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The Perturbation Bound for the T-Drazin Inverse of Tensor and its
Application

Ying-nan Cui?, Hai-feng Ma®

?School of Mathematical Science, Harbin Normal University, Harbin 150025, P. R. China.

Abstract. In this paper, let A and B be n X n X p complex tensors and B = A + &. Denote the T-Drazin
inverse of A by AP. We give a perturbation bound for [|BP — AP||/||AP|| under condition (‘W). Considering
the solution of singular tensor equation A = x = b, (b € R(AP)) at the same time. The optimal perturbation
of T-Drazin inverse of tensors and the solution of a system of tensor equations have been given.

1. Introduction

The Drazin inverse plays an important role in many applications [1, 7, 20, 21, 25, 35]. There have been
some papers on Drazin inverse of the perturbation bounds of matrix [27-31, 33, 34, 37]. Furthermore, we
consider the perturbation of the Drazin inverse under the T-product of tensor. There are three monographs
on the tensor [5, 19, 32]. Tensors are hyper dimensional matrices, which are the extensions of matrices. We
study the generalized inverses of tensor based on Einstein product, in order to overcome high-dimension
of tensor [10, 15, 22, 24]. In addition, the T-product of tensor [9, 11, 12, 14, 26] is another product which has
been proven to be a useful tool in many applications[2, 9, 11, 12, 14, 16, 23, 38]. Recently, ]Ji and Wei [10]
presented the Drazin inverse of an even-order tensor with the Einstein product. Che and Wei [3, 4, 32, 36]
present the randomized algorithms for the tensor decomposition and the tensor equations.

The T-Jordan canonical form of the T-Drazin of third-order tensor inverse and the generalized tensor
function are given by Miao, Qi and Wei in [17, 18], but its perturbation has not been developed yet. The
perturbation of T-Drazin inverse and its application are introduced in this paper.

In this paper, let C""** and R™"" be two sets of the n X 1 X p tensors over the complex field C and the
real field IR, respectively. Let A € C"™", and pr(A) denote the T-spectral radius of A. For positive integers
kandn, [k] =[1,--- ,n]. We call O as a zero tensor in case of all the entries of the tensor are zero.

Now, a concept is proposed for multiplying third order tensors [9, 11, 12], based on viewing a tensor as
a stake of frontal slices. Suppose A € R™™¥ and B € R™* are third order tensors, denote their frontal

2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F20.

Keywords. perturbation, T-Drazin inverse, T-product, tensor.

Received: 21 April 2020; Accepted: 08 May 2020

Communicated by Yimin Wei

Corresponding author: Hai-feng Ma

Research supported by the National Natural Science Foundation of China under grant 11971136, the bilateral project between China
and Poland (no.37-18), and Innovative Research Project for Postgraduate Students of Harbin Normal University (no. HSDSSCX2019-
34).

Email addresses: 994998246@qq . com (Ying-nan Cui), haifengma@aliyun.com (Hai-feng Ma)



Y. Cui, H. Ma / Filomat 35:5 (2021), 1565-1587 1566

faces as A® € R™" and B® € R™, respectively (k = 1,2, - -, p). A € C™™¥ is called as F-square tensor , if
every frontal face of A is square. The operation of “bcirc” was introduced in [9, 11, 12],

A AP A-D L0 AQ) A

A® A0 AP .. AG) A®
beirc(A) :=| . ) . ) . unfold(A) =] . |,

AP A-D . A AW AP

and fold (unfold(A)) := A. We define the corresponding inverse operation beirc™ : R"*" — R™ ™ such
that beirc™! (beirc(A)) = A.

Definition 1.1. [9, 11, 12](T-product) Let A € R™™P and B € R be two real tensors. Then the T-product
AxBisan m X s X p real tensor defined by

A= B := fold (beirc(A)yun fold(B)) .

Definition 1.2. [9, 11, 12](Transpose and conjugate transpose) If A is a third order tensor of size m X n X p,
then the transpose AT is obtained by transposing each of the frontal slices and then reversing the order of transposed
frontal slices 2 through n. The conjugate transpose A is obtained by conjugate transposing each of the frontal slices
and then reversing the order of transposed frontal slices 2 through n.

Definition 1.3. [9, 11, 12](Identity tensor) The n X n X p identity tensor I ., is the tensor whose first frontal slice
is the n X n identity matrix, and whose other frontal slices are all zeros. It is easy to check that

Ax Topp = Ly * A = A for A e R™MY,
For a frontal square A of size n X n X p, it has inverse tensor B € R (= A1), provided that
A+ B =Ty and B+ A = 1y,

Definition 1.4. [17, 18] Let A € R™"*?, then
(1) The T-range space of A, R(A) := Ran ((Fp ® Im)bcirc(ﬂ)(Fff ® In)),”Ran” means the range space,
(2) The T-null space of A, N(A) := Null ((P,, ® Im)bcirc(,‘ﬂ)(Ff ® In)), “Null” represents the null space,

(3) The tensor norm || A|| := ||bcirc(A)||,
where F, is the discrete Fourier matrix of size n X n, which is defined as [2].

