

In this article, for f ∈ C[0, 1], we treat a Durrmeyer variant of the operators (1):

Dn,λ( f ; x) = (n + 1)
n∑

k=0

b̃n,k(λ; x)
∫ 1

0
bn,k(t) f (t)dt, 0 ≤ x ≤ 1. (3)

In particular when λ = 0, these operators include the classical Durrmeyer operators defined by

Dn( f ; x) = (n + 1)
n∑

k=0

bn,k(x)
∫ 1

0
bn,k(t) f (t)dt.

This new basis was used in order to construct a generalization of the λ-Bernstein operators namely Uρ
n

operators in [2]. For some other significant papers dealing with Durrmeyer operaotrs, we refer to [18, 20].
The goal of the present paper is to study the local and global approximation properties of the λ-

Durrmeyer-Bernstein type operators for functions of one and two variables. We start with the values of
the moments and central moments of the operators. Then, we present some Voronovskaja type asymptotic
theorems and estimates of the rate of convergence in terms of the first and second moduli of continuity.
We present some graphs and numerical examples to show the convergence of the operators to the initial
function. Next, we define a bivariate case of these operators and investigate the degree of approximation
by means of the total and partial modulii of continuity, the Peetre’s K-functional and the Voronovskaja type
theorem. Further, we introduce the associated GBS operators and determine the order of convergence of
these operators with the aid of mixed modulus of smoothness. Finally, we show that the GBS operators
yield a better rate of convergence than the bivariate operators for a certain function by illustrative graphics
and a table.

2. Basic approximation properties

The following formulas for the initial moments and the central moments are easily derived by direct
computations.

Lemma 2.1. The λ-Durrmeyer operators (3) verify

i) Dn,λ(e0; x) = 1;

ii) Dn,λ(e1; x) = x +
1 − 2x
n + 2

+
−2x + 1 + xn+1

− (1 − x)n+1

(n + 2)(n − 1)
λ;

iii) Dn,λ(e2; x) = x2
−

2(3nx2
−2nx+3x2

−1)
(n + 3)(n + 2)

+
2λ(−2nx2+xn+1n+xn+2xn+1

−(1−x)n+1
−3x+1)

(n + 3)(n + 2)(n − 1)
;

iv) Dn,λ(e3; x) =
1

(n + 4)(n + 3)(n + 2)

{
n3x3

− 3n2x3 + 9n2x2 + 2nx3
− 9nx2 + 18nx + 6

}
+

3λ
(n + 4)(n + 3)(n + 2)(n − 1)

{
−2n2x3 + n2x2 + 2nx3 + xn+1n2

− 11nx2 + 5xn+1n

+4xn + 6xn+1
− 2(1 − x)n+1

− 8x + 2
}
;
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v) Dn,λ(e4; x) =
1

(n + 5)(n + 4)(n + 3)(n + 2)

{
n4x4

− 6n3x4 + 16n3x3 + 11n2x4
− 48n2x3

−6nx4 + 72n2x2 + 32nx3
− 72nx2 + 96nx + 24

}
+

4λ
(n + 5)(n + 4)(n + 3)(n + 2)(n − 1){

−2n3x4 + n3x3 + 6n2x4
− 24n2x3

− 4x4n + xn+1n3 + 9n2x2 + 23nx3 + 9xn+1n2

−63nx2 + 26xn+1n + 18nx + 24xn+1
− 6(1 − x)n+1

− 30x + 6
}
.

We denote by Ωn,k(x, λ) = Dn,λ((t − x)k; x), k ≥ 1, the k-th order central moment.

Lemma 2.2. The central moments for the λ-Durrmeyer operators (3) are:

i) Ωn,1(x, λ) =
1 − 2x
n + 2

+
1 − 2x + xn+1

− (1 − x)n+1

(n + 2)(n − 1)
λ;

ii) Ωn,2(x, λ) =
−2(nx2

− nx − 3x2 + 3x − 1)
(n + 3)(n + 2)

+
λ

(n + 3)(n + 2)(n − 1)

{
2(1 − x)n+1nx

−2xn+2n + 6(1 − x)n+1x + 2xn+1n + 12x2
− 6xn+2

− 2(1 − x)n+1 + 4xn+1
− 12x + 2

}
.

Lemma 2.3. The following statements hold:

i) lim
n→∞

nΩn,1(x, λ) = 1 − 2x;

ii) lim
n→∞

nΩn,2(x, λ) = 2x(1 − x);

iii) lim
n→∞

n2Ωn,4(x, λ) = 12x2(1 − x)2;

iv) lim
n→∞

n3Ωn,6(x, λ) = 120x3(1 − x)3.

For a detailed study on the moments of various linear positive operators and their approximation properties
one can see [21].

Theorem 2.4. The sequence {Dn,λ}n≥1 converges to f , uniformly on I, for any f ∈ C(I) and λ ∈ [−1, 1].

