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Abstract. In this paper, we introduce the concept of contractive pair maps and give some necessary and
sufficient conditions for existence and uniqueness of best proximity points for such pairs. In our approach,
some conditions have been weakened. An application has been presented to demonstrate the usability of
our results. Also, we introduce the concept of cyclic ψ-contraction and cyclic asymptotic ψ-contraction and
give some existence and convergence theorems on best proximity point for cyclic ψ-contraction and cyclic
asymptotic ψ-contraction mappings. The presented results extend, generalize and improve some known
results from best proximity point theory and fixed-point theory.

1. Introduction and Preliminaries

Let Ω be a metric space and let ∆ and Λ be nonempty subsets of Ω. Let

∆◦ = {δ ∈ ∆ : d(δ, λ) = d(∆,Λ) f or some λ ∈ Λ},

Λ◦ = {δ ∈ Λ : d(δ, λ) = d(∆,Λ) f or some λ ∈ ∆}.

If there is a pair (δ0, λ0) ∈ ∆ ×Λ for which

d(δ0, λ0) = d(∆,Λ) = sup
δ∈∆

inf
λ∈Λ

d(δ, λ),

where d(∆,Λ) is the distance between ∆ and Λ, then the pair (δ0, λ0) is called a best proximity pair for ∆
and Λ. Best proximity pair derives as an extension of the notion of best approximation.

We can find the best proximity points of the sets ∆ and Λ, by considering a map Γ : ∆ ∪Λ→ ∆ ∪Λ. We
say that the point δ ∈ ∆ ∪ Λ is a best proximity point of the pair (∆,Λ), if d(δ,Γδ) = d(∆,Λ) and we denote
the set of all best proximity points of (∆,Λ) by PΓ(∆,Λ), that is,

PΓ(∆,Λ) = {δ ∈ ∆ ∪Λ : d(δ,Γδ) = d(∆,Λ)}.
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Best proximity point also derives as an extension of the notion of fixed point of mappings, because every
best proximity point is a fixed point of Γ whenever ∆ ∩Λ , ∅.

A best proximity point theorem for contractive mappings has been considered in [12]. Eldred et al.
[4] have extracted a best proximity point theorem for relatively nonexpansive mappings, an alternative
treatment to which has been focused in Sankar Raj and Veeramani [16]. A best proximity point theorem for
contractions has been presented in [13]. Anuradha and Veeramani [1] have examined best proximity point
theorems for proximal pointwise contractions. Best proximity point theorems for various contractions have
been discussed by many authers( [4]-[16]).

This paper contains two sections. In the first section, we introduce the concept of contractive pair maps
and give some necessary and sufficient conditions for existence and uniqueness of best proximity points
for such pairs which causes the weakness of some conditions of [12]. An application has been presented to
demonstrate our results.

In the second section, we introduce the concept of cyclic ψ-contraction and cyclic asymptotic ψ-
contraction which are important generalizations of the cyclic contraction by substituting the constant k
by a real-valued control function ψ : [0,∞) → [0,∞) and so we give some existence and convergence
theorems for best proximity point of cyclic ψ-contractive and cyclic asymptotic ψ-contractive mappings.

2. Best proximity points by contraction pair maps

First we give a simple and useful result in best proximity points. It is notable that some results in this
section are extensions of the Eldred and Veeramani results in [5]. We start by a new definition.

Definition 2.1. Let ∆ and Λ be nonempty subsets of a metric space Ω and let Γ : ∆→ Λ and Υ : Λ→ ∆. The pair
(Γ,Υ) is said to be a contractive pair if,

d(Γδ,Υλ) ≤ kd(δ, λ) + (1 − k)dist(∆,Λ) (1)

for some k ∈ (0, 1) and for all δ ∈ ∆ and λ ∈ Λ.

