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Abstract. In this paper, we discuss the Banach fixed point theorem conditions on the optimal exercise
boundary of American put option paying continuously dividend yield, to investigate whether its existence,
uniqueness, and convergence are derived. In this respect, we consider the integral representation of the
optimal exercise boundary which is extracted as a consequence of the Feynman-Kac formula. In order to
prove the above features, we define a nonempty closed set in Banach space and prove that the proposed
mapping is contractive and onto. At final, we illustrate the ratio convergence of the mapping on the optimal
exercise boundary.

1. Introduction

The valuation of American option has a large literature in financial mathematics field ([6, 7, 10]). Since
an American option can be exercised at any time prior to the expiration date, so the valuation of it needs to
determine the optimal exercise boundary ([4, 12, 19, 21]). Therefore numerical and analytical representation
of the optimal exercise boundary has attracted the attention of more researchers (see [23, 29, 32, 33, 35]). In
this respect, some authors have introduced the integral representation for the optimal exercise boundary
for American type option [28]. In [20], Goodman and et.al. developed an asymptotic expansion by using
a boundary integral equation. Kim and Byun [22], presented the properties of the optimal boundary in an
option pricing model and developed an efficient recursive valuation method. Also, Chen and Chadam[13]
and Lauko [25] derived and rigorously proved high order asymptotic expansion for the early exercise
boundary near expiry. As well, the differentiability of the optimal exercise boundary of American put
option with the jump is considered in [8, 27]. Moreover, Chiarella and et.al. [16] and Zhu and et.al. [39]
obtained the new integral equation for both the American put option and its optimal exercise, successfully,
which is in advantages of one dimension and free of discontinuity and singularity at expiry date. In [38],
Song-Ping Zhu introduced an analytical approximation formula for the optimal exercise boundary in the
performance of the Laplace transform.
In particular, the existence and uniqueness of the optimal exercise boundary is of interest in some papers
and references therein ([13, 29, 32]). It was realized that the existence and local uniqueness of a solution to
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nonlinear integral equations could be proved by applying the contraction principle (fixed point theorem)
first for a small time interval and then extending it to any interval of time by induction [19]. Applying
this method, Van Moerbeke [29] proved the existence and local uniqueness of a solution to the integral
equations of a general optimal stopping problem. This paper revisits the classical topic of existence and
uniqueness for the optimal early exercise boundary of an American put option when the underlying stock
pays dividends continuously. Chen and Chadam [13] has explored this problem by using Schauder’s fixed
point theorem. In addition, Chen et al. [15] further proved that the free boundary is non-convex when the
dividend rate is higher than the risk-free rate.
The new in this paper is that we reconsider the problem from the perspective of Banach fixed-point
theorem. The presented approach clarifies this classical option valuation problem as a mathematical
problem in functional analysis. We believe that the proposed lemmas and explored arguments in this paper
would help not only for comprehension of the problem but also for the development of new analytical
and numerical methods for its solution. So, we discuss the existence, uniqueness and convergence analysis
of the optimal exercise boundary of American put option based on the Banach fixed point theorem [5],
with local time. In order to achieve such a goal, we need to define a contractive and onto mapping on a
nonempty closed set in Banach space. One of the technical difficulties in this context is that the derivative of
the optimal boundary is not bounded at the initial point T. To avoid the singularity of the optimal exercise
boundary near expiry we restrict our assumption on the case condition q > r > 0, where r and q denote the
risk-free interest rate, and dividend yield respectively [34]. In the proceeding, the Lipschitz condition of
the terms of the proposed integral equation is discussed. Moreover, the Hölder continuous with exponent
1
2 of the optimal exercise boundary is also applied [9].
The outline of this paper is organized as follows. In section 2, we represented the dimensionless integral
equation with respect to E of American put option, where E denotes the strike price. Some lemmas are
discussed in section 3 and in the following, the Banach fixed point theorem is brought and its conditions
are investigated on the proposed integral equation. In proceeding, two Remarks are developed, namely
the first Remark discusses the existence and uniqueness of the optimal exercise boundary for American
call option based on the put-call symmetry relationship, and the second Remark illustrates the convexity
properties of the optimal exercise boundary near expiry based on different test cases for r and q. At final,
in section 4, we illustrate the behavior of the optimal exercise boundary of American put option based on
proposed mapping along with the ratio of its convergence.

