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Abstract. In this paper, a compact alternating direction implicit (ADI) method has been developed for
solving two-dimensional Riesz space fractional diffusion equation. The precision of the discretization
method used in spatial directions is twice the order of the corresponding fractional derivatives. It is proved
that the proposed method is unconditionally stable via the matrix analysis method and the maximum
error in achieving convergence is discussed. Numerical example is considered aiming to demonstrate the
validity and applicability of the proposed technique.

1. Introduction

Fractional calculus is a natural extension of the integer order calculus [21, 25]. Recently, many problems
in physics [17, 29], biology [14, 20], finance [6] and hydrology [2, 3, 10] have been formulated on fractional
partial differential equations, containing derivatives of fractional order in space, time or both. Fractional
derivatives play a key role in modelling particle transport in anomalous diffusion. The space fractional
diffusion equation describes Lévy flights [3, 19]. The time fractional diffusion equation depicts traps, and
the time-space fractional diffusion equation characterizes the competition between Lévy flights and traps
[35]. The regularity criterion is important for the diffusion equations that are proposed in dynamic systems.
Sadek et al. [27] established the Serrin-type regularity criteria for the 3D nematic liquid crystal flows in the
terms of the multiplier space XR3

r . Sadek and Ragusa [28] studied the regularity criterion in terms of the
homogeneous Besov space for the incompressible Boussinesq equations.

Numerical methods to different types of fractional diffusion models are increasingly appearing in
the sciences. Some models can be mentioned, which are groundwater flow, the flow of heat transfer
in furnaces, dissolving gases in liquids and fluid flow in a porous medium. In addition, the analytical
solutions of such equations are usually difficult to obtain, so in order to gain their numerical solutions
becomes more important and emergent. For one-dimensional problems, Cui [8] extended a compact
finite difference method for the fractional diffusion equation with the Riemann-Liouville derivative via
the Grünwald-Letnikov discretization. Alikhanov [1] constructed a widespread difference approximation
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of the Caputo fractional derivative for the time fractional diffusion equation with variable coefficients.
Borhanifar and Valizadeh [4] considered Mittag-Leffler-Padé approximations for space and time fractional
diffusion equations by using shifted Grünwald estimate in space, rational recurrence formula in time,
and discussed their stabilities and truncation errors. Çelik and Duman [7] used the fractional centered
difference that introduced by Ortigueira [23] to solve the Riesz fractional diffusion equation and also for
this type equation, some of the authors employed the matrix stemming from the discretization of the Riesz
space derivative by compact difference scheme and parameter spline function [38] and fractional centered
difference formula [26]. For two-dimensional problems, Bu et al. [5] developed the Galerkin finite element
method for the numerical study of the two-dimensional Riesz space fractional diffusion equations combined
with a backward difference method. Tadjeran and Meerschaert [32] applied a mixed Crank-Nicolson- ADI
method not only as a discretization, but also as a Richardson extrapolation to obtain a numerical solution
of the two-dimensional space fractional diffusion equation and they examined of being unconditionally
stable and second order accuracy of the method. H. Wang and K. Wang [33] investigated an O(Nlo12N)
alternating-direction finite difference method for the two dimensional fractional diffusion equations and at
the same time, Zhang and Sun [37] explored ADI schemes for the two-dimensional fractional sub-diffusion
equation. Zeng et al. [36] derived approximate solution via Crank-Nicolson ADI spectral method for the
two-dimensional Riesz space fractional nonlinear reaction diffusion equation. Gao and Sun [15] handled
high order compact ADI schemes for the 2D time-fractional advection-diffusion equation. The numerical
solutions of the two-dimensional Riesz space fractional diffusion equations have been challenging. The
main purpose of this paper is to solve the two-dimensional Riesz space fractional diffusion equations
using the compact difference scheme with the operator-splitting techniques, that is, using the compact ADI
scheme.