Note that (1) implies that Γ satisfies d(Γδ,Υλ) ≤ d(δ, λ), for all δ ∈ ∆ and λ ∈ Λ. For example, let
∆ = {(δ, 0) : δ ∈ [0, 1]} and Λ = {(δ, 1) : δ ∈ [0, 1]}. Define the pair Γ,Υ by Γ(δ, 0) = ( 1

2 , 1) and Υ(δ, 1) = ( 1
2 , 0).

Then it is easy to see that (Γ,Υ) is a contractive pair.

Proposition 2.2. Let ∆ and Λ be nonempty closed subsets of a complete metric space Ω. Let (Γ,Υ) be a contraction
pair, (δ0, λ0) ∈ ∆ × Λ and δn+1 := Υλn and λn+1 := Γδn, for all n ∈ N. Suppose that {δn} and {λn} have convergent
subsequences in ∆ and Λ. Then there exists (δ, λ) ∈ ∆ ×Λ such that d(δ,Γδ) = d(λ,Υλ) = dist(∆,Λ).

Proof. We know that

d(δn+1, λn+1) = d(Γδn,Υλn) ≤ kd(δn, λn) + (1 − k)dist(∆,Λ)
≤ k2d(δn−1, λn−1) + (1 − k2)dist(∆,Λ)
...

≤ knd(δ0, λ0) + (1 − kn)dist(∆,Λ),

that is,
d(δn+1, λn+1) ≤ knd(δ0, λ0) + (1 − kn)dist(∆,Λ).

Therefore, d(δn, λn)→ dist(∆,Λ). Let {δnk } be a subsequence of {δn} converging to some δ ∈ ∆. Now

dist(∆,Λ) ≤ d(δ, λnk ) ≤ d(δ, δnk ) + d(δnk , λnk ).
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Thus d(δ, λnk ) converges to dist(∆,Λ). Since

dist(∆,Λ) ≤ d(δnk ,Γδ) = d(Υλnk ,Γδ) ≤ d(λnk , δ).

Thus, d(δ,Γδ) = dist(∆,Λ). �

Theorem 2.3. (Compare to [8, Theorem 2.1]) Let ∆ and Λ be nonempty closed subsets of a metric space Ω and (Γ,Υ)
a contractive pair. If Γ and Υ be contraction, then there exists (δ, λ) ∈ ∆×Λ such that d(δ,Γδ) = d(λ,Υλ) = dist(∆,Λ).

Proof. By Proposition 2.2, it is sufficient to show that {δ2n} and {λ2n} are convergence sequences in ∆ and Λ.
Note that

d(δ2n, δ2n+2) = d(Γλ2n−1,Γλ2n+1) < d(λ2n−1, λ2n+1)

and
d(λ2n−1, λ2n+1) = d(Γδ2n−2,Γδ2n) < d(δ2n−2, δ2n+1).

Hence, {d(δ2n, δ2n+2)} is monotonic decreasing and bounded below. So,

lim
n→∞

d(δ2n, δ2n+2)

exists. Let limn→∞ d(δ2n, δ2n+2) = δ. It is clear that 0 ≤ δ. Assume that δ > 0. Hence,

δ = lim
n→∞

d(δ2n, δ2n+2) < lim
n→∞

d(δ2n−2, δ2n) = δ.

So, δ = 0.
Now, we show that {δ2n} is a Cauchy sequence. Assume that {δ2n} is not Cauchy. Then there exist ε > 0

and integers 2mk, 2nk ∈ LambdabbN such that 2mk > 2nk ≥ k and d(δ2nk , δ2mk ) ≥ ε for k = 0, 1, 2, · · · . Also,
choosing mk as small as possible, it may be assumed that

d(δ2nk , δ2mk−2) < ε.