1 1 1 1 1
1 w w? w? w1
11 w> w wb w21
Fusn = _n 1 wd wb W w3 |,
1 w1 2D 3= wn=De=1)

where w = e~>™/" is the primitive n-th root of unity in whichi = V-1. Ff: is the conjugate transpose of F,.
Lemma 1.5. [12] Suppose A € C™"™F and B € C™*?, then
beirc(A = B) = beirc(A)bcirc(B).

Remark 1.6. Let A, B, C € C™™* be F-square tensors. Then ||A+ B = C|| < ||AIBIICI|.
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Proof. Since Lemma 1.5, we obtain

beirc(A = B« C) = beirc(A)bcirc(B)beirc(C).

Take norm on both sides of (1) at the same time, then

||bcirc(A = B = C)|| = ||beirc(A)beirc(B)beire(C)||
< ||beire(A)|||beire(B)|||beire(C)|].

According to (3) of Definition 1.4, we have
A= B« Cll < IANIBINICI.

O

Definition 1.7. [17](T-index) Let A € C™™¥ be a complex tensor. The T-index of A is defined as

Indr(A) = Ind (bcirc(A)) .

Definition 1.8. [17](T-Drazin inverse) Let A, X € C™"?, satisfying the following three equations

A+rX=X=»HA,

X+A+X =X,
A X+ A = A,

where Indr(A) = k, then X is called by T-Drazin inverse of A, which is denoted as AP,

1567

)

©)
(4)

Definition 1.9. [17](Nilpotent tensor) Let A € C™™ be nilpotent, if there exists a positive integer s € Z. such
that A° = 0. If s € Z is the smallest positive integer satisfying the equation A° = 0, then s is called the nilpotent

index of A.

Definition 1.10. [17](T-core-nilpotent decomposition) Let A € C™" be a complex tensor, N is T-nilpotent-

part of A, and C, is T-core-part of A, satisfying
Na=A-Ca=T -AxA")=A,

then A = Ca + Na is called T-core-nilpotent decomposition of A.

The construction of T-core-nilpotent decomposition of a tensor is introduced in [17]. Suppose A € C™"P, P is
an invertible tensor, J € C™"¥ is an F-bidiagonal tensor, and Indr(A) = k, then the T-Jordan decomposition of A

is A=P 1+ T+P, and
1
. 2 H
beirce(J) = (Fp ® 1) . (F, ® 1),
Iy

where J; can be block partitioned as

]i:(g Z(\)L):(((:Dl 8)+(8 £)=]f+]f\’,(i:1,2,...lp)

and C; is a nonsingular matrix, N; is nilpotent with {nax Ind(N;) = k, then
<i<p

beirc(J) = bcirc(jc) + bcirc(jN),
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that is
A=P "+ T+P =P (T +TV)+P =Ca+ Ny,
which is the construction of T-core-nilpotent decomposition of A.

Theorem 1.11. [17] Let A € C™P, then there is an invertible tensor P € C™"? and F-bidiagonal tensor
g € C™", and the T-Jordan canonical form is,

f}{:P‘l*j*P,

where the diagonal elements of Ji(i = 1,2, ,p) are the T-eigenvalues of A. The decomposition of matrix bcirc(J)
is given, as follows

Ji
, I
beire(J) = (Fy ® 1)) . (F, ®1Ly),
Ip

1
where ]; can be partitioned as |; = ({1) ]OO), ]1.1 is the core of the matrix J;, and ]? is nilpotent, (i=1,2,--- ,p).
i

Further, the T-Drazin inverse is denoted as
AP =P gP P
The decomposition of beirc(JP) is

]D
1 ]é)

beire(JP) = (F, ® 1) (Fl ®1,),

Iy

»_(UHt O). . . .
where |7 = 'O is the Drazin inverse of the matrix [;. (i=1,2,---,p)

O

Remark 1.12. From the T-Jordan canonical form, we know that for any complex tensor A € C™™F with Indr(A) =k
and rankr(AX) = r, there exists nonsingular tensor P € C"™™P such that

o
ﬂ:@l*j*Pzpl*(jl )*P[
0 g9

and

-1
ﬂD:P_l*jD*P:P_l*(% g)*Pl
where 1 is the core part of tensor J, and 2 is nilpotent.

Theorem 1.13. [10, 17, 18](T-linear system) Let A € C™"™¥ be an F-square invertible tensor with Indr(A) = k.
If the T-linear tensor system

Axx=Db, x € REA,
where x,b € C™*P, has an unique solution, then it is given by

x = AP b. 5)
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Theorem 1.14. If N = (? g) € C2P2p where A and C are F-square tensors, Indr(A) = k, Indr(C) = I, then