Let Ω be a rectangular domain in R2 with boundary Γ = ∂Ω and J = (0,T] be the time interval, T > 0. In
this paper, we consider the following two dimensional Riesz space fractional diffusion equation for a solute
concentration u

∂u(x, y, t)
∂t

= Cx
∂αu(x, y, t)
∂|x|α

+ Cy
∂βu(x, y, t)
∂|y|β

+ s(x, y, t), (x, y, t) ∈ Ω × J, (1)

u(x, y, 0) = f (x, y), (x, y) ∈ Ω, (2)

u(x, y, t) = 0, (x, y, t) ∈ Γ × J, (3)

where Cx and Cy are the average fluid velocities in the x- and y-directions. We restrict 1 < α, β ≤ 2 and
assume Cx,Cy ≥ 0. The solution u = u(x, y, t) is assumed to be sufficiently smooth and has the necessary
continuous partial derivatives up to certain orders.

The outline of the paper is organized as follows. Preliminaries and basic definitions are presented in
the next section. Section 3 is devoted to the construction and explanation of numerical algorithm that the
Crank-Nicolson scheme and the alternating directions implicit method is combined together. In Section 4,
the stability and the convergence order of the numerical scheme are theoretically analyzed. One example
is given in Section 5 and some conclusions are drawn in Section 6.

2. Preliminaries and basic definitions

Definition 2.1. The Riesz fractional operator for n − 1 < γ ≤ n on a finite interval a ≤ x ≤ b is defined as [16, 30]

∂γv(x, t)
∂|x|γ

= −ϑγ(aDγ
x + xDγ

b )v(x, t), (4)

where

ϑγ =
1

2cos(πγ2 )
, γ , 1,
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aDγ
x v(x, t) =

1
Γ(n − γ)

∂n

∂xn

∫ x

a
(x − ξ)n−γ−1v(ξ, t)dξ,

xDγ
b v(x, t) =

(−1)n

Γ(n − γ)
∂n

∂xn

∫ b

x
(ξ − x)n−γ−1v(ξ, t)dξ.

Lemma 2.2. For a function h(x) defined on the infinite domain −∞ < x < ∞, the following equality holds:

−(−∆)
γ
2 h(x) = −

1
2cos(πγ2 )

[−∞Dγ
x h(x) + xDγ

∞h(x)] =
∂γ

∂|x|γ
h(x). (5)

Proof. See Ref. [34]

Definition 2.3. [12] Let the Laplacian (−∆) has a complete set of orthonormal eigenfunctions ϕn corresponding to
eigenvalues λ2

n on a bounded region Ω with the homogeneous boundary conditions, then

(−∆)
γ
2 f =


(−∆)m f , γ = 2m, m = 0, 1, 2, ...,
(−∆)

γ
2−m(−∆)m f , m − 1 < γ

2 < m, m = 1, 2, ...,∑
∞

n=1 λ
γ
n〈 f , ϕn〉ϕn, γ < 0.

Lemma 2.4. [22] The eigenvalues and eigenvectors of the following tridiagonal Toeplitz matrix

A =


b a
c b a

. . .
. . .

. . .
c b a

c b


n×n

are given by

λ j = b + 2a
√

c/a cos( jπ/(n + 1)), j = 1, 2, ...,n, (6)

while the corresponding eigenvectors are:

x j =


(c/a)1/2 sin(1 jπ/(n + 1))
(c/a)2/2 sin(2 jπ/(n + 1))
(c/a)3/2 sin(3 jπ/(n + 1))

...
(c/a)n/2 sin(njπ/(n + 1))


, j = 1, 2, ...,n,

i.e., Ax j = λ jx j, j = 1, 2, ...,n. Moreover, the matrix A is diagonalizable and P = (x1 x2 ... xn) diagonalizes A,
i.e., P−1AP = D, where D = dia1(λ1 λ2 ... λn).

Definition 2.5. [18] Let f , 1 : R − {0} → R be real functions. We say f = O(1) as x → 0 if there are constants C
and r > 0 such that

| f (x) |≤ C | 1(x) | whenever 0 <| x |< r.

also following properties of asymptotic estimates are hold for ”O” [13]:

O( f (x)) + O( f (x)) = O( f (x)),

O( f (x))O(1(x)) = O( f (x)1(x)).
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Lemma 2.6. If 1(x) be a smooth function on R that is discretized in a finite interval [a, b] include n nodal points as
xi = a + ih in which h = b−a

n then 1
h2

δ2
x

1+
δ2
x

12

operator approximates the second derivative of the 1(x) from the fourth order

at inner nodal points of [a, b].