Proof. The proof of this theorem is based on the previous lemmas and the well known Bohman-Korovkin
theorem.

The expressions of central moments lead us to the fact that, for λ ∈ [−1, 1] and n ≥ 2, we have the
following upper bounds:

Lemma 2.5. The following inequalities yield:

i) |Ωn,1(x, λ)| ≤ µn,λ

ii) Ωn,2(x, λ) ≤ δn,λ,

where

µn,λ =
1

n + 2
+

|λ|
(n − 1)(n + 2)

, δn,λ =
n + 5

2(n + 2)(n + 3)
+ |λ|

(n + 24)
2(n + 2)(n + 3)(n − 1)

. (4)

We estimate the rate of convergence by using the usual moduli of continuities ω1( f ; δ) and ω2( f ; δ) and also
the general modulus of second order ω∗2( f ; δ) introduced by Păltănea in [25]:

ω∗2( f ; δ) := sup{|∆( f ; u, y, v)|,u, v ∈ [0, 1],u , v,u ≤ y ≤ v, y − u ≤ δ, v − y ≤ δ},

where
∆( f ; u, y, v) :=

v − y
v − u

f (u) +
y − u
v − u

f (v) − f (y)

and f is any real valued functions. The following results are obtained using the general arguments from
[3] and [25].
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Theorem 2.6. If f ∈ C(I), λ ∈ [−1, 1] and δ > 0, then for all x ∈ I it follows that

i) ||Dn,λ
(

f
)
− f || ≤

(
1 + δ−1

√
δn,λ

)
ω1( f ; δ),

On the other hand, if 0 < δ ≤
1
2
, x ∈ I, we have

ii) ||Dn,λ
(

f
)
− f || ≤ µn,λδ−1ω1( f ; δ) +

(
1 +

1
2
δ−2δn,λ

)
ω2( f ; δ),

iii) ||Dn,λ
(

f
)
− f || ≤ µn,λδ−1ω1( f ; δ) +

(
1 + δ−2δn,λ

)
ω∗2( f ; δ).

Proof. Using ([3], Theorem 5.1.2), ([25], Corollary 2.2.1) for s = 2 and ([25], Theorem 2.2.3) for s = 2, we
obtain the desired results.

Theorem 2.7. If f is differentiable on I with f ′ bounded on I, λ ∈ [−1, 1] and δ > 0, then for all x ∈ I

||Dn,λ
(

f
)
− f || ≤ µn,λ|| f ′|| +

(
δ
4

+ δ−1δn,λ

)
ω1( f ′; δ).

Proof. Using ([25], Theorem 2.3.8) for r = 2 and Lemma 2.5, we get the desired result.

Corollary 2.8. For f ∈ C(I), λ ∈ [−1, 1] and x ∈ I, it follows that

i) ||Dn,λ
(

f
)
− f || ≤ 2ω1

(
f ;

√
δn,λ

)
.

Moreover, if f is differentiable on I with f ′ bounded on I, then we have

ii) ||Dn,λ
(

f
)
− f || ≤ µn,λ|| f ′|| +

5
4

√
δn,λ · ω1

(
f ′;

√
δn,λ

)
.

Proof. In Theorem 2.6 and Theorem 2.7, we consider δ =
√
δn,λ.

3. Voronovskaja Type Theorems

In the following, using Ditzian-Totik modulus of smoothness, we prove a quantitative Voronovskaja
type theorem for the operators Dn,λ.
For a function h ∈ C(I), the first order Ditzian-Totik moduls of smoothness is defined by

ωϕ1 (h; δ) = sup
h∈(0,δ]

sup
x± h

2φ(x)∈I

| f (x +
h
2
φ(x)) − f (x −

h
2
φ(x))|,

where φ(x) is an admissible weight function. The associated K-functional is given by

Kφ(h; δ) = inf
1∈Wφ(I)

{‖h − 1‖ + δ‖φ1′‖}, δ > 0,

where Wφ(I) = {1 : 1 ∈ ACloc(I), ‖φ1′‖ < ∞} and ACloc(I) denotes the space of absolutely continuous functions
on every interval [a, b] ⊂ (0, 1). It is well known [14] that there holds the following relation

Kφ(h; δ) ≤ Cωϕ1 (h; δ),

where C is some positive constant.
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Theorem 3.1. For any f ∈ C2(I) and n sufficiently large the following inequality holds∣∣∣Dn,λ( f ; x) − f (x) − An(x;λ) f ′(x) − Bn(x;λ) f ′′(x)
∣∣∣ ≤ 1

n
Cϕ2(x)ωϕ1

(
f ′′,n−1/2

)
,

where

An(x;λ) =
1 − 2x
n + 2

+
1 − 2x + xn+1

− (1 − x)n+1

(n + 2)(n − 1)
λ;

Bn(x;λ) =
−(nx2

− nx − 3x2 + 3x − 1)
(n + 3)(n + 2)

+
λ

(n + 3)(n + 2)(n − 1)

{
(1 − x)n+1nx − xn+2n

+3(1 − x)n+1x + xn+1n + 6x2
− 3xn+2

− (1 − x)n+1 + 2xn+1
− 6x + 1

}
,

φ(x) =
√

x(1 − x) and C is a positive constant.

