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Some Integral Inequalities via (p, ) —Calculus On Finite Intervals

Mevliit Tun¢?, Esra Gov?

?Department of Mathematics, Hatay Mustafa Kemal University, Hatay.

Abstract. The aim of this paper is to construct (p, g)-calculus on finite intervals. The (py, gx) —derivative

and (px, qi) —integral are defined and some basic properties are given. Also, (px, i) —analogue of Holder,
Minkowski integral inequalities are proved.

1. Introduction

All of the scientific works deal with the ambition for giving the meaning of the universe in which
we live. Every new discovery we made come up looking, feeling, living and transmitting in a different
perspective. For understanding and transmitting these happenings, we all need different type of methods.
As mathematicians, the main purpose of our studies is to analyze the nature and express in mathematical
ways. In this sense, calculus which is the main well-known way become our alphabet while we are
translating the universe into some notions.

Quantum calculus is a field that searches mathematical formulas which turn the original version when
g tends to 1. The history of quantum analysis goes back to eighteenth century to when Euler introduced g
in 'Introductio” in the tracks of Newton’s infinite series. In nineteenth century, Jackson defined an integral
which is called g-Jackson integral in 1910 and g-analysis has gone through a period of rapidly development.
For more details, see [7, 8, 10, 13] and the refrences therein.

In recent years, as being one of the most desirable area, many authors are interested in quantum calculus.
One can easily see new contributions to the field almost every day. This is due to the fact that quantum
calculus has not also important applications in mathematics but also in particle physics, theoretical physics,
analytic number theory, and computer science. In mathematics, 4- analysis is closely linked with theory
of ordinary fractional calculus, optimal control problems, g-difference and g-integral equations. In [27]
and [28] Tariboon et al. define quantum calculus on finite intervals namely gi-calculus, prove some of its
properties and extend some of the important integral inequalities to quantum calculus.

While the attention on g-calculus has been increasing, Post-quantum or (p, g)-calculus has appear as
a generalization of g-calculus and the next step ahead of the g-calculus. (p,q)—integers which was first
taken in [6] for generalizing g-oscillator algebras which is well known in the earlier pyhsics, was studied
independently and at the same time by Chakrabarti and Jagannathan in [6], Bromidas et al. in [3], Wachs
and White in [29], Arik et al. in [2]. Until then today, (p, )-calculus has become an appropriate workspace
for both mathematicians and pyhsicist. There are many researches about (p, g)-calculus on operator theory,
special functions, integral inequlities and integral transforms, see [1, 4-6, 9, 11, 12] and [14]-[25].
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In this paper, we give the definition of (p, g)-derivative, (p, )-integral on finite interval, (p, g)-integration
by parts and some basic properties. We also prove (p, g)-anologue of frequently used some integral inequal-
ities. With these definitions, the way is opened for proving (p, q)-anologues of many different and useful
inequalities in finite intervals and so enlarging the results the more generalized form of them. Under the
convience circumstances, some results become a direct consequances of their g—forms or ordinary forms
but for some of them you need to reorganize the interval you study on. Trivally you work on more re-
stricted area corresponding to g—form. That’s why post quantum calculus have edge to quantum calculus
isO<p<1

The (p, q) —integers [n], , are defined by

where0<g<p<1l Forp=1

1_ n
iy = 3=

See [13]. One can easily see the relation between post quantum and quantum intergers as:

(1] = " [

where 0 < g <p < 1. Foreachk,n € N, n >k > 0, the (p, ) —factorial and (p, ) —binomial are defined by

n

(! = [, n>1 100, =1
k=1

[ n ] _ [n]p,q!
k pa [n—kl, ! [kl 0!
Let f : R — R. The (p,q) —derivative of the function f is defined as