2. Mathematical modelling

The Feynman-Kac formula named after Richard Feynman and Mark Kac establishes a link between
parabolic partial differential equations (PDEs) and stochastic processes. It offers a method of solving
certain partial differential equations by simulating random paths of a stochastic process. Conversely, an
important class of expectations of random processes can be computed by deterministic methods. As in
[38, 39], we consider the American put option, P(S, t), which satisfies in the following partial differential
equation

∂P
∂t

+
1
2

S2σ2 ∂
2P
∂S2 + (r − q)S

∂P
∂S
− rP = 0, S ∈ (S f (t),∞) (1)

endowed with the initial conditions:

P(S,T) = max(E − S, 0), (2)

SP
f (T) = E min(1,

r
q

), (3)

where SP
f (t), t ∈ [0,T], denotes the optimal exercise boundary of American put option. Moreover the

boundary condition for P(S, t) when S→ SP
f (t), is writtern as follows:

P(S(t), t) = E − SP
f (t), (4)
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along with the smooth pasting principle:

∂P
∂S

(SP
f (t), t) = −1, (5)

Here S > 0 stands for the underlying stock price, σ > 0 is the volatility of the underlying stock process
and T denotes the time of maturity.
Based on the Feynman-Kac formula, (see [24]) the solution P(S, t) can be written by a conditional expectation
as follows:

P(S, t) = Et
Q
[
exp(−r(T − t)) max(E − ST, 0)

]
+

∫ T

t
exp(−r(u − t)) Eu

Q

[
(rE − qSu)1Su<S f (u)

]
du, (6)

under the probability measure Q such that stock price S(t) driven by the equation

dS(t) = rS(t) dt + σS(t) dWQ(t),

where WQ(t) is a Wiener process defined on the probability space {Ω,F ,Q}. Let us define τ = T − t. The
relation (6) can be evaluated to give the following representation of the American put price [10, 24, 25]:

P(S, τ) = E exp(−rτ)N(−d2) − S exp(−qτ)N(−d1)

+

∫ τ

0
(Er exp (−rε) N(−dε,2) − qS exp (−qε) N(−dε,1))dε, (7)

where

d1 =
ln S

E + (r − q + σ2

2 )τ

σ
√
τ

, d2 = d1 − σ
√
τ, (8)

dε,1 =

ln S
SP

f (τ−ε) + (r − q + σ2

2 )ε

σ
√
ε

, dε,2 = dε,1 − σ
√
ε, (9)

and N(.) denotes the commulative normal distribution function.
The solution for SP

f (τ) requires the knowledge of SP
f (τ − ε), 0 < ε ≤ τ. If we apply the boundary condition

(4) to the American put option price formula (7), we obtain the following integral equation for SP
f (τ):

E − SP
f (τ) = E exp(−rτ) N(−d

′

2) − SP
f (τ) exp(−qτ) N(−d

′

1)

+

∫ τ

0

(
Er exp (−rε) N(−d

′

ε,2) − qSP
f (τ) exp (−qε) N(−d

′

ε,1)
)

dε, (10)

where

d
′

1 =
ln

SP
f

E + (r − q + σ2

2 )τ

σ
√
τ

, d
′

2 = d
′

1 − σ
√
τ, (11)

d
′

ε,1 =

ln
SP

f (τ)

SP
f (τ−ε) + (r − q + σ2

2 )ε

σ
√
ε

, d
′

ε,2 = d
′

ε,1 − σ
√
ε, 0 < ε ≤ τ, (12)

SP
f (0) =

r
q

E. (13)
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Using the change of variable y(τ) =
SP

f (τ)

E , the relation (10) transforms to

1 − y(τ) = exp(−rτ) N(−d
′

2) − y(τ) exp(−qτ) N(−d
′

1)

+

∫ τ

0

(
r exp (−rε) N(−d

′

ε,2) − qy(τ) exp (−qε) N(−d
′

ε,1)
)

dε, (14)

where

d
′

1 =
ln y(τ) + (r − q + σ2

2 )τ

σ
√
τ

, d
′

2 = d
′

1 − σ
√
τ, (15)

d
′

ε,1 =
ln y(τ)

y(τ−ε) + (r − q + σ2

2 )ε

σ
√
ε

, d
′

ε,2 = d
′

ε,1 − σ
√
ε, (16)

y(0) =
r
q
. (17)

3. Uniqueness and existence of the optimal exercise boundary

In this paper we investigate the conditions of the Banach fixed point theorem, to guarantee the unique-
ness, existence, and convergence of the optimal exercise boundary of relation (14). First, we mention the
following lemmas:

Lemma 3.1. Let us define the functions h and 1 as folows:

h(y(τ), y(τ − ε); τ, ε) = r exp (−rε) N(−d
′

ε,2) − q y(τ) exp (−qε) N(−d
′

ε,1),

1(y(τ); τ) = exp(−rτ) N(−d
′

2) − y(τ) exp(−qτ) N(−d
′

1),

we claim that the above functions satisfy the Lipschitz conditions with respect to y(τ) and y(τ − ε).