ND — (ﬂD X) c CZnXanp

o ¢P
where
-1 k-1
X =) (APY24B1C s (I =CxCP)+ (I = A A+ Y A+ B+ (CPF*2 = AP+ B+ CP.
s=0 5=0
Proof. There are some decompositions of matrixes bcirc(A), beirc(X), beire(C), beirc(B), such that
Ay AD
As AP
beire(A) = (F, ® L) N (F}) ®1I,), beirc(A°) = (F, ® L,,) . (F ®1I,),
Ay AD
B, BY
B, BD
beire(B) = (F, ® 1) ) (F) ®1,), beire(B°) = (F, ®1,) (F) ®1),
B, BD
C1 CcP
Ca cP
beire(C) = (Fy ® 1) ) (F! ®1,), beirc(C”) = (F, ®1,) (Fl®l),
Cp cph
and
T,
T,
beire(X) = (F, ® 1) ) (Fl®l),
TP
where
T; = (AP)? (AI.D)SBin.J (I-CCP)+(1-AAP) Z AfBi(C?)S] (CPy* — APB;C?
s=0 s=0
-1 k-1
= (AP)? (A?)SB@] (I-CCP) + (1 - AAP) Z A?Bi(C?)S] (CP)* - APB.C?,
s=0 s=0
i=1,2,-,p.

Expand the term A * X as follows. Since Lemma 1.5, we obtain

beirc(A = X) = beirc(A)bcirc(X)

A1T1
AyTs ;
= (F,®1,) . (Fi ®1,),

ATy
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where
-1 -1
AT = ) (APYYIB,C; - ) (APy 1B, G CP
5=0 5=0
k=1 k=1
= Y ATIB(CPY2 = Y APATB(CPY 2 - AAPBLC;
s=0 s=0
12 1-2
= |APB + ) (APy*2B,C;* | - | APB,C,CP + Z(A?)S+2BiC§+2C?]
5=0 s=0
k=1 k-1
+ [Z(Ai>SBi<c?)5“ + A?Bi(c?)"“] - [Z(Ai)DA?+1Bi(C?)S+1 + AifBACP)H]
s=1 s=1
- AiAPB,C;
-2 -2
= APB; + ) | (APY*2B,C* - APB,CCP - ) | (AP)*2B,C;2CP
5=0 5=0
k=1 k=1
+ Z ASB{(CPy™ - Z AP ASIB(CP)*! — A,APB,C. (i = 1,2--p)
s=1 s=1
Now we expand the term X * C as follows.
By Lemma 1.5, then
beire(X = C) = beirc(X)bcirc(C)
T1Cy
TG "
= (F,®1,) (F ® L),
TGy
where
-1 1-1
T C Z(AD S+2B Cs+1 Z(AD)S+2B Cs+2cD
s=0
-1 k=1

+ ZASB (CD s+1 ZADAS+1B (CD)S+1 A?BZCZDCI

5= s=0
1-2 1-2
— (AiD)s+2BiC?+1 + (A,D)HlBlci _ Z(A?)s+2BiCl§+2cD + (AID)HlBLCf]

s=0

s=0
k-1 k-1
+|BCP+ ) AB(CPY* |- [AiDA,-BiCiD +Y A?Af“Bi(C?)S“]
s=1 s=1

- APB,CPCi.(i=1,2---p)
According to beirc(A), beirc(B), beire(C), beire(AP) and beirc(CP), we obtain

beirc(AP + B) = beirc(AP)bcirc(B)
ADPB,
ADB,
H
=(F,®1,) (F) ®I,),

APB,
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beire(B = CP) = beire(B)bcirc(CP)

B,CP
B,CD .
=(F,®1,) N (Ff ®1,),
B,CD
then
APB; - B,CP
APB, - B,CP
AP+ B-B+CP = (F,®1,) N (F) ®1L),
ADB, - B,CP
and
ATy — T1Cy
ATy — TG,
AxX-X+C=(F,®1,) N (F ®1I,).

APTP - TPCP

Itiseasytoseethatﬂ*z\’—X*CzﬂD*B—B*CD,orﬂ*X+B*CD =AP+ B+ X +C.

From this it follows that
A B) [A” X)_(A° X\ (A B
O C o c?’J"\o cP| \o c)
so that (2) of Definition 1.8 is satisfied. To show that (3) of Definition 1.8 holds, note that

AP X LA B*ﬂD X\ _ (AP AP+ A+ X+ X+C+CP + AP » B+ CP
o cP|'\o ¢C o cP’l \o cP

Thus, it is only necessary to show that AP + A+ X + X+ C+CP + AP » B+CP = X.
Finally, we will show that
A B n+2 A0 X A B n+1
o c) (o &)-lo & -
First notice that for any m > 0,
A B\" (A" Su
O C - 0 Cn1 4
where
m=1
S(m) — Z ﬂm—l—s * B * Cs/
s=0

it is seen that the decompose of matrix beirc(Sy)) is
S1
. 52 H
beire(Sumy) = (F, ® I,) . (Fp ®1I,),

Sp

1571
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and

m—=1

APYSBCE, (i=1,2,0,p)

s=0
Sincen+2>kand n +2 > [, then
A B n+2 . ﬂD X B ﬂ’”l ﬂn+2 « X + S(n+2) % CD
O C o cPl~\ o crl
Therefore, it is necessary to show that A X + S * CP =
Definition 1.8, it is the case that

1572

)

