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Abstract. Let X be a complex topological vector space and L(X) the set of all continuous linear operators on
X.An operator T ∈ L(X) is supercyclic if there is x ∈ X such that; COrb(T, x) = {αTnx : α ∈ C, n ≥ 0}, is dense
in X. In this paper, we extend this notion from a single operator T ∈ L(X) to a subset of operators Γ ⊆ L(X).
We prove that most of related proprieties to supercyclicity in the case of a single operator T remains true
for subset of operators Γ. This leads us to obtain some results for C-regularized groups of operators.

1. Introduction and Preliminary

Let X be a complex topological vector space and L(X) the space of all continuous linear operators on X.
By an operator, we always mean a continuous linear operator.

The most important and studied notion in the linear dynamics is that of hypercyclicity: an operator T
acting on X is said to be hypercyclic if there exists some vector x whose orbit under T;

Orb(T, x) := {Tnx : n ≥ 0},

is dense in X. Such a vector x is called a hypercyclic vector for T, and the set of all hypercyclic vectors for T is
denoted by HC(T). The first examples of hypercyclic operators on a Banach space were given by Rolewicz
in 1969 in [13]. He proved that if B is a backward shift on the Banach space `p(N); 1 ≤ p < ∞, then λB is
hypercyclic for any complex number λ such that |λ| > 1.

Another important notion in the linear dynamics is that of supercyclicity: we say that T ∈ L(X) is a
supercyclic operator if there is some vector x ∈ X such that the cone generated by Orb(T, x);

COrb(T, x) = {αTnx : α ∈ C, n ≥ 0},

is dense in X. Such a vector x is called a supercyclic vector for T, and the set of all supercyclic vectors for T is
denoted by SC(T), see [11]. In the context of separable Banach spaces, Feldman [9] proved that an operator
T is supercyclic if and only if it is supercyclic transitive, that is; for each pair (U,V) of nonempty open subsets
of X there exist α ∈ C and n ≥ 0 such that

αTn(U) ∩ V , ∅.

Another important notion that implies the supercyclicity is the supercyclicity criterion [14]. It provides
several sufficient conditions that ensure supercyclicity. We say that an operator T ∈ L(X) satisfies the
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supercyclicity criterion if there exist an increasing sequence of integers (nk), a sequence (αnk ) of nonzero
complex numbers, two dense sets X0, Y0 ⊂ X and a sequence of maps Snk : Y0 −→ X such that:

• αnk T
nk x −→ 0 for any x ∈ X0;

• α−1
nk

Snk y −→ 0 for any y ∈ Y0;

• Tnk Snk y −→ y for any y ∈ Y0.

For a general overview of the hypercyclicity and supercyclicity see [6, 10].
An operator T ∈ L(X) is called quasi-conjugate or quasi-similar to an operator S ∈ L(Y) if there exists an

operator φ : X −→ Y with dense range such that φ ◦ T = S ◦ φ. If φ can be chosen to be a homeomorphism,
then T and S are called conjugate or similar, see [10, Definition 1.5]. A property P is said to be preserved
under quasi-similarity if the following holds: if an operator T ∈ L(X) has property P, then every operator
S ∈ L(Y) that is quasi-similar to T has also property P, see [10, Definition 1.7].

A set Γ of operators is called hypercyclic if there exists a vector x in X such that its orbit under Γ;

Orb(Γ, x) = {Tx : T ∈ Γ},

is dense in X. Such a vector x is called a hypercyclic vector for Γ. The set of all hypercyclic vectors for Γ is
denoted by HC(Γ), see [2, 4]. If the space generated by Orb(Γ, x);

span{Orb(Γ, x)} = span({Tx : T ∈ Γ}),

is dense in X for some vector x, then Γ is cyclic. The vector x is called a cyclic vector for Γ. The set of all
cyclic vector for Γ is denoted by C(Γ), see [1, 5].

In this work, we introduce and study the supercyclicity for a set of operators.
In Section 2, we introduce the notion of supercyclicity for a subset Γ ⊆ L(X) and we prove most of related
results to supercyclicity for Γ. We show that the set of supercyclic vectors for a set Γ is Gδ type and that the
supercyclicity for a set Γ is preserved under quasi-similarity.
In Section 3, we introduce the notions of supercylic transitivity, strictly supertransitivity, supertransitivity
and the supercyclicity criterion for a set Γ of operators. Also, we give the relationship between these notions
and the supercyclicity.
In Sections 4, we apply previous results to prove some results for C-regularized groups of operators.