Proof: First, we consider the function h(y(τ), y(τ − ε); τ, ε). It is sufficient to show that the function is
differentiable with respect to y(τ). Similarly, the differentiability of h with respect to y(τ− ε) can be proved.
So we have:

∂h
∂y(τ)

= r exp (−rε)
∂N(−d′ε,2)

∂y(τ)
− qy(τ) exp (−qε)

∂N(−d′ε,1)

∂y(τ)

− q exp (−qε)N(−d
′

ε,1),

where

∂N(−d′ε,i)

∂y(τ)
=
∂N(−d′ε,i)

∂d′ε,i
×

∂d′ε,i
∂y(τ)

= −
1
√

2π
exp(

−d2
ε,i

2
) ×

y(τ − ε) − y(τ)
y(τ − ε) × y(τ)

×
1

σ
√
ε
, i = 1, 2. (18)

Concerning the behavior of
∂N(−d′ε,i)
∂y(τ) for every τ ∈ [0,T], we have the following discussions:

1) Since the y(τ) is Hölder continuous with exponent 1
2 for every time τ ∈ [0,T] [9], so there exists a constant

C ∈ R such that

‖y(τ − ε) − y(τ)‖∞ ≤ C
√
ε. (19)
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2) As the functions y(τ) and y(τ − ε) are decreasing functions, so the given function 1
y(τ−ε)×y(τ) in (18) is an

increasing function and its supremum value is extracted as follows [24]:

sup
0≤ε≤τ,0≤τ≤T

1
y(τ − ε) × y(τ)

= (
µ− − 1
µ−

)2, (20)

where

µ− =
−(r − q − σ2

2 ) −
√

(r − q − σ2

2 )2 + 2σ2r

σ2 < 0. (21)

Now based on points 1 and 2, we survey the upper bound for (18) in the following cases:
A) As τ→ 0+, from [24] for case r < q, we have:

y(T − τ) ∼
r
q

(1 − βσ
√

2τ), (22)

where β is satisfying in the integral equation

−β3 exp (β2)
∫
∞

β
exp (−u2)du =

1 − 2β2

4
, (23)

which can be solved by the Newton iteration method (β = 0.6438). On the other hand, there exists a constant
0 < K < 1 such that ‖

√
τ − ε −

√
τ‖∞ ≤ K

√
ε. Therefore based on (17), (22) and (23) the simplified bounded

for (18) will be

‖

∂N(−d′ε,i)

∂y(τ)
‖∞ ≤

1
√

2π
‖ exp(

−d2
ε,i

2
)‖∞ ×

‖y(τ − ε) − y(τ)‖∞
‖y(τ − ε) × y(τ)‖∞

×
1

σ
√
ε
,

≤
1
√

2π
× 1 × (

q
r

)2
×

r
q
β σK

√

2ε ×
1

σ
√
ε
,

≤
1
√
π
×

q
r
× β × K, i = 1, 2, (24)

where the last inequality is less than one obviously, under the condition r < q < r
√
π

βK .
B) Secondly, for values of τ other than case A, containing τ→∞, by using (16), (19) and (20) we have:

‖

∂N(−d′ε,i)

∂y(τ)
‖∞ ≤

1
√

2π
‖ exp(

−d2
ε,i

2
)‖∞ ×

‖y(τ − ε) − y(τ)‖∞
‖y(τ − ε) × y(τ)‖∞

×
1

σ
√
ε

≤
1
√

2π
exp (−a2ε) × C

√
ε × (

µ− − 1
µ−

)2
×

1
σ
√
ε
, i = 1, 2, (25)

where a is a constant value derived from (16), and by choosing sufficiently large value 0 < ε ≤ τ, the

supremum value of (25) is less than one. Therefore, the
∂N(−d′ε,i)
∂y(τ) and subsequently ∂h

∂y(τ) are exist and satisfy
the Lipschitz condition.