Proof. According to being smooth the function 1(x), there is continuous function f (x) that

1′′(x) =
d21(x)

dx2 = f (x).

Alternatively, we can write, 1(x) is an exact solution of the above differential equation. To prove the lemma,
needs to show the following relationship is confirmed in the internal nodes xi, i = 1, 2, ...n − 1.

1
h2 δ

2
x1(xi) − (1 +

δ2
x

12
) f (xi) = O(h4),

we apply the relevant operators on 1(xi) and then f (xi)

1
h2 δ

2
x1(xi) =

1(xi + h) − 21(xi) + 1(xi − h)
h2 , (7)

(1 +
δ2

x

12
) f (xi) = (1 +

δ2
x

12
)1′′(xi) = 1′′(xi) +

1′′(xi + h) − 21′′(xi) + 1′′(xi − h)
12

. (8)

By substituting the Taylor series of the function 1(xi + h) and 1(xi − h) about x = xi in the formula (7) and
using the average value theorem for derivatives, we have

1
h2 δ

2
x1(xi) = 1′′(xi) +

1(4)(xi)
12

h2 +
1(6)(xi)

360
h4 +

1(8)(ξ)
20160

h6, xi − h < ξ < xi + h. (9)

Similarly, 1′′(xi + h) and 1′′(xi − h) in the formula (8) replace with Taylor expansion theirs centered at x = xi
and applying the average value theorem for derivatives, we have

(1 +
δ2

x

12
) f (xi) = 1′′(xi) +

1
12

[1(4)(xi)h2 +
1(6)(xi)

12
h4 +

1(8)(ζ)
360

h6], xi − h < ζ < xi + h. (10)

The result is following equation by subtracting formula (10) from formula (9), utilized the average value
theorem

1
h2 δ

2
x1(xi) − (1 +

δ2
x

12
) f (xi) = −

1
240
1(6)(xi)h4

−
1

60480
1(8)(η)h6, xi − h < η < xi + h,

therefore

1′′(xi) =
1
h2

δ2
x

1 +
δ2

x
12

1(xi) + O(h4).

3. Derivation of compact ADI scheme

In this section, we develop a compact ADI finite difference scheme for the problem (1)–(3). Let hx = R1−L1
M1

,
hy = R2−L2

M2
, and kt = T

N be the spatial and temporal step sizes respectively, where M1, M2 and N are some
given positive integers. Denote xi = L1 + ihx, y j = L2 + jhy, tn = nkt for i = 0, 1, ...,M1, j = 0, 1, ...,M2 and
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n = 0, 1, ...,N. We let u(xi, y j, tn) be the exact solution of (1)–(3) at the mesh point (xi, y j, tn) and un
i, j represents

the solution of an approximating difference scheme at the same mesh point.
Based on Lemma 2.2 the Riesz fractional derivative ∂γ

∂|x|γ h(x) and the fractional Laplacian operator

−(−∆)
γ
2 h(x) are equivalent. Thus the two-dimensional Riesz space fractional diffusion equation (1) is in the

following form

∂u(x, y, t)
∂t

= −[Cx(−∆x)
α
2 + Cy(−∆y)

β
2 ]u(x, y, t) + s(x, y, t). (11)

The next stage is to translate each of fractional Riesz derivatives into their corresponding fractional operators
at the point (xi, y j, t). From (24) and (25) in Appendix A we have

((−∆x)
α
2 u)i, j ' (−

1
h2

x

δ2
x

1 +
δ2

x
12

)
α
2 ui, j, (12)

and

((−∆y)
β
2 u)i, j ' (−

1
h2

y

δ2
y

1 +
δ2

y

12

)
β
2 ui, j. (13)

Substituting (12)-(13) into (11) yields

∂un
i, j

∂t
= −[CxDα,x + CyDβ,y]un

i, j + sn
i, j, (14)

in which

(−
1
h2

x

δ2
x

1 +
δ2

x
12

)
α
2 = Dα,x, (−

1
h2

y

δ2
y

1 +
δ2

y

12

)
β
2 = Dβ,y.