S(u+1). Observe first since [ + k < n + 1, by

A+ (APY = A fori=1,2,---,1-1.
Thus
-1
ﬂ"+2*(\’=ﬂn* (ﬂD)S*B*CS *(I—C*CD)—.?{”+1*B*CD
s=0
-1
[ A+ B+C |+ (I-C+C”) =A™ « B+ CP
s=0
-1 -1
— ﬂn_s*B*Cs—Zﬂn_s*B*CSH*CD—?("H*B*CD,
s=0
that is

-1
ﬂ”+2 *X — Zﬂn
s=0 5=0

the decomposition of matrix beirc(A"? * X) is

A§'+2T1
Ag+2T2
beire( A"+ X) = (F, ® L)
An+2T
P
U
U,
=Fpely) (F) ®1,)
Uy
and
-1 -1

Ui=)" AIZB,C; - ) AIPBCHICP - AMIBCP, (i=1,2,-

5=0 s=0
Since (6), then

n+l

S12) * CP

-1
_S*B*Cs—Z‘ﬂn_s*B*CSH*CD—ﬂnH*B*CD

(7)

“,p)

n+1

Zﬂ”*“*@ +Co+CP = Zﬂ”“s*ﬂ CaCP+ Y AT BaC

s=I+1
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By writing

1 1
Z\ﬂrﬁklis*B*Cs*CD:ﬂn+1*B*CD-FZﬂn*»liS*B*CS*CD

5=0 s=1

1-1
:ﬂnJrl*B*CD_‘_ZﬂnfS*B*CSH*CD,

5=0
we obtain
-1 n+1
S(n+2) *CD - &z{n+1 *.(B*CD + Zﬂn—s *B*CS+1 *CD + Z ﬂn+1—s *B*Cs_l,
s=0 s=I+1

the decomposition of matrix beirc(S4+2) * CP) as follows

Q1
, b Q2 "
beirc(Spsz) *C™) = (F, ® 1) . (F, ®1I,)
Qp
A1B,CP
A;B,CD ;
:(Fp®ln) .. (Fp ®1,)
APBPCE
Ry
Ry
+(F,®1,) , (F) ®1I,)
R,
Vi
%} -
+(F,81,) L |Eer,
Y
and
-1 n+1
Ri=) AISBCHICP, vi= ) AMITBCT,
s=0 s=I+1
then

-1 n+1

Q= ABCP + R+ Vi = AMIBCP + ) ATBCHICY + ) ARG (=12,

s=0 s=I+1

P)

1573
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It is seen from (7) and (8) that

-1 n+1
ﬂ"+2 + X +S(n+2) *CD - Zﬂn—s *B*Cs + Z ﬂn+1—s *B*Cs_l
s=0
-1

s=1+1

ﬂ”_S*B*CS+Zn:?I”‘S*B*Cs

0 s=1

S

=

A"« B CS
0

S

V)

= OS(n+1)-

The proof is completed. O

Definition 1.15. (T-spectral radius) Let A € C™"F be an F-square tensot, then denote the spectral radius of A as
pr(A) = p(bcirc(A)) = p ((F, ® L)bcirc(A)FY @ 1)),

where pr(A) is called by T-spectral radius of A.

Definition 1.16. [17](T-eigenvalue) Let A € C™"? be an F-square tensor, then denote the eigenvalue of A as
Ar(A) = A(beire(A) = A((F, @ L)beirc(A)FH ®1,)),

where At(A) is called by T-eigenvalue of A.

2. Perturbation bounds

Theorem 2.1. Let 7 € C™" be an F-square tensor, suppose ||F || < 1, then I + F is nonsingular, and

I+ 97 < g
Proof. Assume I + ¥ is singular, then there is a nonzero X € C™"?, such that
T+F)+X=0,
furthermore
T+X=-F =X ©)

Take norm on both sides of (9) at the same time, we have
X1 = 112+ X = [|F = XII < IFX]].

According to [|X]| < [IF|lIX]l, which implies [|F || > 1, and it is contradictory to [|F || < 1.
Therefore, 7 + ¥ is nonsingular.
Since 7 + F is invertible, we have (Z + F) * (I + ¥)~' = I, then

T+F) ' =T-F+~T+F)" (10)
Take norm on both sides of (10) at the same time, we obtain

I +F) =T =F =T +F)l
<+ IF (T + )7
<T+IFIE +F) 7.
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And then
1> (1= IFINT +F)7I,

therefore
1
1-1I71

The proof is completed. [

I+ 7)1l <

Let A, B,E € C™? be F-square tensors, a condition (‘W) [28] is given,
(W), B=A+EwithIndr(A) =k, E= A+ AP +Ex A+ AP, and | A°||||E]| < 1.

Now, we consider the perturbation of the T-Drazin inverse. First, let us give two lemmas of the pertur-
bation bounds of 8P — AP.