Hence, for each k ∈ LambdabbN, we have

ε ≤ d(δ2nk , δ2mk ) ≤ d(δ2nk , δ2mk−2) + d(δ2mk−2, δ2mk )
≤ ε + d(δ2mk−2, δ2mk )

and since d(δ2mk−2, δ2mk )→ 0, hence limk→∞ d(δ2nk , δ2mk ) = ε. Observe that

d(δ2nk , δ2mk ) ≤ d(δ2nk , δ2nk+2) + d(δ2nk+2, δ2mk+2) + d(δ2nk+2, δ2mk )
< d(δ2nk , δ2nk+2) + d(λ2nk+1, λ2mk+1) + d(δ2nk+2, δ2mk ).

Letting k→∞, we obtain that

ε < lim
k→∞

d(λ2nk+1, λ2mk+1).

On the other hand,

lim
k→∞

d(λ2nk+1, λ2mk+1) < lim
k→∞

d(δ2nk , δ2mk ) = ε

which is a contradiction. Hence, {δ2n} is a Cauchy sequence in ∆ and so {δ2n} converge to δ ∈ ∆. Similarly,
{λ2n} converges to λ ∈ Λ. �

Remark 2.4. Under the contractive pair assumption in Theorem 2.3, compactness of ∆ and Λ had been omitted with
respect to [8,Theorem 2.1].
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A metric space X is boundedly compact if all closed bounded subsets of X are compact. Every boundedly
compact metric space is complete.

Corollary 2.5. Let ∆ and Λ be nonempty closed subsets of a complete metric space Ω. Suppose that the mappings
Γ : ∆→ Λ and Υ : Λ→ ∆ are such that

d(Γδ,Υλ) ≤ αd(δ, λ) + β[d(δ,Γδ) + d(λ,Υλ)] + γdist(∆,Λ)

for all δ ∈ ∆ and λ ∈ Λ, where α, β, γ ≥ 0 and α+ 2β+ γ < 1. If either ∆ or Λ is boundedly compact, then there exist
δ ∈ ∆ and λ ∈ Λ such that d(δ,Γδ) = d(λ,Υλ) = dist(∆,Λ).

Proof. Suppose that (δ0, λ0) ∈ ∆ ×Λ and define δn+1 = Υλn, λn+1 = Γδn, for all n ∈N. Now, we have

d(λn+1, δn+2) = d(Γδn,Υλn+1)
≤ αd(δn, λn) + β[d(δn,Γδn) + d(λn+1,Υλn+1)]
+ γ dist(∆,Λ)

which implies that

(1 − β)d(λn+1, δn+2) ≤ (α + β)d(δn, λn+1) + γdist(∆,Λ)

and hence,

d(λn+1, δn+2) ≤
α + β

1 − β
d(δn, λn+1) +

γ

1 − β
dist(∆,Λ).

Therefore,
d(λn+1, δn+2) ≤ kd(λn, δn+1) + (1 − k)dist(∆,Λ),

where k =
α+β
1−β < 1. Therefore, by Theorem 2.3 there exist δ ∈ ∆ and λ ∈ Λ such that d(δ,Γδ) = d(λ,Υλ) =

dist(∆,Λ). �

Corollary 2.6. Let ∆ and Λ be nonempty closed subsets of a complete metric space Ω. Suppose that the mappings
Γ : ∆→ Λ and Υ : Λ→ ∆ are such that

d(Γδ,Υλ) ≤ a1d(δ, λ) + a2d(δ,Γδ) + a3d(λ,Υλ) + a4dist(∆,Λ) (2)

for all δ ∈ ∆ and λ ∈ Λ, where ai ≥ 0, i = 1, 2, 3, 4 and
∑4

i=1 ai < 1. If either ∆ or Λ is boundedly compact, then there
exist δ ∈ ∆ and λ ∈ Λ such that d(δ,Γδ) = d(λ,Υλ) = dist(∆,Λ).

Proof. In 2 it is sufficient to interchange the roles of δ and λ; and adding the new inequality to (3). �

In the following, we give an important result from Theorem 2.3 in normed spaces for nonexpensive maps.