Finally, temporal discretization by Crank-Nicolson method for (14) results in

un+1
i, j − un

i, j

kt
= −[CxDα,x + CyDβ,y]

un
i, j + un+1

i, j

2
+

sn
i, j + sn+1

i, j

2
. (15)

After rearrangement and multiplying (15) by kt, we have

[1 +
kt

2
(CxDα,x + CyDβ,y)]un+1

i, j = [1 −
kt

2
(CxDα,x + CyDβ,y)]un

i, j +
kt

2
(sn

i, j + sn+1
i, j ). (16)

We note that the compact finite difference method (16) can be rewritten as the following directional splitting
factorization form [9]

[1 +
kt

2
CxDα,x][1 +

kt

2
CyDβ,y]un+1

i, j = [1 −
kt

2
CxDα,x][1 −

kt

2
CyDβ,y]un

i, j +
kt

2
(sn

i, j + sn+1
i, j ), (17)

which introduces an additional perturbation error equal to kt
4Dα,xDβ,y(un+1

i, j − un
i, j).

The additional term is of higher order and do not affect the accuracy of the scheme. In order to simplify the
computation, we may re-write the scheme (17) in the Peaceman-Rachford ADI form [24] as

[1 +
kt

2
CxDα,x]u∗i, j = [1 −

kt

2
CyDβ,y]un

i, j +
kt

2
(sn

i, j + sn+1
i, j ), (18)

[1 +
kt

2
CyDβ,y]un+1

i, j = [1 −
kt

2
CxDα,x]u∗i, j +

kt

2
(sn

i, j + sn+1
i, j ), (19)
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where u∗i, j is an intermediate value.
The corresponding algorithm is employed as follows:

(1) First solve on each fixed horizontal slice y = yk (k = 1, 2, ...,M2 − 1), a set of M1 − 1 equations at the
points xi, i = 1, 2, ...,M1 − 1 defined by (18) to obtain the middle solution slice u∗i,k.

(2) Next alternating the spatial direction, and for each x = xk (k = 1, 2, ...,M1 − 1) solving a set of M2 − 1
equations defined by (19) at the points y j, j = 1, 2, ...,M2 − 1, to get un+1

i, j .

4. Stability and convergence analysis

In this section, we prove consistency and stability for the compact difference scheme (17).

Theorem 4.1. The compact difference scheme (17) is unconditionally stable.

Proof. To prove the stability of the difference scheme (17), we examine the matrix (I + Sx)−1(I − Sx) ⊗ (I +
Ty)−1(I − Ty) that stands as the tensor operator in formula (17).
Appendices A and B, show that the eigenvalues of matrices Sx and Ty are positive. Therefore all the eigenvalues
of the matrices (I + Sx) and (I + Ty) are greater than one, and thus this matrices are invertible. Positivity
of eigenvalues of the matrix Sx and Ty result that every eigenvalue of the matrices of (I + Sx)−1(I − Sx)
and (I + Ty)−1(I − Ty) have the modulates less than one. Therefore, the spectral radius of the matrices
(I + Sx)−1(I − Sx) and (I + Ty)−1(I − Ty) are less than one. (I + Sx)−1(I − Sx) and (I + Ty)−1(I − Ty) are real and
symmetric due to symmetricity of Sx and Ty (see Appendix B). So the norm of the matrices of (I + Sx)−1(I−Sx)
and (I + Ty)−1(I − Ty) are less than one.
Hence, the difference scheme (17) is unconditionally stable.

Theorem 4.2. The truncation error of the difference scheme (17) is O(h2α
x ) + O(h2β

y ) + O(k2
t ).

Proof. Let u(xi, y j, tn) be the exact solution of (1)–(3) and un
i, j be the solution of the numerically recurrence

scheme (17). First, we derive the principal error term associated with discretization of the Riesz fractional
derivative operators. we note that by considering the arbitrary order γ and variable z, based on the
multiplication property of the order ”O”, (see Definition 2.5) we have the following relation

(O(h4
z))

γ
2 = O((h4

z)
γ
2 ) = O(h2γ

z ).

By applying the Lemma 2.2 on the Eqs. (24), (25), (see Appendix A) and smoothness of the exact solution u,
we have

(
∂αu
∂|x|α

)i, j = −Dα,xui, j + O(h2α
x ),

and

(
∂βu
∂|y|β

)i, j = −Dβ,yui, j + O(h2β
y ).