Proof. For f ∈ C2(I), t, x ∈ I, by Taylor’s expansion, we have

f (t) − f (x) = (t − x) f ′(x) +

∫ t

x
(t − y) f ′′(y)dy.

Therefore,

f (t) − f (x) − (t − x) f ′(x) −
1
2

(t − x)2 f ′′(x) =

∫ t

x
(t − y) f ′′(y)dy −

∫ t

x
(t − y) f ′′(x)dy

=

∫ t

x
(t − y)[ f ′′(y) − f ′′(x)]dy.

Applying Dn,λ(·; x) to both sides of the above relation and using the estimate of the quantity

∣∣∣∣∣∣
∫ t

x

∣∣∣ f ′′(y) − f ′′(x)
∣∣∣ |t − y|du

∣∣∣∣∣∣
as in ([17], p. 337)∣∣∣∣∣∣

∫ t

x
| f ′′(y) − f ′′(x)||t − y|dy

∣∣∣∣∣∣ ≤ 2‖ f ′′ − 1‖(t − x)2 + 2‖ϕ1′‖ϕ−1(x)|t − x|3,

where 1 ∈Wϕ(I) and using Lemma 2.3 it follows that there exists a constant C > 0 such that for n sufficiently
large

Ωn,2(x, λ) ≤
C
2n
ϕ2(x) and Ωn,4(x, λ) ≤

C
12n2ϕ

4(x). (5)

Applying the Cauchy-Schwarz inequality, we get∣∣∣Dn,λ( f ; x) − f (x) − An(x;λ) f ′(x) − Bn(x;λ) f ′′(x)
∣∣∣

≤ 2‖ f ′′ − 1‖Ωn,2(x, λ) + 2‖ϕ1′‖ϕ−1(x)Dn,λ(|t − x|3; x)

≤
C
n
ϕ2(x)‖ f ′′ − 1‖ + 2‖ϕ1′‖ϕ−1(x)

{
Ωn,2(x, λ)

}1/2 {
Ωn,4(x, λ)

}1/2

≤
C
n
ϕ2(x)‖ f ′′ − 1‖ + ϕ2(x)

C
n
√

n
‖ϕ1′‖ ≤

C
n
ϕ2(x)

{
‖ f ′′ − 1‖ + n−1/2

‖ϕ1′‖
}
.

The theorem is proved by taking the infimum on the right hand side of the above relation over all 1 ∈
Wϕ[0, 1].

Corollary 3.2. If f ∈ C2(I) and An(x;λ) and Bn(x;λ) are defined as in Theorem 3.1, then

lim
n→∞

n
{
Dn,λ( f ; x) − f (x) − An(x;λ) f ′(x) − Bn(x;λ) f ′′(x)

}
= 0.
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4. Numerical Results

In the following we explain the convergence of λ-Durrmeyer operators by graphical examples. Let us
denote by En,λ( f ; x) =

∣∣∣ f (x) −Dn,λ( f ; x)
∣∣∣, the error function of λ-Durrmeyer operators.

Let f (x) =
(
x − 3

8

)
sin(2πx). The graphs of Dn,1( f ; x) with different values of n are given in Figure 1. The

errors of the approximation of Dn,1( f ; x) to f (x) are shown in Figure 2.

Figure 1: Figure 2:

For λ = −1, the convergence of λ-Durrmeyer operators to f (x) = cos(2πx) + sin
(

1
2πx

)
is illustrated in

Figure 3 and the error functions En,λ are given in Figure 4.

Figure 3: Figure 4:

Let λ = 0.5, f (x) = cos(2πx) + 2 cos
(

1
2πx

)
. The convergence of λ-Durrmeyer operators is illustrated in

Figure 5 and note that for increasing values of n, the graphs of λ-Durrmeyer operators tend to the graph of
function f . Also, the error of approximation are given in Figure 6.
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Figure 5: Figure 6:

In Figure 7 is illustrated the error of approximation of f (x) = sin(2πx) + 2 sin
(

1
2πx

)
by Dn,λ for n = 7 and

λ = −1, 0, 1. We note that for this special case, the approximation by λ-Durrmeyer operator is better than
the classical operators obtained for λ = 0.