Theorem 2.7. Let Ω be a normed space, ∆, Λ be subsets of Ω such that ∆◦ and Λ◦ are nonempty and convex. Also,
suppose that the mappings Γ : ∆→ Λ and Υ : Λ→ ∆ are such that ‖Γδ −Υλ‖ ≤ ‖δ − λ‖ for all (δ, λ) ∈ ∆ ×Λ, and
Γ and Υ be nonexpensive maps. Then there exists (δ, λ) ∈ ∆ ×Λ such that ‖δ − Γδ‖ = ‖λ − Υλ‖ = dist(∆,Λ).

Proof. First, we show that Γ : ∆◦ → Λ◦ and Υ : Λ◦ → ∆◦. Let δ ∈ ∆◦. Then there is λ ∈ Λ◦ such that
‖δ − λ‖ = dist(∆,Λ). Since ‖Γδ − Υλ‖ ≤ ‖δ − λ‖, therefore, Γδ ∈ Λ◦.

Since ∆◦ is nonempty, there are δ0 ∈ ∆ and λ0 ∈ Λ such that ‖δ0 − λ0‖ = dist(∆,Λ). For every positive
integer n ∈N, define

Γn(δ) =
1
n
λ0 + (1 −

1
n

)Γδ δ ∈ ∆
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and

Υn(δ) =
1
n
δ0 + (1 −

1
n

)Υδ δ ∈ Λ.

Then, for every δ, λ ∈ ∆ ∪Λ,

‖Γnδ − Υny‖ ≤ (1 −
1
n

)‖Γδ − Υλ‖ +
1
n

dist(∆,Λ)

≤ (1 −
1
n

)‖δ − λ‖ + (1 −
1
n

) +
1
n

dist(∆,Λ).

Therefore, for every n ∈ N the pair (Γn,Υn) is a contractive pair. Hence, by Theorem 2.3, for every n ∈ N,
there exists δn ∈ ∆◦ such that

‖δn − Γnδn‖ = dist(∆,Λ).

Since ∆◦ is boundedly compact, there exists δ ∈ ∆◦ such that δn ⇀ δ (by passing to a subsequence, if
necessary). Because ‖δn − Γδn‖ → dist(∆,Λ), it follows that ‖δ − Γδ‖ = dist(∆,Λ). �

Corollary 2.8. Let ∆ and Λ be nonempty subsets of a normed space Ω such that ∆◦ is a convex compact subset.
Suppose that Γ : ∆→ Λ and Υ : Λ→ ∆ be continuous maps such that

‖Γδ − Υλ‖ ≤ ‖δ − λ‖ δ ∈ ∆, λ ∈ Λ.

Then the mapping ΥΓ has a fixed point.

Proof. Similarly, as in Theorem 2.7, Γ : ∆◦ → Λ◦ and Υ : Λ◦ → ∆◦ and so ΥΓ : ∆◦ → ∆◦. Let a ∈ ∆◦ and for
every n ∈N define Un : ∆◦ → ∆◦ such that Unδ = (1 − 1

n )ΥΓδ + 1
n a. Hence,

‖Unδ −Uny‖ ≤ (1 −
1
n

)‖δ − λ‖.

Therefore, for every n ∈ N there exists δn ∈ ∆◦ such that Unδn = δn. Since ∆◦ is compact, there exists a
subsequence {δni } of {δn} such that δni → δ0 ∈ ∆◦. Because ΥΓ is continuous, we have ΥΓδ = δ. �.

In the following, we show that under some conditions PΓ(∆,Λ) is a nonempty compact set.

Theorem 2.9. Let ∆ and Λ be nonempty subsets of a normed space Ω such that ∆ be compact. Suppose that the
mappings Γ : ∆→ Λ and Υ : Λ→ ∆ are such that

‖Γδ − Υλ‖ < ‖δ − λ‖ (δ, λ) ∈ ∆ ×Λ \ ∆◦ ×Λ◦.