Second, we discuss the local truncation error for scheme (17). We use the two-dimensional case of (12)-(13)
and Crank-Nicolson scheme to do the discretization in space and time directions, respectively. Substitution
in to the expression for (1) yields

[1 +
kt

2
CxDα,x +

kt

2
CyDβ,y]u(xi, y j, tn+1) = [1 −

kt

2
CxDα,x −

kt

2
CyDβ,y]u(xi, y j, tn) + Rn+1

i, j (20)

where

| Rn+1
i, j |≤ ckt(O(h2α

x ) + O(h2β
y ) + O(k2

t )). (21)
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Finally, we give the global discretization error for numerically approximated scheme (17). Taking en
i, j =

u(xi, y j, tn) − un
i, j, and subtracting (17) from (20), yields

(I + Sx)(I + Ty)en+1 = (I − Sx)(I − Ty)en + Rn+1 (22)

where Sx and Ty are defined in (26) and (27) of Appendix B, respectively, and

en = [en
1,1, e

n
2,1, ..., e

n
M1−1,1, e

n
1,2, e

n
2,2, ..., e

n
M1−1,2, ..., e

n
1,M2−1, e

n
2,M2−1, ..., e

n
M1−1,M2−1]T,

Rn = [Rn
1,1,R

n
2,1, ...,R

n
M1−1,1,R

n
1,2,R

n
2,2, ...,R

n
M1−1,2, ...,R

n
1,M2−1,R

n
2,M2−1, ...,R

n
M1−1,M2−1]T.

Now from (21) one can write

| Rn+1
i, j |≤ ckt(O(h2α

x ) + O(h2β
y ) + O(k2

t )). (23)

Since Sx and Ty commute, then from (22)

en+1 = (I + Sx)−1(I − Sx)(I + Ty)−1(I − Ty)en + (I + Sx)−1(I + Ty)−1Rn+1.

With taking the 2-norm on both sides of the above relation, we have

‖ en+1
‖≤‖ en

‖ + ‖ Rn+1
‖ .

Since from Theorem 4.1 one can write

‖ (I + Sx)−1(I − Sx)(I + Ty)−1(I − Ty) ‖≤‖ (I + Sx)−1(I − Sx) ‖ . ‖ (I + Ty)−1(I − Ty) ‖≤ 1

and

‖ (I + Sx)−1(I + Ty)−1
‖≤‖ (I + Sx)−1

‖ . ‖ (I + Ty)−1
‖≤ 1.

We use mathematical induction to create the relation between error in final step and errors created in earlier
steps, i.e.,

‖ en+1
‖≤‖ en

‖ + ‖ Rn+1
‖≤‖ en−1

‖ + ‖ Rn
‖ + ‖ Rn+1

‖ .

Since ‖ e0
‖=‖ u(xi, y j, t0) − u0

i, j ‖ from (23) we conclude that

‖ en
‖≤

n∑
k=1

‖ Rk
‖≤ C(O(h2α

x ) + O(h2β
y ) + O(k2

t )),

where C = nckt.
It is shown that the solution to (1)–(3) can be approximated by numerical scheme (17) with the discretization
error O(h2α

x ) + O(h2β
y ) + O(k2

t ).

By Theorems 4.1 and 4.2 and Lax’s equivalence theorem [31], the scheme (17) is convergent.

5. Numerical experiments

In this section, we will present an example of two dimensional Riesz space fractional diffusion equations.
We shall compare the numerical solutions with the exact solutions. To demonstrate the accuracy of preferred
method, we have computed not only maximum errors, but also estimated convergence rates separately in
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spatial and temporal directions.
The maximum absolute errors between the exact and the numerical solutions

E∞(h, kt) = max
i, j
| u(xi, y j, tN) − uN

i, j |,

are measured in our examples. Furthermore, the spatial convergence order, denoted by

Convergence Rate1 = log2(E∞(2h, kt)/E∞(h, kt)),

for sufficiently small kt, and the temporal convergence order, denoted by

Convergence Rate2 = log2(E∞(h, 2kt)/E∞(h, kt)),

when h is sufficiently small, are reporting. The numerical results given by these examples justify our
theoretical results.