_fI-f@)
" emar 7Y @

provided that D, f (0) = £’ (0).
Let f : C[0,a] = R (a > 0) then the (p, g)-integration of f defined by
P (P
(4-pa ) T ()i
;5 g7 \ g q

f f () dyqt
0
p

i qn qn ]
B dy,t = —-qg)a ( a) if
fo\df P4 (P q) nZ:; pn+1f pn+1 q

The formula of (p, q) —integration by parts is given by

Dyqf (x)

P

<1 3)

> 1.

b b
f f(px)Dyqg (¥)dpet = f(x)g (x)|lﬂ7 - f 9(qx) Dy g f (x) dpqt. 4)

All notions written above reduce to the g—analogs when p = 1. For more details,see the refrences mentioned
in above.
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2. (p, g)-Calculus on Finite Intervals

In this section, we define (p, qx)-derivative and (px, gx)-integral on finite intervals. Let I := [u, ux41] be
an interval and 0 < gx < px < 1 be constants.

Definition 2.1. Let f : I, — R be a continuous function and assume that u € Ir. Then the following equality

f (pxu+ (1= pi) ug) = f (qeu + (1 = qic) we)
(P = qi) (u — ug) ’
lim D, . f (1)

U—ug

U # Uy 5)

Dypqef (1)

Dpyqf (i)

is called the (py, qi)-derivative of a function f at u.

Obviously, f is (px, qx)-differentiable on I; provided D, ,, f (1) exists for all u € L. In (5), if py = 1,
then Dy, ;. f = D, f which is the gi-derivative of the function f and also if gx — 1,ux = 0, (5) reduces to
g-derivative of the function f, see [13, 28].

Example 2.2. Foru € I, if f (u) = (u— )", then

(v + (1= pio) e — ug)" = (qevt + (1 = i) g — )"
(Px = qr) (u — )
pi (= u)" = q} (u— )"
(Pr = qr) (u — w)
= [nlpx (u—u)"™" (6)

DPqukf W) =

where [n],, o, = %. If pr = 1in (6), then (6) reduces

Dy, f (u) = [n],, (u — ue)"™"
which is given in [28]. Also if qx — 1,y = 0, it reduces g-derivative of the given function, see [13].

Theorem 2.3. Suppose that f, g : I = R is (px, qi)-differentiable on Ii. Then:
(@) If f + g : It = Ris (p, gi)-differentiable on I, then

Dy (f ) + g () = Dpeg f () + Dp,g.9 (u) (7)
(D) IfAf : I > Ris (pk, qx)-differentiable on Iy for any constant A, then
Dpyqef ) = ADp g, f (1) (8)
(c) If fg : I, = Ris (p, gi)-differentiable on I, then
Dy (f9) (1) )

= g(peu+ (L= pi) uk) Dp, g f ) + f (g + (1 = gi) k) Dy, 5,9 (1)
f (pxu+ (1= pi) ux) Dy g9 () + g (qicvt + (1 = i) we) Dy g f ()

(d)If g (pru) g (qku + ( - Z—Z) uk) # 0, then § is (px, qi)-differentiable on Iy with

f) (W) = g (peu + (1 = pi)w) Dy, g f ) = f (peut + (1 = pi) we) Dp, 0,9 (u)' w0

D -
Pk (9 9 (peu + (1 = pr) ue) g (g + (1 — qic) )
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Proof. The proofs of (a) and (b) are obvious.
(c) From Definition 2.1, we have

Dy, 4. (fg) (W)
f(peu+ (1 = p) ui) g (pre + (1 = pi) ui) = f (qeae + (1 = gic) ) g (preut + (1 = pic) )
(P = qr) (u — w)
S+ A —g)ug) g (e + (A - po) ) — f (g + (1~ gi) ) g (e + (1 — g) 1)
(Pr = qx) (u — )
g (pru+ (1 = pi) ug) Dy g, f (W) + f (qiut + (1 = qi) ug) Dy 5,9 (1)

The second equation can be proved in similar way by interchanging the functions f and g.
(d) From Definition 2.1, we have