Now for the function 1(y(τ); τ) we can conclude that:

1(y(τ), τ) = exp(−rτ) N(−d
′

2) − y(τ) exp(−qτ) N(−d
′

1)

=
1
√

2π

(
exp(−rτ)

∫
−d′2

−∞

exp (−
x2

2
)dx

− y(τ) exp(−qτ)
∫
−d′1

−∞

exp (−
x2

2
)dx

)
,
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where d′1 and d′2 are defined in (15).
So, the derivative of function 1(y(τ), τ) with respect to y(τ) is written:

∂1

∂y(τ)
=

1
√

2π

(exp(−rτ) exp (−
d′2

2

2 )

σ
√
τy(τ)

− exp(−qτ)
∫
−d′1

−∞

exp (−
x2

2
)dx

−
1

σ
√
τ

exp(−qτ) exp (
−d′1

2

2
)
)
. (26)

Concerning the first and third terms of (26), we compute:

exp(−rτ) exp (−
−d′2

2

2 )

σ
√
τy(τ)

− exp(−qτ)
exp (

−d′1
2

2 )

σ
√
τ

=
1

σ
√
τ

exp (
−d′1

2

2
)
(exp(−rτ) exp (σ

√
τd′1 −

σ2τ
2 )

y(τ)
− exp(−qτ)

)
=

1
σ
√
τ

exp (
−d′1

2

2
)(exp(−qτ) − exp(−qτ)) = 0, (27)

where in the last line, we have used the relation (15).
So, relation (26) simplifies as follows:

∂1

∂y(τ)
= exp(−qτ)N(−d′1). (28)

Therefore, the function 1(y(τ); τ) is differentiable with respect to y(τ) for every time τ ∈ [0,T] and its deriva-
tive is smaller than one clearly, so it satisfies the Lipschitz condition.

Now we are moving to the Banach fixed point theorem to investigate the existence and uniqueness of
the optimal exercise boundary for the American put option of relation (14).

Theorem 3.2. (Banach Fixed-Point Theorem) Assume that K is a nonempty closed set in a Banach space V, and
further, that is H : K −→ K a contractive mapping with contractivity constant α, 0 ≤ α < 1. Then the following
results hold.

1) Existence and uniquenes: There exists a unique u ∈ K such that u = H(u).

2) Convergence and error estimates of the iteration: For any u0 ∈ K, the sequence {un} ⊂ K defined by un+1 =
H(un),n = 0, 1, ..., converges to u:‖un − u‖V → 0 as n→∞.

3) For the error, the following bounds are valid:

‖un − u‖V ≤
αn

1 − α
‖u0 − u1‖V, (29)

‖un − u‖V ≤
α

1 − α
‖un−1 − un‖V,

‖un − u‖V ≤ ‖un−1 − u‖V.

Based on the Theorem (3.2), let us consider X = C[0, δ] with the norm ||.||∞, which the parameter δ can be a
positive value. We define a mapping H : X→ X as follows:

H(y)(τ) = 1 − exp(−rτ) N(−d
′

2) + y(τ) exp(−qτ) N(−d
′

1)

−

∫ τ

0

(
r exp (−rε) N(−d

′

ε,2) − qy(τ) exp (−qε) N(−d
′

ε,1)
)
dε. (30)

It is sufficient to prove that the defined mapping H in (30) is onto and contractive. First, we claim that H is
an onto mapping.
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Lemma 3.3. Assume that Y is a nonempty closed ball in X, we show that H : Y→ Y is onto mapping.

proof: Let us define

Y = {y(τ) ∈ X | y(0) =
r
q
, ‖y(τ) − 1‖∞ ≤ 1}, (31)

it is sufficient to show that ‖H(y)(τ) − 1‖∞ < 1. By considering the Lipschitz condition of function h in
Lemma (3.1), we have:

‖H(y)(τ) − 1‖∞ ≤ ‖ − exp(−rτ) N(−d
′

2) + y(τ) exp(−qτ) N(−d
′

1)

−

∫ τ

0
h(y(τ), y(τ − ε); τ, ε)dε‖∞

≤ ‖ − exp(−rτ) N(−d
′

2) + y(τ) exp(−qτ) N(−d
′

1)‖∞

+

∫ τ

0
‖h(y(τ), y(τ − ε); τ, ε)‖∞dε

≤ L1 + L2 δ ≤ 1, (32)

where the last inequality is derived due to the fact that

L1 = ‖ − exp(−rτ) N(−d
′

2) + y(τ) exp(−qτ) N(−d
′

1)‖∞ < 1, (33)

since

0 < y(τ) =
SP

f (τ)

E
<

SP
f (0)

E
=

r
q
< 1, (34)

and L2 is extracted from the continuity of the function h which is given by Lemma (3.1) with respect to τ.
So, by choosing δ ≤ (1−L1)

L2
, we can conclude that the mapping H is onto.