Example 5.1. We consider the following two dimensional Riesz space fractional diffusion equation with the initial
and homogeneous Dirichlet boundary conditions:

∂u(x, y, t)
∂t

= Cx
∂αu(x, y, t)
∂|x|α

+ Cy
∂βu(x, y, t)
∂|y|β

+ s(x, y, t), 0 < t < 2, 0 < x, y < π,

u(x, y, 0) = x2y2(π − x)(π − y), 0 ≤ x, y ≤ π,

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, 0 ≤ t ≤ 2, 0 ≤ x, y ≤ π,

with source function

s(x, y, t) =
Cxy2(π − y)e−t

2cos(πα2 )
Θ(x, α) +

Cyx2(π − x)e−t

2cos(πβ2 )
Θ(y, β) − x2y2(π − x)(π − y)e−t

where Θ(z, γ) = 2πz2−γ

Γ(3−γ) −
6z3−γ

Γ(4−γ) +
π2(π−z)−γ

Γ(1−γ) −
2π(π−z)1−γ

Γ(2−γ) +
2(π−z)2−γ

Γ(3−γ) and Cx = Cy = 0.25. The corresponding exact
solution is u(x, y, t) = x2y2(π − x)(π − y)e−t.

The table 1 shows maximum absolute errors and related estimated convergence rates with different values for
hx = hy as 0.1π, 0.05π, 0.025π, 0.0125π and 0.00625π, fixed value kt = 0.001 whereas Table 2 presents them with
different values for kt as 0.1, 0.05, 0.025, 0.0125 and 0.00625 and fixed value hx = hy = 0.001π. Whose fractional
derivative orders α = 1.8, β = 1.6 and α = 1.8, β = 1.8 are considered separately in two tables. From Tables 1 and
2, we find the experimental convergence orders are approximately twice the smallest fractional derivative and two in
spatial and temporal directions, respectively. The numerical Example results are provided to show that the proposed
approximation method is computationally efficient.

6. Conclusions

In the present work, a high order compact ADI method for solving the two dimensional Riesz space
fractional diffusion equation has been established. The method is spatially twice the smallest fractional
derivative- and temporally second-order accuracy. It is shown through a matrix analysis that it is uncon-
ditionally stable. Numerical results are provided to verify the accuracy and efficiency of the preferred
method.
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Table 1: The maximum errors and convergence rates for the compact ADI method for solving 2D Riesz space FDE with halved spatial
step sizes and kt = 0.001

Max Error Convergence Max Error Convergence
hx = hy α = 1.8, β = 1.6 Rate α = β = 1.8 Rate

0.10000π 7.36901e − 003 5.17481e − 003
0.05000π 9.30631e − 004 2.98519 4.92617e − 004 3.39297
0.02500π 1.10146e − 004 3.07879 4.45651e − 005 3.46648
0.01250π 1.24084e − 005 3.15003 3.85100e − 006 3.53261
0.00625π 1.35755e − 006 3.19224 3.21297e − 007 3.58325

Table 2: The maximum errors and convergence rates for the compact ADI method for solving 2D Riesz space FDE with halved
temporal step sizes and hx = hy = 0.001π

Max Error Convergence Max Error Convergence
kt α = 1.8, β = 1.6 Rate α = β = 1.8 Rate

0.10000 8.53972e − 003 6.78334e − 003
0.05000 2.50889e − 003 1.76714 2.04295e − 003 1.73134
0.02500 6.85153e − 004 1.87255 5.74989e − 004 1.82905
0.01250 1.77936e − 004 1.94507 1.53015e − 004 1.90986
0.00625 4.34099e − 005 2.03526 3.89268e − 005 1.97484

Appendix A

We consider the fourth-order compact approximations for the second-order derivative operators based
on Lemma 2.6 (also see [11])

(
∂2u
∂x2 )i, j =

1
h2

x

δ2
x

1 +
δ2

x
12

ui, j + O(h4
x), for i = 0, 1, ...,M1 and fix j (24)