Dpkﬂk ('g) (Ll)

(£) (e + (= poy ) = (£) (@ + (1 = qi) o)
(P = qx) (u — we)
f (e + (1= po) uie) g (qeu + (1 — qi) we) — g (e + (1 = pic) we) f (qeue + (1 — qic) i)
g (pru + (1 = pic) we) g (qere + (1 = qe) i) (e — qic) (w0 — )
g (pxu + (1 = pi) ux) Dy, g f () = f (pru + (1 = pic) ) Dy, 0.9 (1)
g (pu + (1 = pie) uie) g (gt + (1 = gic) )

O

Definition 2.4. Let f : Iy — R be a continuous function. If Dy, o f is (px, qi)-differentiable on I, the second-order

2

derivative is defines as Dy, .

Dzwkf k> R

f with Dy, (Dpquk f) : I = R. By this way, we obtain n-th order (px, qi)-derivative

For instance, if f : [y — R, then we have

D%kﬂkf (1) Dy, (Dpqukf> (u)
DPkﬂkf (Pk” + (1 - Pk) uk) - DPk/Qkf (qk” + (1 - qk) le)
(Pr = qr) (u — )
F(pe(pru+ (1=pi) )+ (1=pe) i)~ £ (qe(pru+ (1=pe) e )+ (1= Juux)
(pe—ac) (pev+(1-pe Jue—ux)
(Px = qr) (u — )
F(pi (it (1= )i )+ (1=pic i)~ £ (e (qrerr+ (1=qi e )+ (1= Juax )
(pe=6) (quu+ (1-q e —ux)
(px = qi) (u — ug)
f (o (i + (1 = pi) uge) + (1 = pic) we)) = f (qic (vt + (1 = pie) i) + (1 = qe) uig)
P (P — i)’ (u — ug)?
S (pr (qre + (1= qi) i) + (1= pi) ) — f (i (et + (1 = qi) i) + (1 — qie) ug))

e (o — qk)’ (u — ug)?
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f(P;%“ + (1 - Pi) ”k) = f (qpru + (1 = qupic) we)
pe (pr — i) (u — )’
£ (e + (1= prge) i) = f (2 + (1 - 42) we)
) i (pe = 46)* (u = )’
af (Pf” + (1 - Pi) we) = (pi + qe) f (Pt + (1= piegi) ) + pif (q2u + (1 - qﬁ) uk)
ped (pr = qe)” (u = up)?

and D, . f (uy) = limy, D}, f (u).
We define the (px, gx)-integration as the inverse (py, gx)-differention. Assume that T, ,, is a shifting
operator defined by

qx qr
F(u u+|l-—|u 11
Trun () = (Pk ( Pk) k) v
where F (1) is the (py, gr)-antiderivative of f. Applying mathematical induction to (11), we see
I 9%
F( ) = (—nu+(1— —n)uk) (12)
T Pk Pk
wheren =1,2,...and TY _ F(u) = F (). From Definition 2.1, we have

Pk

fu) = F (peu + (1 = pie) ui) = F (qieu + (1 — qx) ”k)
(P — qx) (u — 1)

Making a change of variable, (pxu + (1 — pi) ux) = t, we have

f(t_(l—l’k)uk) _ E®)- F(qk”(l p)”k)

Pk - (’%)(f - ug)

Thus, we obtain

1 G t—(1-p) e
F() = 7= (1—p—)t—uk)f(—).

PioAlk Pk
Therefore, applying the formula of expansion of geometric series to (12), we have the following formula

F() = (1——)2 Pk t_”")f(t_(lp;kpk)uk)

©LRIT G bl G G )0

= q; q;
= (pk - qk) (t - uk) Z n+1 ( nlj-l E+1- n}j—l U
=0 Pk Px Py

Thus, we get

F () = (pe =) (1 - uk>2 u

qy s . qy
+ 1 n+1 u+ Tl
Pk P Pk

Now, we define the (py, gx)-integral of f on a finite interval as follows:
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Definition 2.5. Let f : I, — R is a continuous function. Then for 0 < g < px <1,

f f ) dpq5 = (P — qr) (0 — ug) Z — [p"“ (1 - pzlil]uk] (13)

n=0 Ik k

is called (px, qi)-integral of f for u € I.