Lemma 2.2. Suppose condition (‘W) holds, let A € C™"™ be a complex tensor, then there is an invertible tensor
P € C™"P and F-bidiagonal tensor N' € C"™"™¥. Further, the decomposition form of & is

= 71* * = 71>(-N1 Ox-
E=P s N+P=P (0 o P,

where N is the first block element of the tensor N, and the matrix bcirc(N') has the following decomposition
Ny
N>
beire(N) = (F, ® 1) ) (F) ®1I,),
Ny

1

where N; = (Z\(g 8) , Nl.1 is the first block element of the matrix of N;. (i=1,2,--- ,p)

Proof. According to the Theorem 1.11, we have

o
ﬂ:?‘l*j*P:P‘l*(jl )*Pl
0 g9

where 77 is the first block inverse element of tensor 7, and J f is nilpotent.
Further, we obtain

D_p-1, gD, = _1*‘7_10*
A =P+ +P=F (5 O)P,

where J! is the first block element of the tensor J.
Next, the decomposition of & will be given.

Suppose that & = P! « (x; xi) P, then
s+ AP« E =P 1 J1 o +Pr Py j71 0 +PrP Ly N No +P =Py Nt No *
Ar AP+ E =P (0 Jf) PP (5 o) PP <\t NJP=P e o) a

and

-1
8*?1*&2{17:7"1*(%; xi)wom-%({; 3040)*%@-1*(701 g)m:?—%(% g)w, (12)
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According to & = A» AP+ E = E+ A= AP, (11) and (12), we obtain

—_1$N1 Nz*—_l*Nl Nz*—_lx-Nlo*
E=P (N3 N4) P=P (O 0) P=P (N3 0 P (13)

Hence E =P 1« (/g (O)) +P. The proof is completed. [J

Lemma 2.3. Suppose condition (‘W) holds, let A € C™™¥ be a complex tensor, B = A + &, then there is an
invertible tensor P € C™"¥ and F-bidiagonal tensor M € C™"¥, such that
(1) BP = PL+ MP + P, and the decomposition of the matrix beirc(MP) is

D
M ;
M;

beireq(MP) = (F, ®1,,) (F) ®1,),

My
1y-1
where MP = ((M(i)) 8), (i=12--,p)
2) A+ AP = B+ B,

Proof. (1) According to the Theorem 1.11, there is N' € C™™ gnd J € C™P¥, then A = P71+ T + P,
E=P 1+ N+P, suppose B=A+E =P+« M=P, where

beirc(M) = beire(J + N)

(N1 + 1)
(N2 + J2) -
:(Fp®1n) . (Fp ®In)r

(Np +Jp)

1 1
and J; = ({’) ;3), N; = (]\([)l 8), ]l.1 is the first block element of the matrix of J;, Ni1 is the first block element

of the matrix of N;, and ]1,0 is nilpotent, i=1,2,---,p)
Therefore

(N1 + J1)P

) b (N2 + J»)P -
beirc(MP) = (F, ® 1) § (F ®1,).

(Np + Jp)P

N!+]! O) .
o (

Moreover, it proves that N + J} is invertible, where Nj + J; = ( of = 1,2,--,p)

Now, by Theorem 1.11 and Lemma 2.2, we have
AP+ & =p! *jD*P*P_l * N xP
=p! *jD*Nx-P,

and the decomposition of beirc( Dy N)is

beire( TP * N) = beire(JP)bcire(N) = (Fp ® 1) (Fl®l),

Jy Np
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where JPN; = ((]})SN} 8), i=12,--,p)
By Definition 1.15, we have
(TP« N) = plbcire( TP + N)
= p((Fy ® L)bcire(T + N)(F! ®1,))
= max p ((]l-l)’lNl-l) ,
that is
pr(AP &) = pr(J "+ N) = maxp (1) 'N}),
thus

pr(A° = &) < |IAVINIEN < 1.

1577

(14)

(15)

On the other hand, it will prove that ]11 + Ni1 = ]11 (I +(J 1.1)‘1N1.1) is invertible. According to the inverse of
J}, we will only prove that I + (J})"'N} is nonsingular. Now, we prove it by reduction to absurdity. Assume

I+ (J})"'N} is singular, then there is a nonzero vector x € C, such that
(1+ghH'NHx =0,
then

X = —((]l.l)‘lNil)x.

Therefore, -1 is the eigenvalue of matrix (J})"'N}, denoted A (( ]1.1)‘1Ni1) =-1,

it implies p ((J1)'N}) > 1.
According to (14), we obtain

pr(A +&) = maxp (UH'N}) 21,

which is contradictory to (15). Hence I + (J;)~'Nj is nonsingular.

(2) By Theorem 1.11, we have A= P71+ T+ Pand AP = P71+ P+ P.