If Γ be upper semicontinuous, then PΓ(∆,Λ) is a nonempty compact set.

Proof. There exists z0 ∈ ∆ such that ‖z0 − Γz0‖ = infz∈∆ ‖z − Γz‖. If ‖z0 − Γz0‖ > dist(∆,Λ), then we have
‖Γz0 − ΥΓz0‖ < ‖z0 − Γz0‖ which is a contradiction with the fact that z0 is minimum. Therefore, ‖z0 − Γz0‖ =
dist(∆,Λ) and so, PΓ(∆,Λ) is nonempty.

Suppose that zn ∈ PΓ(∆,Λ). Then ‖zn − Γzn‖ = dist(∆,Λ). There exist subsequence znk and z0 ∈ ∆ such
that

‖z0 − Γz0‖ = lim
n→∞
‖zn − Γzn‖ = dist(∆,Λ)

and so z0 ∈ PΓ(∆,Λ) i.e., PΓ(∆,Λ) is compact. �

In the following, we give a new condition which guarantees that PΓ(∆,Λ) will be a singleton.
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Theorem 2.10. Let ∆ and Λ be nonempty subsets of a strictly convex Banach space Ω such that ∆ be a convex
compact subset. Suppose that the mappings Γ : ∆→ Λ and Υ : Λ→ ∆ are such that

‖Γδ − Υλ‖ < ‖δ − λ‖ (δ, λ) ∈ ∆ ×Λ \ ∆◦ ×Λ◦.

If Γ be upper semicontinuous and (∆ − ∆) ∩ (Λ −Λ) = ∅, then PΓ(∆,Λ) is a singleton.

Proof. By Theorem 2.9 PΓ(∆,Λ) , ∅. Suppose that there exist two points δ, λ ∈ PΓ(∆,Λ) such that δ , λ. Also,
δ − Γδ , λ − Γλ. By strict convexity of Ω we have ‖ δ+λ2 −

Γδ+Γλ
2 ‖ < dist(∆,Λ). Since ∆ is convex, δ+λ2 ∈ ∆ and

Γδ+Γλ
2 ∈ Λ which is a contradiction. Therefore, δ−Γδ = λ−Γλ and so, δ−λ = Γδ−Γλ ∈ (∆−∆)∩ (Λ−Λ) , ∅,

which is a contradiction. Therefore, δ = λ. �

As an application of Theorem 2.9, we present the following result. Recall that by a domain in the
complex plane, we mean an open connected set.

Corollary 2.11. (Compare to [8, Theorem 3.1] ) Let ∆ and Λ be nonempty subsets of a domain D of a complex plane
such that ∆ is a compact set. Suppose that f (z) and 1(z) be analytic functions in D such that

(a) f (∆) ⊆ Λ, 1(Λ) ⊆ ∆,

(b) | f (z1) − 1(z2)| < |z1 − z2| (δ, λ) ∈ ∆ ×Λ \ ∆◦ ×Λ◦.

Then there exists (z∗,w∗) ∈ ∆ ×Λ such that

|z∗ − f (z∗)| = |w∗ − 1(w∗)| = |z∗ − w∗| = dist(∆,Λ).

As an application of Theorem 2.10, we obtain the following result.

Corollary 2.12. Let ∆ and Λ be nonempty subsets of a domain D of the complex plane such that ∆ be convex compact
and (∆ − ∆) ∩ (Λ −Λ) = ∅. Suppose that f (z) and 1(z) be analytic function in D such that

(a) f (∆) ⊆ Λ, 1(Λ) ⊆ ∆,

(b) | f (z1) − 1(z2)| < |z1 − z2| for all (δ, λ) ∈ ∆ ×Λ \ ∆◦ ×Λ◦.