(
∂2u
∂y2 )i, j =

1
h2

y

δ2
y

1 +
δ2

y

12

ui, j + O(h4
y), for j = 0, 1, ...,M2 and fix i (25)

where δ2
x and δ2

y are the standard second-order central difference operators in x- and y- directory respectively.
If the boundary values at i = 0 and i = M1, j > 0, are known, these (M1 − 1) equation for i = 1, 2, ...,M1 − 1
can be written in matrix form

((
1
h2

x

δ2
x

1 +
δ2

x
12

)i, j) = A−1
x Bx, i, j = 1, 2, ...,M1 − 1,

where Ax =
h2

x
12 dia1(1, 10, 1) and Bx = dia1(1,−2, 1) are tridiagonal matrices of M1 − 1 order. And if the

boundary values at j = 0 and j = M2, i > 0, are known, these (M2 − 1) equation for j = 1, 2, ...,M2 − 1 can be
written in matrix form

((
1
h2

y

δ2
y

1 +
δ2

y

12

)i, j) = A−1
y By, i, j = 1, 2, ...,M2 − 1,

where Ay =
h2

y

12 dia1(1, 10, 1) and By = dia1(1,−2, 1) are tridiagonal matrices of M2 − 1 order.
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Referring to the Lemma 2.4 our achievement on that the eigenvalues of the matrix of the −1
h2

x

δ2
x

1+
δ2
x

12

operator

is as follows:

λ j = [
h2

x

12
(10 + 2 cos( jπ/M1))]−1

× (−1) × [−2 + 2 cos( jπ/M1)]

=
12
h2

x

2 − 2 cos( jπ/M1)
12 − 2 + 2 cos( jπ/M1)

=
12
h2

x

4 sin2( jπ/2M1)

12 − 4 sin2( jπ/2M1)

=
12
h2

x
sin2( jπ/2M1)(3 − sin2( jπ/2M1))−1

Since the eigenvalues of matrix (−1
h2

x

δ2
x

1+
δ2
x

12

) are distinct positive. So there is a pair of matrices Dx and P that

Dx is a diagonal matrix which members are eigenvalues of matrix −A−1
x Bx and the columns of the matrix P

are eigenvectors corresponding to the these eigenvalues and we have

−A−1
x Bx = PDxP−1

And similarly, in the direction of the second axis, there are pair matrices Dy and Q which have the following
relation

−A−1
y By = QDyQ−1.

As respects the eigenvalues of the matrices −A−1
x Bx and −A−1

y By are positive and distinct, and the matrices
Ax, Bx, Ay and By are all symmetric, so the matrices −A−1

x Bx and −A−1
y By are symmetric positive definite.

Appendix B

In this section, the matrix form of the operators kt
2 CxDα,x and kt

2 CyDβ,y, which is displayed by Sx and Ty
respectively, is represented.

Sx = m{
kt

2
CxDα,x} =

kt

2
CxPD

α
2
x P−1 (26)

where Dx = dia1(λ1 λ2 ... λM1−1) and P = (x1 x2 ... xM1−1) in which

xi =


sin(1iπ/M1)
sin(2iπ/M1)
sin(3iπ/M1)

...
sin((M1 − 1)iπ/M1)


, λi =

12 sin2(iπ/2M1)
h2

x(3 − sin2(iπ/2M1))
, i = 1, 2, ...,M1 − 1,

and similarly

Ty = m{
kt

2
CyDβ,y} =

kt

2
CyQD

β
2
y Q−1 (27)

where Dy = dia1(γ1 γ2 ... γM2−1) and Q = (y1 y2 ... yM2−1) in which

y j =


sin(1 jπ/M2)
sin(2 jπ/M2)
sin(3 jπ/M2)

...
sin((M2 − 1) jπ/M2)


, γ j =

12 sin2( jπ/2M2)

h2
y(3 − sin2( jπ/2M2))

, j = 1, 2, ...,M2 − 1.
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By attention to the positivity of the eigenvalues of the matrices −A−1
x Bx and −A−1

y By for every orders M1 − 1
and M2 − 1 respectively, eigenvalues of matrices of Sx and Ty are positive and we have from Appendix A
that the two matrices −A−1

x Bx and −A−1
y By are real and symmetric therefore the two matrices Sx and Ty are

real and symmetric. Moreover, note that the two matrices Sx and Ty commute, i.e.

Sx ⊗ Ty = Ty ⊗ Sx.
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