Figure 7: Error
∣∣∣ f (x) −Dn,λ( f ; x)

∣∣∣
Now, we introduce a bivariate case of the operators given by (3) and investigate the order of convergence

of these operators. Furthermore, we define the associated GBS operator to approximate the Bögel continuous
and Bögel differentiable functions introduced by Bögel [4]. In the last section of the paper, we give some
numerical results to validate the results obtained in the paper and illustrate that the GBS operators yield
better approximation than the bivariate operators for a certain function.

5. Construction of the bivariate operator

For f ∈ C(I2), I2 = I × I, endowed with the norm || f || = sup(x,y)∈I2 | f (x, y)|, we define the bivariate case of
the operators given by (3) as

Dn1,n2;λ1,λ2 ( f (s, t); x, y) =

(n1 + 1)(n2 + 1)
n1∑

k1=0

n2∑
k2=0

b̃n1,n2,k1,k2 (λ1, λ2; x, y)
∫ 1

0

∫ 1

0
pn1,n2,k1,k2 (s, t) f (s, t)dtds, (6)

where
b̃n1,n2,k1,k2 (λ1, λ2; x, y) = b̃n1,k1 (λ1, x)b̃n2,k2 (λ2, y), (x, y) ∈ I2,
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and

pn1,n2,k1,k2 (s, t) = pn1,k1 (s)pn2,k2 (t) =

(
n1

k1

)
sk1 (1 − s)n1−k1

(
n2

k2

)
tk2 (1 − t)n2−k2

and b̃n1,k1 (λ1, x) is defined by replacing n, k, λ by n1, k1, λ1 respectively in the definition of b̃n,k(λ, x) in (1)
and b̃n2,k2 (λ2, y) is also defined similarly.
From the definition (6), it follows that

Dn1,n2;λ1,λ2 ((s − x)i(t − y) j; x, y) = Dn1;λ1 ((s − x)i; x)Dn2;λ2 ((t − y) j; y),

for all i, j ∈N ∪ {0} and (x, y) ∈ I2.
Let f : C(I2)→ R, then for δ > 0, the total modulus of continuity ω̄( f ; δ) : [0,∞) × [0,∞)→ R is defined

by

ω̄( f ; δ) = sup
{
| f (s, t) − f (x, y)| :

√
(s − x)2 + (t − y)2 < δ, (s, t), (x, y) ∈ I2

}
,

and for δ1, δ2 > 0, the partial modulus of continuity ω1( f ; δ1) and ω2( f ; δ2) are defined as

ω1( f ; δ1) = sup
{
| f (s, t) − f (x, t)| : t ∈ I, |s − x| ≤ δ1

}
and

ω2( f ; δ2) = sup
{
| f (s, t) − f (s, y)| : s ∈ I, |t − y| ≤ δ2

}
.

For f ∈ C(I2) and 0 < ε, η ≤ 1, the Lipschitz class LipM(ε, η) for the bivariate case is defined as

| f (s, t) − f (x, y)| ≤M|s − x|ε|t − y|η

and the Peetre’s K-functional is given by

K( f ; δ) = inf
1∈C2(I2)

{
|| f − 1|| + δ||1||C2(I2)

}
, δ > 0,

where C2(I2) =
{
h ∈ C(I2) : h′′xx, h

′′

yy, h
′′

xy, h
′′

yx ∈ C(I2)
}

with the norm

||h||C2(I2) = ||h|| +
2∑

i=1

(∣∣∣∣∣∣∣∣∣∣∂ih
∂xi

∣∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣∣∂ih
∂yi

∣∣∣∣∣∣∣∣∣∣).
The second order modulus of continuity is defined as

ω̄2( f ;
√

δ) = sup
|h|≤δ,|k|≤δ

{
| f (x, y) − 2 f (x + h, y + k) + f (x + 2h, y + 2k)| : (x, y), (x + 2h, y + 2k) ∈ I2

}
.

From ([11], page 192), it is known that

K( f ; δ) ≤M
{
ω̄2( f ;

√

δ) + min(1, δ)|| f ||
}
, (7)

holds for all δ > 0 and some positive constant M which is independent of δ and f .
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6. Approximation properties for the bivariate case

Theorem 6.1. For f ∈ C(I2), the sequence Dn1,n2,λ1,λ2 ( f ) converges to f uniformly as
n1,n2 →∞.

Proof. As a consequence of the theorem given by Volkov[26] and Lemma 2.1, the result follows.

The following result is an immediate consequence of definition of partial moduli of continuity, Lemma
2.5 and the Cauch-Schwarz inequality:

Theorem 6.2. For f ∈ C(I2), we have

||Dn1,n2,λ1,λ2 ( f ) − f || ≤ 2ω1( f ; δn1,λ1 ) + 2ω2( f ; δn2,λ2 ).

The next result provides the degree of approximation of f by Dn1,n2,λ1,λ2 ( f ) in terms of the total modulus
of continuity of f .