Lemma 3.4. By assumption the mapping H in relation (30), and considering Lemma (3.3), we show that H is a
contractive mapping on Y.

proof:

‖H(y2)(τ) −H(y1)(τ)‖∞ ≤ ‖1(y2(τ), ε) −
∫ τ

0
h(y2(τ), y2(τ − ε); τ, ε)dε

+

∫ τ

0
h(y1(τ), y1(τ − ε); τ, ε)dε − 1(y1(τ), ε)‖∞

≤ ‖1(y2(τ), ε) − 1(y1(τ), ε)‖∞

+

∫ τ

0

(
‖h(y1(τ), y1(τ − ε); τ, ε)

− h(y2(τ), y2(τ − ε); τ, ε)‖∞dε
)
≤ C1‖y2(τ) − y1(τ)‖∞

+

∫ τ

0

(
C2‖y2(τ) − y1(τ)‖∞

+ C3‖y2(τ − ε) − y1(τ − ε)‖∞
)
dε

≤ C1‖y2(τ) − y1(τ)‖∞ + (C2 + C3)‖y2(τ) − y1(τ)‖∞τ
≤ ‖y2(τ) − y1(τ)‖∞(C1 + (C2 + C3)δ), (35)

where C1 and C2,C3 are the Lipschitz constants of the functions 1 and h respectively. The equality ‖y2(τ) −
y1(τ)‖∞ = ‖y2(τ − ε) − y1(τ − ε)‖∞ is deduced by using the definition of ||.||∞. Moreover, the last inequality



D. Ahmadian et al. / Filomat 35:4 (2021), 1095–1105 1102

is obtained because of δ ≤ (1−C1)
C2+C3

, where C1 < 1, which is discussed in Lemma (3.1). Therefore, we can
conclude that the mapping H is a contractive mapping on Y, and the proof is complete.

At final, by taking proper value for δ such that δ ≤ min
(

(1−C1)
C2+C3

, (1−L1)
√

L2

)
, the conditions of the Banach fixed-

point theorem are satisfied. So the existence and uniqueness of the optimal exercise boundary for the
American put option in (10) are verified.

Remark 3.5. Modification to American call option
In [24, 30, 36], the authors show that in the standard model for stock price (geometric Brownian motion), the

put-call symmetry relation for the American option with parameters S, E, r, q and T is as follows

C(S,E, r, q,T) = P(E,S, q, r,T), (36)

where C(S,E, r, q,T) denotes the American call option.
By setting C(SC

f (τ), τ) = SC
f (τ)− E for S > SC

f (τ), and SC
f (τ) denotes the optimal exercise boundary for American call

option, the corresponding integral equation for the early exercise boundary SC
f (τ) can be obtained as follows:

SC
f (τ) − E = SC

f (τ) exp(−qτ) N(d
′

1) − E exp(−rτ) N(d
′

2)

+

∫ τ

0

(
qSC

f (τ) exp (−qε) N(d
′

ε,1) − Er exp (−rε) N(d
′

ε,2)
)

dε. (37)

Moreover, the corresponding put-call symmetry relation for the optimal exercise boundary is deduced to be (see [24]):

SC
f (τ, r, q) =

E2

SP
f (τ, q, r)

. (38)

Then, based on (3) and (38), we can deduce SC
f (τ) = E max(1, r

q ) at τ→ 0+. The approximate solution of the optimal
exercise boundary for an American call option on an asset with dividends for the case of r > q as τ→ 0+ is given by
(see [17] and [37]):

SC
f (T − τ) ∼

r
q

E(1 + βσ
√

2τ), (39)

Similarly, we can conclude that the conditions of Banach fixed point theorem are satisfied for American call option in
the case r > q.