Similary, B = P71+ M*P and B = P71+ MP + P, then

A+ AP =P 1 TP+ P L PP =P 1s T2 JP 1 P,
and
BB =Pl M+sP+P L a MP+P =P s Msx MP =P,
By Lemma 1.5, we have

beire(J = JP) = beire(J)beire(TP)

P
2% "
= (F,®1,) . (F®l,),

Ty
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and

beirc (M MP) = beirc(M)bcirc(MP)

MMP
MzM?
=, ®1,) , (F ®1),
MPME
1 1y-1
where J;JP = (g ]OO) ((] l(; 8) = (CI) 8),]1.1 is the first block element of the matrix of J;, and J? is
1 1y-1
nilpotent, and MiM? — (]\él 8) ((MIO ) 8) — ( é 8),M11 is the first block element of the matrix of

M;. (i=1,2,---,p)

Hence, A = AP = B+ BP. The proof is completed. [

Theorem 2.4. Let A, B,E € C>™ be F-square tensors, AP is T-Drazin inverse of A, if & = AxAP+E = ExAAP,
Indr(A) =k, B=A+Eand ||AP + || < 1, then
1)BP—AP = -BP+E+ AP = ~AP + E+ BP,
QB =T +AP+E) 1+ AP = AP « (I + E+ AP)7,
(3) 18P -AP|| < AP & )
lAP]| 1-[|AP+E||

Proof. (1) According to Lemma 2.3, we have A * AP = B+ BP, then
BP AP = -BP + £+ AP + BP — AP + BP + (B - A) + AP
= B8+ AP + BP — B« A+ AP — AP + BP + B+ AP
=-BP+E+ AP + BP — B« B+ BP — AP + AP « A+ AP

=-BP+Ex AP,
that is
BP AP = —BP +E+ AP, (16)
Similarly,

B AP = — AP+ E+ BP + BP — AP + AP + (B - A) » BP
=-AP+E+BP + BP - AP + A+ BP — AP + AP » B+ BP
=-AP+E+BP + BP — BP + B+ BP — AP + AP +« Ax AP
=-AP +E+ BP,

that is

B AP = —AP + &+ BP. (17)
(2) By (16), we have

BP + (I +E+AP) = AP.

Since pr(& * AP) = pr(AP + &), then pr(E + AP) = pr(AP + &) < ||AP + &|| < 1, therefore I + & = AP is
nonsingular, then

BP = AP « (I + &+ AP) L. (18)
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By (17), we obtain
T +AP 8+ BP = AP,
Since || AP = &|| < 1, therefore I + AP = & is nonsingular, then
Bl =T+ AP+ &)1 AP, (19)
(3) By Theorem 2.1, and take norm on both sides of (19) at the same time, then
I8Pl = (7 + A = &) » A
< +A° =& IA

o AP
ST A El

Therefore

AP

B < ——r—.
= e

(20)

Take norm on both sides of (17) at the same time, then
|B° — A°|| = || - A° « &+ B
< [|A7 + EIBI.
Divide || AP|| on both sides at the same time, we obtain

187 - APl _ |IA° + I8
[5G |V [

Since (20), then

187 - A°|| _ AP+ ENIBPN _ _IIAD + ]|
AP AP T 1-] AP«

Therefore

I18° - APl _ AP+ €|
AP 1 |lAP« &Il

(21)

The proof is completed. O
Corollary 2.5. Suppose condition (W) holds, let A, B, & € C™™F be F-square tensors, then

APl
1 - APl

APl
L+ (APl

<|18°l <
Proof. According to Theorem 2.4, we have BP = AP « (I + E+ AP)7!, then
AP = BP « (I + &+ AP). (22)

Taking norm on both sides of (22) at the same time, we obtain

IAPN = 118" (I + &+ AN < BT + &+ A°).
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Hence

A
1T +&+AP|

According to [[(Z + &+ AP)|| < |IT]| + 16 = AP|| < 1 + ||EIIAP], then

I8l =

1 1
< .
T+]EINAP] ~ 1T + &= AP

Multiply IAP|| on both sides at the same time, we obtain
AP < AP
1T+ IENAPI ~ |7 + &+ APl
By (23), then

AN AR
L+ [EllAPI ~ I + ExAP|

On the other hand, by (20), it shows that

< IB°1l.

1801 < AT + A0+ ) <« — AL
1= 1Al
Therefore
AP AP
TR I
T+ 1A [IE T 1A

The proof is completed. [

Theorem 2.6. Let A, B € C>™ be F-square tensors, if ||E||||AL|| < 1, and Kp(A) = |A|||AP||, then

I18° = APl _ _ Kp(AlEll/IIA
AP~ 1= Kp(AlEN/IIAI

Proof. From (21), we have

187 - Al _ _IIA” + €|

|API T 1=\ AP &l
AP NIEN
— 1= APEl
_ _lAmACEl /1Al
1= llAliAPEl/ 1A
Ko AIEN/IIA

1= Kp(AEN/IAI

where Kp(A) = |ANIA].
The proof is completed. O

1580

(23)

Remark 2.7. If Indr(A) = 1, then condition (W) is reduced to B = A+E, E = AxAy»Ex Ax Ay, and

IAGINEN < 1. Thus under these assumes, we can get a perturbation bound for the group inverse of the tensor.

Remark 2.8. If Indr(A) = 0,i.e., Ais nonsingular, then condition (W) is reduced to B = A+E, and ||A||E]| < 1.

We also obtain a perturbation bound on the common tensor inverse.
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3. Applications

In this section, we consider the T-linear system. Let 8 € C™" be an F-square tensor, and y,b,c, f €
C™1*P are tensors.