Theorem 6.3. Let f ∈ C(I2). Then there holds the following inequality

||Dn1,n2,λ1,λ2 ( f ) − f || ≤ 2ω̄( f ; δ).

Proof. Using the definition of total modulus of continuity, Lemma 2.5 and the Cauchy-Schwarz inequality,
the result easily follows. Hence the details are omitted.

For the Lipschitz class functions we can formulate the next asertion:

Theorem 6.4. For f ∈ LipM(ε, η), we have

||Dn1,n2,λ1,λ2 ( f ) − f || ≤Mδεn1,λ1
δηn2,λ2

.

Proof. Since f ∈ LipM(ε, η), for any (s, t), (x, y) ∈ I2, we may write

|Dn1,n2,λ1,λ2 ( f ; x, y) − f (x, y)| ≤ MDn1,λ1

(
|s − x|ε; x

)
Dn2,λ2

(
|t − y|η; y

)
.

Now using the Hölder’s inequality, with p1 =
2
ε

, q1 = 2
2−ε and p2 = 2

η , q2 = 2
2−η and applying Lemma 2.5, we

have the desired result.

The following result provides the rate of approximation of f by Dn1,n2,λ1,λ2 ( f ) when f is continuously
differentiable in I2.

Theorem 6.5. For f ∈ C1(I2), the operator Dn1,n2,λ1,λ2 verifies the following inequality

||Dn1,n2,λ1,λ2 ( f ) − f || ≤ || f ′x ||δn1,λ1 + || f ′y||δn2,λ2 ,

where C1(I2) = { f ∈ C(I2) : f ′x , f ′y exist and are continuous in I2
}.

Proof. Let (x, y) ∈ I2, be a fixed point. Then we may write

f (s, t) − f (x, y) =

∫ s

x
f ′u(u, t)du +

∫ t

y
f ′v(x, v)dv.

Now, applying the operator Dn1,n2,λ1,λ2 (; x, y) on the above equation, the Cauchy-Schwarz inequality and
Lemma 2.5, we are led to the required result.

In the following theorem we obtain the degree of approximation of f by Dn1,n2,λ1,λ2 ( f ) in terms of the
first and second order moduli of continuity of f via the approach of Peetre’s K-functional.
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Theorem 6.6. If f ∈ C(I2) then we have

||Dn1,n2,λ1,λ2 ( f ) − f || ≤M
{
ω̄2

(
f ;
√
ρn1,n2,λ1,λ2

2

)
+ min{1,

ρn1,n2,λ1,λ2

4
}|| f ||

}
+ ω̄

(
f ;

√
(µ2

n1,λ1
+ µ2

n2,λ2
)
)
,

where ρn1,n2,λ1,λ2 = 1
2

[
(
√
δn1,λ1 +

√
δn2,λ2 )2+(µn1,λ1 +µn2,λ2 )2

]
and M > 0 is a constant independent of f and ρn1,n2,λ1,λ2 .

Proof. Let us define the auxiliary operator D∗n1,n2,λ1,λ2
associated with Dn1,n2,λ1,λ2 as

D∗n1,n2,λ1,λ2
( f ; x, y) = Dn1,n2,λ1,λ2 ( f ; x, y) − f

(
Dn1,λ1 (s; x),Dn2,λ2 (t; y)

)
+ f (x, y). (8)

Then using Lemma 2.1, we have

D∗n1,n2,λ1,λ2
(1; x, y) = 1, D∗n1,n2,λ1,λ2

(s; x, y) = x and D∗n1,n2,λ1,λ2
(t; x, y) = y. (9)

Let 1 ∈ C2(I2) and (s, t) ∈ I2. Using the Taylor’s theorem for a function of two variables, we have

1(s, t) − 1(x, y) = 1(s, y) − 1(x, y) + 1(s, t) − 1(s, y)

=
∂1(x, y)
∂x

(s − x) +

∫ s

x
(s − u)

∂21(u, y)
∂u2 du +

∂1(x, y)
∂y

(t − y)

+

∫ t

y
(t − v)

∂21(x, v)
∂v2 dv +

∫ s

x

∫ t

y

∂21(u, v)
∂u∂v

dvdu.

Applying the operator D∗n1,n2,λ1,λ2
on both sides of of the above equation, for f ∈ C(I2) and any 1 ∈ C2(I2),

using the properties (9), we have

|Dn1,n2,λ1,λ2 ( f ; x, y) − f (x, y)| ≤ 4
(
|| f − 1|| +

ρn1,n2,λ1,λ2

4
||1||C2(I2)

)
+ ω̄

(
f ;

√
(µ2

n1,λ1
+ µ2

n2,λ2
)
)
.

Now, taking the infimum on the right side of the above equation over all 1 ∈ C2(I2) and using relation (7),
we reach to the required result.

In our next result, we obtain a Voronovskaja type asymptotic theorem for the bivariate operators
Dn1,n2,λ1,λ2 .