Then there exists a unique (z∗,w∗) ∈ ∆ ×Λ such that

|z∗ − f (z∗)| = |w∗ − 1(w∗)| = |z∗ − w∗| = dist(∆,Λ).

3. Best proximity points for cyclic ψ-contractions

In this section, we consider some important generalizations of cyclic contractions in which the constant
k is replaced by some real-valued control function ψ : [0,∞)→ [0,∞).

Definition 3.1. Let Ω be a complete metric space and let ∆ and Λ be subsets of Ω. Γ : ∆ ∪ Λ → ∆ ∪ Λ is a cyclic
ψ-contraction if it satisfies:

(i) Γ(∆) ⊂ Λ,Γ(Λ) ⊂ ∆
(ii) d(Γδ,Γλ) ≤ ψ(d(δ, λ)), for all δ, λ ∈ ∆ ∪Λ,

where ψ : [0,∞) → [0,∞) is an upper semicontinuous function on R − {0, d} from the right such that ψ(t) < t
for each t , 0, d, where d := d(∆,Λ).
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In the following, we give a generalization of the Boyd and Wong’s fixed point theorem [2].

Theorem 3.2. Let ∆ and Λ be closed subsets of complete metric space Ω such that diam(∆) < d(∆,Λ). Suppose that
Γ : ∆ ∪ Λ → ∆ ∪ Λ is a cyclic ψ-contraction. Then PΓ(∆,Λ) , ∅. Further, if δ0 ∈ ∆ and δn+1 = Γδn, then {δ2n}

converges to the best proximity point.

Proof. Fix δ ∈ ∆∪Λ and define a sequence {δn} in ∆∪Λ by δn = Γnδ, n ∈N0. We divide the proof into 4 steps:

Step 1. limn→∞ d(δn, δn+1) = d(∆,Λ).

Note that
d(δn+1, δn+2) = d(Γδn,Γδn+1) ≤ ψ(d(δn, δn+1)).

Hence, {d(δn, δn+1)} is monotonic decreasing and bounded below. Therefore, limn→∞ d(δn, δn+1) exists. Let
limn→∞ d(δn, δn+1) = d ≥ d(∆,Λ). Assume that d > d(∆,Λ). By the right upper semicontinuity of ψ,

d = lim
n→∞

d(δn+1, δn+2) ≤ lim
n→∞

ψ(d(δn, δn+1)) ≤ ψ(d) < d.

So, d = d(∆,Λ).

Step 2. limn→∞ d(δ2n, δ2n+2) = 0.

Note that
d(δ2n, δ2n+2) = d(Γδ2n−1,Γδ2n+1) ≤ ψ(d(δ2n−1, δ2n+1)).

Hence, {d(δ2n, δ2n+2)} is monotonic decreasing and bounded below. Hence, limn→∞ d(δ2n, δ2n+2) exists. Let
limn→∞ d(δ2n, δ2n+2) = δ. It is clear that 0 ≤ δ < d(∆,Λ). Assume that δ > 0. By the right upper semicontinuity
of ψ,

δ = lim
n→∞

d(δ2n, δ2n+2)

≤ lim
n→∞

ψ(d(δ2n−1, δ2n+1))

≤ lim
n→∞

ψ(ψ(d(δ2n−2, δ2n)))

≤ ψ(ψ(δ)) < ψ(δ) < δ,

so δ = 0.

Step 3. {δ2n} is a Cauchy sequence.

Assume that {δ2n} is not Cauchy. Then there exist ε > 0 and integers 2mk, 2nk ∈N such that 2mk > 2nk ≥ k
and d(δ2nk , δ2mk ) ≥ ε for k = 0, 1, 2, · · · . Also, choosing mk as small as possible, it may be assumed that

d(δ2nk , δ2mk−2) < ε.