Bry=c, yeRBP),
where B=A+E,c=b+ f € RBP).
Theorem 3.1. Suppose condition (W) holds, let y,x,b, ¢, f € C>PP and ||AP||||E|| < 1, then

ly -l _ Kp(A) (IISII N ||f_||)
il 1= Kp(AIEN/IA '

TR

Proof. According to Theorem 1.13, we obtain x = AP+ b,
and by (5), one can obtain

x=AP +b.
Similarly
y=8Pxc
=(A+EP b+ f).

Since BP — AP = —-BP « &+ AP, then
y—x=(A+EP b+ f)-AP+b
= (A+EP +b+ (A+EP f— AP +b
=((A+EP - AP)xb+ (A+EP+ f
=-BP+E«AP b+ (A+EP = f
= ((A+EP)+Exx+ (A+EP 4 f.

Hence
y-x=—((A+EP)sExx+(A+EP . (24)

Due to Corollary 2.5, and take norm on both sides of (24) at the same time, then

ly=xll =1l = (A+EP +Ex+x+(A+E" + f]
< A+ EPNENIl + (A + EPNIAI
= A+ EPN (NIl + 11£1l)

Lfillel
_ 187 (naunxn . JTITH)
IIﬂIIIIﬂDIIIIxII( IIfIIII?(II)
< WA T g+
1= g I
_ 1A

1Al
‘1—||ﬂD||||6||(”8”+ T )

Ko( A ( [ +Hf_H)
= T=Ko@EN/IAT\ AL " Tell)

The proof is completed. [



Y. Cui, H. Ma / Filomat 35:5 (2021), 1565-1587 1582
4. One-sided Perturbation of T-Drazin Inverse

Lemma 4.1. Let A € C™"™P, & € C"™P be complex tensors, and & = A+ AP + &, then there is an invertible tensor
P e C"™P gnd F-bidiagonal tensor N € C™"™¥. Further, the decomposition form of & is

S:P‘l*N*P:P‘l*(/g gz)wﬂ,

where N1 and N, are block elements of tensor N.
And the matrix beirc(N) has the following decomposition

Ny
N>
beire(N) = (F, ®1,,) _ (F) ®1L,),
N,
N! N2
where N; = ( o 4 ) , NI and N? are block elements of the matrix of Nj. (i = 1,2,--- ,p)

Proof. According to the Theorem 1.11, we have

. _ o
&7{:7?1*5*73:731*(%1 jg)*so, (25)

where the first block element 77 is inverse in tensor J, and J 2 is nilpotent.
Further, we obtain

D_opl,qD,p_ —1*5_1 0*
AP =Pl gP P =P (01 0) P, (26)

where the first block element J;! of the tensor J°.

Next, the decomposition of & will be given. Suppose E =P 1+ N+ P =P 1« (%; %j) + P, then
+ AP+ & = _1*j1 O:(- + P71y 1_1 Ox— >(-_1>(-N1 Nz:(- = _14-N1 Nz:(-
ArA"+E=P (O jg)PP (O OPSD N Ni P=F o o P. (27)
By & = A+ AP » & and (27), we obtain
_p-1 [N N2 o (N1 N2)
=7 (N3 N4) p=r (O O) P (28)
Hence E=P 1+ N+P =P 1« (/(\Sl /(\;2) +P, and
Ny
N>
beirc(N) = (F, ® I,) _ (F) ®1,).
Ny

The proof is completed. [
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Lemma 4.2. Let A € C™"™P, & € C™"™P be complex tensors, and & = A+ AP + &, || AP «E|| < 1, B = A+ E, such
that

k-1
8P = &Z{D—ﬂD*S*(I+&’{D*8)4*5‘ID+Z (AP - AP+ &+ (T + AP + &) *ﬂD)S+2*8*(I—ﬂ*ﬂD)*ﬂS,
s=0

Proof. According to the Theorem 1.11, then there is an invertible tensor £ € C*™* such that
B=A+E
=P T+P+P NP

-1 10* 4 (M N2
=P *(0 b R P

[T+ N N,
:Pl*( )*P
o

By Theorem 1.14, we have

D
‘(BD:P—l*(jl'i_Nl NZ) P

o g
—ply ((jl BM)D (j‘E)D) «P
(g B,
where 77 is nilpotent and
X = kz; (T + N 0 Moo (I # (2 - T % (TD)P)

-1

(7= (1 + N (T + M) x Y (T + N N« (T
s=0

—(J1 + NP = Ny = (TP

k-1
5+2
=Y (T + M) T N+ (D
s=0
Therefore
g0 =t [T+ ND)T TS T1+ M) N * (T,
o o
AP AP E (T + AP+ &)L+ AP
k-1
£ Y (A= AP EA (T4 AP AT A6 (T = A A2 A
5=0

Moreover, it proves that N7 + 7 is invertible. Let consider spectral radius of AP+ E.
Since (26) and (28), then

AP+ E=P 1+ JP« P+ P LA N =P
:P_l*ij-Nx—P,
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and the decomposition of the matrix beirc(JP * N) is

beire(JP * N) = beire(FP)beirc(N)
JP N1

JPN>
=(F,®1Iy)