Theorem 6.7. Let f ∈ C2(I2). Then

lim
n→∞

n(Dn,n,λ1,λ2 ( f ; x, y) − f (x, y)) = (1 − 2x) f ′x(x, y) + (1 − 2y) f ′y(x, y) + x(1 − x) f ′′xx(x, y) + y(1 − y) f ′′yy(x, y),

uniformly in (x, y) ∈ I2.

Proof. Let (x, y) ∈ I2 be arbitrary. By the Taylor’s theorem we have

Dn,n,λ1,λ2 ( f (s, t); x, y) = f (x, y) + f ′x(x, y)Dn,n,λ1,λ2 ((s − x); x, y) + f ′y(x, y)Dn1,n2,λ1,λ2 ((t − y); x, y)

+
1
2

f ′′xx(x, y)Dn,n,λ1,λ2 ((s − x)2; x, y) + f ′′xy(x, y)Dn,n,λ1,λ2 ((s − x)(t − y); x, y)

+
1
2

f ′′yy(x, y)Dn,n,λ1,λ2 ((t − y)2; x, y) + Dn,n,λ1,λ2

(
χ(s, t; x, y)

√
(s − x)4 + (t − y)4; x, y

)
,

where χ(s, t; x, y) ∈ C(I2) and χ(s, t; x, y)→ 0, as (s, t)→ (x, y).
Applying Lemma 2.3, we get

lim
n→∞

n(Dn,n,λ1,λ2 ( f ; x, y) − f (x, y)) = (1 − 2x) f ′x(x, y) + (1 − 2y) f ′y(x, y) + x(1 − x) f ′′xx(x, y) + y(1 − y) f ′′yy(x, y)

+ lim
n→∞

nDn,n,λ1,λ2

(
χ(s, t; x, y)

√
(s − x)4 + (t − y)4; x, y

)
,
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uniformly in (x, y) ∈ I2. Now, we evaluate limn→∞ nDn,n,λ1,λ2

(
χ(s, t; x, y)

√
(s − x)4 + (t − y)4; x, y

)
.

By using Hölder’s inequality, Theorem 6.1 and Lemma 2.3, we get

lim
n→∞

nDn,n,λ1,λ2

(
χ(s, t; x, y)

√
(s − x)4 + (t − y)4; x, y

)
= 0,

as n→∞, uniformly in (x, y) ∈ I2. Thus, the proof is completed.

In the forthcoming result, we present a Grüss-Voronovskaja type theorem.

Theorem 6.8. Let f , 1 ∈ C2
(
I2
)

then the following equality holds true:

lim
n→∞

n{Dn,n,λ1,λ2 ( f1; x, y) −Dn,n,λ1,λ2 ( f ; x, y)Dn,n,λ1,λ2 (1; x, y)} = 2x(1 − x) f ′x(x, y)1′x(x, y)

+ 2y(1 − y) f ′y(x, y)1′y(x, y),

uniformly in
(
x, y

)
∈ I2.

Proof. Proceeding in a manner similar to the proof of ([13], Theorem. 2), and applying Theorem 6.1, in view
of Lemma 2.3 and Theorem 6.7, we reach the desired result.

7. Construction of GBS operator of λ-Durrmeyer-Bernstein type

Bögel [8] gave some new concepts in analysis known as Bögel continuity and Bögel differentiablity for a
function of two variables. Using these concepts, Dobrescu and Matei [15] proved that the bivariate Bernstein
polynomials can be uniformly approximated by the associated GBS (Generalized boolean sum) operators.
Badea et al. [6] established a Korovkin type theorem known as ”Test Function Theorem ” to approximate
Bögel continuous functions. Badea and Cottin [7] gave Korovkin type theorems for GBS operators. For
further related research in this direction we refer the readers to [22], [1] and the references therein.

For any (s, t), (x, y) ∈ I2, the mixed difference is denoted by ∆ f [(s, t); (x, y)] and is defined as

∆ f [(s, t); (x, y)] = f (x, y) − f (x, t) − f (s, y) + f (s, t).

A function f : I2
→ R is said to be Bögel bounded or B-bounded on I2 if there exists a constant K such that

|∆ f [(s, t); (x, y)]| ≤ K,

for all (s, t), (x, y) ∈ I2. Let BB(I2) denote the space of all Bögel bounded functions on I2.

A function f : I2
→ R is said to be Bögel continuous on I2 if for every (x, y) ∈ I2, we have

lim
(s,t)→(x,y)

∆ f [(s, t); (x, y)] = 0.

We denote the space of all Bögel continuous functions on I2 by CB(I2).