Hence, for each k ∈N, we have

ε ≤ d(δ2nk , δ2mk ) ≤ d(δ2nk , δ2mk−2) + d(δ2mk−2, δ2mk )
≤ ε + d(δ2mk−2, δ2mk )

and since d(δ2mk−2, δ2mk )→ 0, hence limk→∞ d(δ2nk , δ2mk ) = ε. Observe that

d(δ2nk , δ2mk ) ≤ d(δ2nk , δ2nk+2) + d(δ2nk+2, δ2mk+2) + d(δ2nk+2, δ2mk )
≤ d(δ2nk , δ2nk+2) + ψ(d(δ2nk+1, δ2mk+1)) + d(δ2nk+2, δ2mk ).



M. R. Haddadi et al. / Filomat 35:5 (2021), 1555–1564 1562

Letting k→∞, we obtain that

ε = lim
k→∞

d(δ2nk , δ2mk ) ≤ lim
k→∞

ψ(d(δ2nk+1, δ2mk+1)).

On the other hand,

lim
k→∞

d(δ2nk+1, δ2mk+1) ≤ lim
k→∞

ψ(d(δ2nk , δ2mk )).

So, using the upper semicontinuity of ψ from the right we have

ε ≤ ψ(ψ(ε)) < ψ(ε) < ε

which is a contradiction. Hence, {δ2n} is a Cauchy sequence in ∆.

Step 4. Existence of best proximity pair.

Because {δ2n} is Cauchy, Ω is complete and ∆ is closed, limn→∞ δ2n = δ ∈ ∆. Now,

d(∆,Λ) ≤ d(δ, δ2n−1) ≤ d(δ, δ2n) + d(δ2n, δ2n−1).

Thus, by step 1 we infer that d(δ, δ2n−1) converges to d(∆,Λ). Since

d(∆,Λ) ≤ d(δ2n,Γδ) ≤ ψ(d(δ2n−1, δ)),

by upper semicontinuity of ψ we have

d(∆,Λ) ≤ lim
n→∞

d(δ2n,Γδ) ≤ lim
n→∞

ψ(d(δ2n−1, δ)) ≤ ψ(d(∆,Λ)) = d(∆,Λ).

So, d(δ,Γδ) = d(∆,Λ). �

Theorem 3.3. Let ∆ and Λ be two nonempty closed and convex subsets of a uniformly convex Banach space Ω such
that diam(∆) < d(∆,Λ). Suppose that Γ : ∆ ∪Λ→ ∆ ∪Λ is a cyclic ψ-contraction. Then there exist a unique δ ∈ ∆
such that ‖δ − Γδ‖ = d(∆,Λ). Further, if δ0 ∈ ∆ and δn+1 = Γδn, then {δ2n} converges to the best proximity point.

Proof. By Theorem 2.2 PΓ(∆,Λ) , ∅. Suppose that δ, λ ∈ PΓ(∆,Λ) such that δ , λ. Since ‖δ−Γδ‖ = d(∆,Λ) and
‖λ − Γλ‖ = d(∆,Λ) where necessarily from uniformly convexity of Ω, Γ2δ = δ and Γ2λ = λ. Since δ , λ, we
have d(∆,Λ) < ‖Γδ−λ‖ and soψ(‖Γδ−λ‖) < ‖Γδ−λ‖. Therefore, ‖δ−Γλ‖ = ‖Γ2δ−Γλ‖ ≤ ψ(‖Γδ−λ‖) < ‖Γδ−λ‖.
Similarly, ‖Γδ − λ‖ < ‖δ − Γλ‖ which is a contradiction. Therefore, δ = λ. Hence, the proof is completed.
�

Exercise 3.4. Let ∆ and Λ be subsets of R2 defined by

∆ = {(δ, 0) : δ ≥ 1}

and
Λ = {(0, λ) : λ ≥ 1}.

Suppose that
Γ(δ, λ) = (

√

λ,
√

δ)

and

ψ(t) =


√

t t < d(∆,Λ)√
d(∆,Λ)t t > d(∆,Λ).