SN (1N

where]iDNl-:((]il)O o ]-G=12,p

Similarly, we obtain

Ex A =P e NaPxP T w TO P
:P_l*N*jD*SD,

(Fi;l ® In)/
J;'Np

and the decomposition of the matrix beirc(N = JP) is

beirc (N * JP) = beirc(N)bcire(JP)

NyJP
NyJ3
=(F, 1)

where N;JP = (Nil(g)_l Niz(g)_l). (i=1,2---,p)

By Definition 1.15, we have
pr(TP « N) = plbcire(TP « N))

max p ((J))'N})
max p (N}(J) ™)

(F;){ ® Iﬂ)/
NpJy

p ((Fy ® L)bcire(TP + N)(FY @ 1)

= p((F, ® L)bcirc(N + TO)(FH ® 1))

= p(beire(N + T)
= pr(N = JP),

that is

pr(A° + &) = maxp((1)'N}) = maxp (N} ") = pr(& + A),

further

pr(E* AP) = pr(AP + &) < AP + &|| < 1.

1584

(29)

(30)

On the other hand, it will prove that 97 + N1 = J71* (I +(J1) 1= N1) is invertible. According to the inverse
of J1, we will only prove that 7 + (J1)~! * N; is nonsingular. Now, we prove it by reduction to absurdity.

Assume T + (J7)1* N is singular, then there is a nonzero tensor y € C"*", such that

(Z+@) = M)xy=0,
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then
e (VAREI RS
and the decomposition of bcirC((j 1) N1) is

beire (1)~ % N ) = beirc ((J1) ™) beire(A)
0N
(2N i
= (Fp®1n) . (Fp ®1I,).
(J;)'N,
Therefore, by Definition 1.16, then -1 is the eigenvalue of tensor ((j )7 Nl), denoted

Ar((F0)7™ + M) = A (beire((T1) ™ + M)
= A((Fy ® Lbeirc((J1) ™" + N1)(EH ® 1))
( ]1 -1 Nl)

-1,

it implies max p ((]1.1)‘1N1,1> > 1.

According to (29), we obtain

pr(&» AP) = pr(A° + &) = maxp (1) 'N}) 2 1,
which is contradictory to (30).
Hence 7 + (J1)™! * M1 is nonsingular. The proof is completed. [J

Theorem 4.3. Let A € C>"™¥, & € C™"™P be complex tensors, |\AP + E|| < 1, and B = A + E with Indr(A) = k
Suppose that & = A= AP + &, then

k-1

D _ gD D, K s+1

|API T 1= AP =&l g (1 - [|AP « &l || A

where Kp(A) = ||A||IIAP|.
Proof. Since Lemma 4.2, we have

BP AP = — AP+ E+ (T + AP + &)L+ AP

=

-1
4 (ﬂD_ﬂD*S*(I_i_ﬂD*S)—l*ﬂD)S‘FZ*g*(I_ﬂ*ﬂD)*ﬂS,

S

I
o

@31)
taking norm on both sides of (31) at the same time, then
|B° = AP < || = AP+ E+ (T + AP+ &)« AP

k-1
2
YA = AP &2 (T + AP E) 1+ A) " 562 (1 = A= AP) » |
5=0
<||AP + EIIT + AP« E)HIIAP|
k-1

+2
+ Y (KAC) + I1AP + NI + AP &) IAPH) SN — A = AP)IA,
5=0
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by Theorem 2.1, we have

1
BP — AP|| < ||AP % &|| ——=—°|| AP
Il I < ||A~ = ||1—||ﬂD*8|||I I
k-1 1 s+2
+ AP + ||AP *8I|—I|ﬂDII) IENNA * AP|IIAI
Z;( 1-|AD + &
= |A° * Ell——5—: IA”
I II — AP~ 8||II I
1 s+2
+2(II$DII s+2(1+||ﬂD SIIW) IEINIA * APIIA,
5=0
that is
BP — AP|| < ||AP % &|| ———=—°|| AP
Il <1l ”1—||5‘lD>+8||” |
k-1 1 s+2
+ Z‘(II?IDII)“’+2 (1 +||A" *SIIW) IENNA * AP|IIAIF, (32)

divide ||AP|| on both sides of (32) at the same time, we obtain

180 - AP o 1
< AP+ | ————
o < Mg
k-1 s+2
Dins+1 1 D>(- D S
+;<nﬂ Il (+||ﬂ &l 8”) IENIA + AP||A
1
= ﬂD*a —_—
I i —mmE
&l
+ ﬂD S+1 s+2 ” ﬂ ﬂD ﬂ s \?[
Z(u ) ”ﬂD ) Al Il 1A
=|AP * || — ——
19« 8l
v El
+ ﬂD s+1 ﬂ s+1 s+2 ﬂ ﬂD
;;(” D (IlAN) (—MD T I
AP+ & S KA e
I I b (A) [ pp——

+
I= AP+ &l & (1= |AP + &) 1Al

where Kp(A)** = (|| A|||AP|))**!. The proof is completed. [
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