A function f : I2
→ R is called Bögel differentiable function at (x, y) ∈ I2, if the limit

lim
(s,t)→(x,y)

∆ f [(s, t); (x, y)]
(s − x)(t − y)

,

exists and is finite. The space of all Bögel differentiable function on I2 is denoted by DB(I2).
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For any f ∈ CB(I2), we define the GBS operators associated with the operators given by (6) as follows:

Sn1,n2,λ1,λ2 ( f ; x, y) = Dn1,n2;λ1,λ2

(
f (s, y) + f (x, t) − f (s, t); x, y

)
= (n1 + 1)(n2 + 1)

n1∑
k1=0

n2∑
k2=0

b̃n1,n2,k1,k2 (λ1, λ2; x, y)

∫ 1

0

∫ 1

0
pn1,n2,k1,k2 (s, t)

(
f (s, y) + f (x, t) − f (s, t)

)
dtds, (10)

for every (x, y) ∈ I2. Clearly, (10) is a linear operator. Using the Korovkin type theorem given by Badea et.
al [6], and Lemma 2.1, the sequence Sn1,n2,λ1,λ2 ( f ), converges to f uniformly on I2 for all f ∈ CB(I2).

For f ∈ CB(I2), the mixed modulus of smoothness is defined as

ωmixed( f ; δ1, δ2) = sup{|∆ f [s, t; x, y]| : |s − x| < δ1, |t − y| < δ2},

for all (s, t), (x, y) ∈ I2 and for any δ1, δ2 > 0. For the basic properties of ωmixed we refer to [5] and [7].

Applying the Shisha-Mond type theorem given by Badea et. al [5] to obtain the degree of approximation
for Bögel continuous functions by GBS operators and Lemma 2.5, we have

Theorem 7.1. For any f ∈ CB(I2), the operator (10) satisfies the following inequality

||Sn1,n2,λ1,λ2 ( f ) − f || ≤ 4ωmixed

(
f ; δn1,λ1 , δn2,λ2

)
.

The Lipschitz class of Bögel continuous functions is denoted by LipM(ε, η), 0 < ε, η ≤ 1,M > 0 and is
defined as

LipM(ε, η) = { f ∈ CB(I2) : |∆ f [(s, t); (x, y)]| ≤M|s − x|ε|t − y|η, f or (s, t), (x, y) ∈ I2
}
.

The following theorem provides the degree of approximation by the operators Sn1,n2,λ1,λ2 for Lipschitz class
of Bögel continuous functions.

Theorem 7.2. Let f ∈ LipM(ε, η) then we have

||Sn1,n2,λ1,λ2 ( f ) − f || ≤Mδε/2n1,λ1
δη/2n2,λ2

.

Proof. From the definition of the operators Sn1,n2,λ1,λ2 ( f ; x, y), the linearity of the operator (6) and Lemma 2.1,
for any (x, y) ∈ I2 we have

Sn1,n2,λ1,λ2 ( f ; x, y) = f (x, y) −Dn1,n2,λ1,λ2

(
∆ f [(s, t); (x, y)]; x, y

)
. (11)

Since f ∈ LipM(ε, η), we get

|Sn1,n2,λ1,λ2 ( f ; x, y) − f (x, y)| ≤ MDn1,n2,λ1,λ2

(
|s − x|ε|t − y|η; x, y

)
= MDn1,n2,λ1,λ2

(
|s − x|ε; x, y

)
Dn1,n2,λ1,λ2

(
|t − y|η; x, y

)
.

Now, using Hölder’s inequality with p1 = 2
ε , q1 = 2

2−ε and p2 = 2
η , q2 = 2

2−η and Lemma 2.5, the required
result is immediate.

The following theorem provides the order of approximation for Bögel differentiable functions by the
operators defined by (10) in terms of the mixed modulus of smoothness.
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Theorem 7.3. Let the function f ∈ DB(I2) with DB f be bounded on I2. Then, we have

||Sn1,n2,λ1,λ2 ( f ) − f || ≤
C
√

n1n2

[
||DB f ||∞ + ωmixed

(
DB f ;

1
√

n1
,

1
√

n2

)]
.

Proof. For f ∈ DB(I2), we have

∆ f [(s, t); (x, y)] = (s − x)(t − y)DB f (u, v) (12)

with x < u < s and y < v < t (cf [9],page 62). It is clear that

DB f (u, v) = ∆DB f (u, v) + DB f (u, y) + DB f (x, v) −DB f (x, y).

Since DB f ∈ B(I2), from equation (12), we can write∣∣∣∣∣Dn1,n2,λ1,λ2

(
∆ f [(s, t); (x, y)]; x, y

)∣∣∣∣∣ ≤ Dn1,n2,λ1,λ2

(
|s − x||t − y||∆DB f (u, v)|; x, y

)
+ Dn1,n2,λ1,λ2

(
|s − x||t − y|

(
|DB f (u, y)| + |DB f (x, v)| + |DB f (x, y)|

)
; x, y

)
≤ Dn1,n2,λ1,λ2

(
|s − x||t − y|ωmixed

(
DB f ; |u − x|, |v − y|

)
; x, y

)
+ 3 · ||DB f ||∞Dn1,n2,λ1,λ2

(
|s − x||t − y|; x, y

)
.