2. Supercyclic sets of operators

In the following definition, we introduce the notion of the supercyclicity of a set of operators. This
definition generalizes the notion of the supercyclicity of a single operator.

Definition 2.1. Let Γ ⊂ L(X). We say that Γ is a supercyclic set of operators if there exists x ∈ X such that the cone
generated by Orb(Γ, x);

COrb(Γ, x) := {αTx : α ∈ C, T ∈ Γ},

is dense in X. Such a vector x is called a supercyclic vector for Γ. The set of all supercyclic vectors for Γ is denoted by
SC(Γ).

The following example shows the existence of supercyclic sets of operators on the field of complex
numbers.

Example 2.2. Let X = C and T be a nonzero operator on C, then there exists x ∈ C such that Tx , 0. Let Γ = {T},
then

COrb(Γ, x) = C{Tx} = C.

This means that Γ is supercyclic and x is a supercyclic vector for Γ.
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Remark 2.3. Let Γ be a subset of L(X). Since for all x ∈ X we have

Orb(Γ, x) ⊂ COrb(Γ, x),

if Γ is hypercyclic, then it is supercyclic. The converse does not hold in general. Indeed, let Γ be the set defined as in
Example 2.2, then Γ is supercyclic, but it is not hypercyclic.

It has been shown in [11] that X supports supercyclic operators if and only if dim(X) = 1 or dim(X) = +∞.
This result does not hold in general in the case of a set of operators. Moreover, the supercyclicity of a set of
operators exists in each topological vector space X.

Example 2.4. Let f be a nonzero linear form on a locally convex space X and D be a subset of X such that the set

CD := {αx : α ∈ C, x ∈ D}

is a dense subset of X. For all x ∈ X, let Tx be an operator defined by:

Tx : X −→ X
y 7−→ f (y)x.

We consider Γ f = {Tx : x ∈ D} and let y be a vector of X such that f (y) , 0. Then

COrb(Γ f , y) = {αTxy : x ∈ D, α ∈ C} = {α f (y)x : x ∈ D, α ∈ C} = CD.

Hence, COrb(Γ f , y) = X, which means that Γ f is supercyclic and y is a supercyclic vector for Γ f .

Remark 2.5. Let T be an operator acting on a complex separable Banach space X such that dim(X) ≥ 1. By Ansari’s
theorem, if T is supercyclic, then for any n ≥ 2, the operator Tn is supercyclic. Moreover, T and Tn share the same
supercyclic vectors, see [3]. This result does not hold in general in the case of a set of operators. Indeed, let Γ f be the
set of operators defined as in Example 2.4, then Γ f is supercyclic. However, every single operator Tx is not supercyclic
since supercyclic operators are of dense range, see [7].

Let Γ ⊂ L(X). We denote by {Γ}
′

the set of all elements of L(X) which commute with every element of Γ.

Proposition 2.6. Let T be an operator with dense range. If T ∈ {Γ}′ , then Tx ∈ SC(Γ), for all x ∈ SC(Γ).

Proof. Let O be a nonempty and open subset of X. Since T is of dense range, T−1(O) is nonempty and open.
Let x ∈ SC(Γ), then there exist α ∈ C and S ∈ Γ such that αSx ∈ T−1(O), that is αT(Sx) ∈ O. Since T ∈ {Γ}′ , it
follows that αS(Tx) = αT(Sx) ∈ O. Hence, Tx ∈ SC(Γ).

Corollary 2.7. Let Γ be a supercyclic set of operators. If x ∈ SC(Γ), then αx ∈ SC(Γ), for all α ∈ C \ {0}.

Let X and Y be topological vector spaces and let Γ ⊂ L(X) and Γ1 ⊂ L(Y). Recall from [1], that Γ and Γ1
are called quasi-similar if there exists an operator φ : X −→ Y with dense range such that for all T ∈ Γ, there
exists S ∈ Γ1 satisfying S ◦ φ = φ ◦ T. If φ is a homeomorphism, then Γ and Γ1 are called similar.

It has been shown in [10] that the supercyclicity of a single operator is stable under quasi-similarity. In
the following, we prove that the same result holds for sets of operators.

Proposition 2.8. If Γ ⊂ L(X) and Γ1 ⊂ L(Y) are quasi-similar, then Γ is supercyclic in X implies that Γ1 is supercyclic
in Y. Moreover, φ(SC(Γ) ⊂ SC(Γ1).