Then Γ is a cyclic ψ-contraction on ∆ ∪Λ and ‖(0, 1) − Γ((1, 0))‖ = d(∆,Λ).
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Proof. Here, d(∆,Λ) =
√

2. For (δ, 0) ∈ ∆ and (0, λ) ∈ Λ we have

‖Γ(δ, 0) − Γ(0, λ)‖ = ‖(0,
√

δ) − (
√

λ, 0)‖

= ‖(
√

λ,
√

δ)‖

=
√

δ + λ ≤

√
√

2
√

δ2 + λ2

≤

√
d(∆,Λ)‖(δ, 0) − (0, λ)‖ = ψ(‖(δ, 0) − (0, λ)‖).

Then Γ is a cyclic ψ-contraction on ∆ ∪Λ and ‖(0, 1) − Γ((1, 0))‖ =
√

2 = d(∆,Λ).

We now present a larger class of mappings called cyclic asymptotic contractions.

Definition 3.5. Let Ω be a complete metric space and let ∆ and Λ be subsets of Ω. A mapping Γ : ∆ ∪ Λ→ ∆ ∪ Λ
is a cyclic asymptotic ψ-contraction if:

(i) Γ(∆) ⊂ Λ,Γ(Λ) ⊂ ∆,
(ii) d(Γδ,Γλ) ≤ ψ(d(δ, λ)) for all δ, λ ∈ ∆∪Λ. whereψ : (0, d(∆,Λ))∪ (d(∆,Λ),∞)→ (0, d(∆,Λ))∪ (d(∆,Λ),∞)

is nondecreasing and

lim
n→∞

ψn(t) =

{
0, 0 < t < d(∆,Λ),

d(∆,Λ), d(∆,Λ) < t. (3)

The following theorem demonstrates that asymptotic contractions possess unique fixed points. Also, in
the following result the continuity constrain on cyclic ψ-contraction is substituted by 3.

Theorem 3.6. Let ∆ and Λ be closed subsets of complete metric space Ω such that diam(∆) < d(∆,Λ). Suppose that
Γ : ∆ ∪ Λ → ∆ ∪ Λ be a cyclic asymptotic ψ-contraction. Then PΓ(∆,Λ) , ∅. Further, if δ0 ∈ ∆ and δn+1 = Γδn,
then {δ2n} converges to the best proximity point.

Proof. Fix δ0 ∈ Ω and let δn = Γnδ0 for all n ∈N. Note that d(∆,Λ) ≤ lim supn→∞ d(δn, δn+1) ≤ lim supn→∞ ψ
n(d(δ0, δ1)) =

d(∆,Λ). Hence,
lim
n→∞

d(δn, δn+1) = d(∆,Λ).

On the other hand, 0 ≤ lim supn→∞ d(δn, δn+2) ≤ lim supn→∞ ψ
n(d(δ0, δ2)) = 0. Hence,

lim
n→∞

d(δn, δn+2) = 0.

Because ψn(t) → 0 for 0 < t < d(∆,Λ), ψ(s) < s for any s > 0. Since limn→∞ d(δn, δn+2) = 0, given ε > 0, it is
possible to choose n such that

d(δ2n, δ2n+2) ≤ ε − ψ(ε).

Now, for z ∈ Λε[δ2n] = {δ ∈ ∆ : d(δ, δ2n) ≤ ε}, we have

d(Γz, δ2n) ≤ d(Γz,Γδ2n) + d(Γδ2n, δ2n)
≤ ψ(d(z, δ2n−1)) + d(δ2n+1, δ2n)
≤ ψ(ε) + (ε − ψ(ε)) = ε.

Therefore, Γ : Λε[δ2n] → Λε[δ2n] and it follows that d(δ2m, δ2n) ≤ ε for all m ≥ n. Hence, {δ2n} is a Cauchy
sequence. The rest of the proof follows as in Theorem 3.2. �
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