Hence, considering (11) and the following property of ωmixed

ωmixed

(
f ; |s − x|, |t − y|

)
≤

(
1 +
|s − x|
δ1

)(
1 +
|t − y|
δ2

)
ωmixed( f ; δ1, δ2),

for any δ1, δ2 > 0, we have

|Sn1,n2,λ1,λ2 ( f ; x, y) − f (x, y)| = |Dn1,n2,λ1,λ2 (∆ f [(s, t); (x, y)]; x, y)|

≤

(
Dn1,n2,λ1,λ2 (|s − x||t − y|; x, y) + δ−1

1 Dn1,n2,λ1,λ2 ((s − x)2
|t − y|; x, y)

+ δ−1
2 Dn1,n2,λ1,λ2 (|s − x|(t − y)2; x, y)

+ δ−1
1 δ
−1
2 Dn1,n2,λ1,λ2 ((s − x)2(t − y)2; x, y)

)
ωmixed(DB f ; δ1, δ2)

+ 3 · ||DB f ||∞Dn1,n2,λ1,λ2

(
|s − x||t − y|; x, y

)
.

Applying Cauchy-Schwarz inequality, in view of Lemma 2.5, we have

|Sn1,n2,λ1,λ2 ( f ; x, y) − f (x, y)| ≤
C
√

n1n2

[
||DB f ||∞ + ωmixed

(
DB f ;

1
√

n1
,

1
√

n2

)]
.

8. Numerical results

In this section we present some numerical results obtained by using Mathematica. In Figure 8, we plot
the operators Dn1,n2;λ1,λ2 ( f ; x, y) (Green) for n1 = n2 = 10, Dn1,n2;λ1,λ2 ( f ; x, y) (Blue) for n1 = n2 = 20, and
f (x, y) = 3xy2ex−y (Yellow) on I2 for λ1 = λ2 = 1.

In Figure 9, we compare the rate of convergence of the bivariate operators Dn1,n2;λ1,λ2 ( f ; x, y) (Green) and
its GBS modification Sn1,n2;λ1,λ2 ( f ; x, y) (Blue) to the function
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f (x, y) = 5x2(1 − y + y2) (Yellow) on I2 for n1 = n2 = 50 and λ1 = λ2 = 1. It is clearly seen that the GBS
operators yield a better approximation than the bivariate operators.

Figure 8: Figure 9:

In the table below, we compare the error in the approximation by the bivariate operators to the function
f (x, y) = 3xy2ex−y for n1 = n2 = 10 and n1 = n2 = 20 at certain points (x, y) ∈ I2 for λ1 = λ2 = 1. It is clear
that as n1 and n2 increase, the error in the approximation decreases.

x y |Dn1,n2;λ1,λ2 ( f ; x, y) − f (x, y)| |Dn1,n2;λ1,λ2 ( f ; x, y) − f (x, y)|
0.0 0.0 0.0143905 0.0030483
0.1 0.4 0.0911713 0.0464795
0.2 0.4 0.1029830 0.0543372
0.3 0.8 0.0966132 0.0615227
0.4 0.9 0.0416243 0.0355476
0.5 1.0 0.0460035 0.0085817
0.6 0.6 0.0366915 0.0366915
0.7 0.9 0.3195692 0.1739941
0.8 0.4 0.0186596 0.0215596
0.9 0.5 0.1748071 0.1011293
1.0 1.0 1.0770612 0.6748435

In our final table, we compare an estimate of the error in the approximation of
f (x, y) = 5x2(1− y + y2) at certain points in I2 by the bivariate operators Dn1,n2;λ1,λ2 and its GBS case Sn1,n2;λ1,λ2

for n1 = n2 = 50 and λ1 = λ2 = 1. It is evident that the error in the approximation of f by Sn1,n2;λ1,λ2 ( f ) is
much less than the error by Dn1,n2;λ1,λ2 ( f ).

x y |Dn1,n2;λ1,λ2 ( f ; x, y) − f (x, y)| |Sn1,n2;λ1,λ2 ( f ; x, y) − f (x, y)|
0.1 0.1 0.0386415 0.0004711
0.2 0.4 0.0540595 0.0006730
0.3 0.5 0.0643545 0.0008823
0.4 0.4 0.0650762 0.0007382
0.5 0.6 0.0560842 0.0005641
0.6 0.2 0.0192291 0.0000285
0.7 0.6 0.0090968 0.0001957
0.8 0.2 0.0697866 0.0000888
0.9 0.6 0.0764991 0.0015097
1.0 1.0 0.3407891 0.0052795
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