Remark 3.6. Nonconvexity of the American put option near expiry under the case q > r
The convexity of the optimal exercise boundary are discussed and illustrated in the references [11, 14], whereas in

[14, 18] the convexity property is proved only for the case q = 0. As refer to [15], the authors proved the non-convexity
of the optimal exercise boundary for the American put option, under the case q > r. Moreover in [31], the author
proved that the optimal exercise boundary for American put option is convex only for the case q + σ2

2 ≤ r, but its
convexity is an open problem under the case q < r < q + σ2

2 . Also, baesd on relation (10), we illustrate the behavior of
SP

f (τ) for three different cases q > r, q = r and q < r. As we see in Fig. 1, the optimal exercise boundary is convex for
cases q = r and q < r, but for the case q > r, we observe that the SP

f (τ) is non-convex near expiry.



D. Ahmadian et al. / Filomat 35:4 (2021), 1095–1105 1103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7.5

8

8.5

9

9.5

10

S
fP

(T
-

)

q>r

q<r

q=r

Figure 1: The behavior of the optimal exercise boundary with respect to τ with different cases q > r, q < r and q = r

4. Numerical illustration

Based on Theorem (3.2), the parameter α adjusts the rate of convergence of mapping H defined in (30).
The magnitude of value α relates to the Lipschitz constant C1 which is derived in Lemma (3.1). Since the
value C1 is sufficiently smaller than 1, we can claim that the proposed mapping H defined in (30) converges
to the exact solution in the interval τ ∈ [0, δ]. To give the reader an idea of the behavior of the optimal
exercise boundary in (10), we provide in Figure (1), the numerical approximation of mapping H, with
typical parameters. In Figure (1), we see the desired solution converges to the value µ−

µ−−1 E, as τ increases,
where µ− is obtained from (21).
As we observe for the behavior plot (blue line) near expiry in Figure (1), we can declare that the SP

f (τ) based
on (22) as τ→ 0+ follows (see [24]):

SP
f (τ) ∼

rE
q

(1 − βσ
√

2τ), (40)

so it is in negative infinite slope, but based on the decreasing property of the optimal exercise boundary for
the American put option for the whole time domain, then the proposed plot in Figure (1) is in coincidence
with our interpretation. However, for the cases q < r and q = r, the optimal exersice boundary for the
American put option is in positive infinite slope, as are illustraed in Figure (1) in red and black lines.
Let SP

f AP(τ) denote the approximate solution using the numerical method on the fixed point mapping defined

in (30). Moreover, in [0,T] let us consider N+1 times τ0, τ1, . . . , τN, such that τi = i∆τ, i = 0, 1, . . . ,N,∆τ = T
N1

.
The error on SP

f AP(τ) at time points τi = 0, 1, ...,N, is computed as follows:

Error = max
i=0,1,...,N

|SP
f AP(τi) − SP

f (τi)|. (41)

Following a very common practice, in order to test the convergence of the mapping defined in (30),
the number of N nodes is progressively doubled, and the convergence rate is empirically estimated by
computing the ratios of successive values of error. Finally, as the true solution SP

f (τ), needed in (41), is not
available, a very accurate estimation of it is obtained by employing with a very large number of time steps
(N = 4096).
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Table 1: Model parameters
T E r q σ

1 10 0.1 0.12 0.15

Table 2: Convergence of the fixed point mapping (30), the Error measured according to (41) for data in Table 1

N Error Ratio
64 8.67×10−2

128 1.37×10−2 6.33
256 5.80×10−3 2.36
512 1.88×10−3 3.08

The results obtained are shown in Table 2. We may observe that, as is reasonable to expect in part (iii)
of Banach fixed point theorem, the ratio errors tend to be higher than 4 when N is doubled. In particular, a
very accurate approximation (error of order 10−3 on the whole set of time nodes) with N = 512 is achieved.

5. Conclusion

In this paper, we are interested in investigating whether the existence and uniqueness of the optimal
exercise boundary for the American put option can be derived based on the Banach fixed-point theorem.
To deal with, we restrict our assumption on the case q > r, and define a mapping based on the fixed point
theorem, which satisfies the onto and contractive conditions. In addition to them, the ratio convergence
of the proposed mapping is investigated. Moreover, based on put-call symmetry, we conclude that the
Banach fixed point theorem conditions are satisfied for the American call option too. As well, we discuss
and illustrate the nonconvexity of the optimal exercise boundary for the American put option near expiry
under the case q > r whereas in the cases q < r and q = r the convexity holds.
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