Moreover, if a € (i, 1), then (py, g )-integral is defined by
f f(©)dp g8 (14)

f f@s) dpquksf fs)dp, g5
(P = qx) (u = 1) Z, i+l (pzljrl U+ (1 - pzlil J ”k]

n=0 Ik k
= (px = i) (a — we) i = (m ( _%]”k}
n()pk Pk Pk

Note that if ux = 0 and p = 1, then (14) reduces to gx—integral of the function. See, [28].

Remark 2.6. We assume 0 < gy < px < 1 for all of the above results. We shall mention that 0 < g <1,0 <pr <1
for interchanging py and gy in the formulas. So, we have

(15)
fu f)dpgs = (px—qi)(u—ug) Z e, [ Zil u+ (1 - %)uk} P >1
U n=0 pk pk pk q
! _ B B Pi P p
F s = Gpd-u) Y T p( e [ T | [P <o
[ n=0 qk qk qk q

where 0 < g <1,0<pr < 1.

Remark 2.7. Note that, if we take w, = 0 in (15), then (15) reduces to (3), [22, Definition 5.] . Also, if py = 1 in
(13), then (13) reduces to qx—integral of a function f defined by

fuf(s) dys = (1—qe) (u — uy) Z gof (qpu+ (1 - ) w).-
Uy n=0

For more details, see [28].

Theorem 2.8. The following formulas hold for u € I :
(@) Dy, [ £ () dpeges = f (u)
@fbmJGm% = f @

(©) [ Dypgf 5) g5 = f () = f (@), for a € (uy, w).
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Proof. (a) From Definition 2.1 and Definition 2.5, we obtain

Pk Tk f f(S) dﬁk L7k
qn
IR (pf” [ _'pgﬂ]”kﬂ

n=0 'k

Pk qk

(pet-+ (1= pe) = ) Ko e f (5 G+ (1= peyw) + (1= i )
(px = i) (1 = 1)

(P — qr)

(Qku + (1= qi) e — u) Xnlo m ( i (g + (1 = qi) ug) + ( )Mk)
(Pk = qi) (1 — 1)
) q]y: qk qk 00 qlrcz+1 q]};l+1 qz+l
e G Sl -
fu).
(b)From Definition 2.1 and Definition 2.5, we get

f DPk,lka (S) dpk,l]ks

Uk

Pk s

fwmwuwWM#wH(zm@
” (P — qr) (5 — ux)

g @AWHO MW”( wﬁg

= (px — q0) (u — wy) é prl (Px — qi) (u — 1)

(5 e+ (=g ) + (1 - )
(Pr = i) (u = ug)

-y (ei=R)u)

b pitl (u — ug)
qZH»l _ q:ﬂ
_f(P'k’“ wr (1 T )”")
(u — )
n n+1 n+1
k i Tk
= Zf( pku + (1 - a)uk) f(PZHPku + [1 - P,':H]uk]
fu).

(c) The proof is carried on from the part of (b). [

Theorem 2.9. Let f, g : I, — R are continuous functions. The following formulas hold:
(a) fuk [f (&) + 9 ()] dp g5 = fukf(s) dpges + Lk 9(8)dpq;
(b) ful; Af (8)dp g5 = A ful;f (8) dpi,q5;
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(C) fu f(qks +(1- qk) ) DPk a9 (ka) d}’k @S = (fg) Uk fuk 9 (Pks +(1- Pk) Uk) Dpk ﬂkf (s) dpk 73

Lk f(PkS + (1 - Pk) le) DPkAikg (qks) dpquks = (fg) (s) Zk - Lk g (qks + (1 - qk) uk) DPkAikf (s) dpk,liks

whereu € I, A € R.

Proof. The proofs of (a)-(b) are derived from Definition 2.5.
(c) From (9), we write

f @i+ (1= i) ) Dpegig () = Dy (fg) () = g (P + (1= pi) i) Dpg f (1) -

By integrating over [uy, #] and using Theorem 2.9 part (b), we get

f F (@t + (1~ 46) 1) Dy (7kS) e
Uy

= (fg)(w) - f g (peu + (1 = pr) ux) Dp, g f (5) dp, q.5-

O

3. Integral Inequalities On Finite Intervals

Lets start with (p, 9)-Holder integral ineqality on I = [4,0] :

1
Theorem 3.1. Let f and g be two functions defined on 1,0 < q < p < 1and s1,s2 > 1 with s_ o= 1. Then
1 82

b b 5 b 5
[T og0lr < ( [ 1rofF ) ([ ool ) a6)

Proof. From Definition 2.5 and discrete Holder inequality, we get
Vl q}’l qn qn
G- a)z‘ P (P"+1b+ (1 B W)a)gp”“M (1 B W)a‘
AN}
1- a
( n+1 ( pn+1 pn+1
qu qu qn
<ot (1 - ) ()
qn 51 qn 51
(- )] 55)
" \\ B
( n+1 (1 - Pn+1 ){1)
(f |f(t)|51 dwt) (f |g(t)|52 dpqt)

It easy to show that we obtain the same result in the statement p < g.

b
INCCEY:

p-q @

1
52

IA

[(P q) (b

((P q)®

Thus, the proof is complete.
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Corollary 3.2. Under the assumptions of Theorem 3.1, if we take s1 = s, = 2, then we have the following formula,

b b I b 3
f IF (g ) ud,,,,ts( f IFof ad,,,qt) ( f @) adp,qt) 17)

which we call (p, q)-Cauchy-Schwarz integral inequality.

Remark 3.3. Ifp = 1,(16)and (17) reduces to g-Holder integral inequality and q-Cauchy-Schwarz integral inequality
respectively.

S1 S1
7

and |f + g™ are (p, q)-integrable

Theorem 3.4. Let f and g real-valued functions on [a,b] such that | f g|

functions on [a,b],0 < g <p <landsy > 1. Then

b o b T b 5
(f f &) +g0)]" ad,,,,,t) s( f lf @[ ad,,,,,t) +( f lg o ﬂdp,,,t) . (18)

Equality holds if and only if f (t) = 0 almost everwhere or g (t) = pf (t) almost everywhere with a constant p > 0.

51
7

Proof. Since ( f

g|51 and ) f+ g)sl are (p, q)-integrable on [a, b], by using the triangle inequality, we can write

b s b
f lf O +g®[" adpat f lf O +g@||f &)+ 7O adpat

IA

b b
J 1ol o+ 00 st + [Tloollr 0+ a0 et

1 1
Taking s1,s, > 1 with — + — =1 and using (p, g) ~Holder integral inequality, we have

S1 S
b s1—1 b s1 % b (s1-1)s2 é
f [FO][f &) +g0) udp,qts( f |f () udp,qt) ( f [F O +g) udp,qt) (19)
and
[lollr o+ 508t = ( [l att)" ( [1r0 90 ) @

Since (s; — 1) s, = s1, from (19) and (20), it easy to see that

b -3 b T b 5
([ ool ) < ( [ o ) ([ ol

from which we obtain the required inequality. [

Remark 3.5. Ifp =1, (18) reduces to

b o b ¥ b &
(f |f(t)+g(t)|sldqt) s(f |f(t)|sldqt) +(f |g(t)|sldqt)

which can be called g-Minkowski integral inequality.
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