Proof. Let O be a nonempty open subset of Y, then φ−1(O) is a nonempty open subset of X. If x ∈ SC(Γ), then
there exist α ∈ C and T ∈ Γ such that αTx ∈ φ−1(O), that is αφ(Tx) ∈ O. Let S ∈ Γ1 such that S ◦ φ = φ ◦ T.
Hence, αS(φx) = αφ(Tx) ∈ O. Hence φx ∈ SC(Γ1).

Corollary 2.9. Assume that Γ ⊂ L(X) and Γ1 ⊂ L(Y) are similar. Then Γ is supercyclic in X if and only if Γ1 is
supercyclic in Y. Moreover,

φ(SC(Γ) = SC(Γ1).



M. Amouch, O. Benchiheb / Filomat 35:5 (2021), 1619–1627 1622

Proposition 2.10. Let {αT}T∈Γ be a net of nonzero complex numbers. Then, Γ is supercyclic if and only if Γ1 :=
{αTT : T ∈ Γ} is supercyclic. Moreover, Γ and Γ1 share the same supercyclic vectors.

Proof. This is since COrb(Γ, x) = COrb(Γ1, x) for all x ∈ X.

Proposition 2.11. Let {Xi}
n
i=1 be a family of complex topological vector spaces and Γi be a subset of L(Xi), for all

1 ≤ i ≤ n. If ⊕n
i=1Γi is a supercyclic set in ⊕n

i=1Xi, then Γi is a supercyclic set in Xi, for all 1 ≤ i ≤ n. Moreover, if
(x1, x2, . . . , xn) ∈ SC(⊕n

i=1Γi), then xi ∈ SC(Γi), for all 1 ≤ i ≤ n. That is SC(⊕n
i=1Γi) ⊂ ⊕n

i=1SC(Γi).

Proof. Let (x1, x2, . . . , xn) ∈ SC(⊕n
i=1Γi). For all 1 ≤ i ≤ n, let Oi be a nonempty open subset of Xi, then

O1 ×O2 × · · · ×On is a nonempty open subset of ⊕n
i=1Xi. Since Orb(⊕n

i=1Γi,⊕n
i=1xi) is dense in ⊕n

i=1Xi, it follows
that there exist α ∈ C and Ti ∈ Γi; 1 ≤ i ≤ n such that

(αT1x1, αT2x2, . . . , αTnxn) = α(T1 × T2 × · · · × Tn)(x1, x2, . . . , xn) ∈ O1 ×O2 × · · · ×On,

that is αTixi ∈ Oi, for all 1 ≤ i ≤ n. Hence, Γi is a supercyclic set in Xi and xi ∈ SC(Γi), for all 1 ≤ i ≤ n.

A subset of X is said to be Gδ type if it is an intersection of a countable collection of open sets.
Using a countable basis of the topology of X, we can prove that the set of all supercyclic vectors for a

set Γ is Gδ type as shows the next proposition.

Proposition 2.12. Let X be a second countable topological vector space and Γ ⊂ L(X) a supercyclic set. Then,

SC(Γ) =
⋂
n≥1

 ⋃
β∈C\{0}

⋃
T∈Γ

T−1(βUn)

 ,
where (Un)n≥1 is a countable basis of the topology of X. As a consequence, SC(Γ) is a Gδ type set.

Proof. Suppose that Γ is a supercyclic set. Then, x ∈ SC(Γ) if and only if COrb(Γ, x) = X. Equivalently, for all
n ≥ 1 we have Un ∩ COrb(Γ, x) , ∅. That is, for all n ≥ 1 there exist α ∈ C and T ∈ Γ such that x ∈ αT−1(Un).

This is equivalent to the fact that x ∈
⋂
n≥1

 ⋃
β∈C\{0}

⋃
T∈Γ

T−1(βUn)

. Hence, SC(Γ) =
⋂
n≥1

 ⋃
β∈C\{0}

⋃
T∈Γ

T−1(βUn)

.

Since
⋃

β∈C\{0}

⋃
T∈Γ

T−1(βUn) is an open subset of X, for all n ≥ 1, it follows that SC(Γ) is a Gδ type.

3. Density and Transitivity of Sets of Operators

The supercyclic transitivity of a single operator was introduced in [9]. In the following definition, we
extend this notion to sets of operators.

Definition 3.1. We say that Γ is a supercyclic transitive set of operators if for each pair of nonempty open subsets
(U,V) of X, there exist α ∈ C \ {0} and T ∈ Γ such that

T(αU) ∩ V , ∅.

The following example shows that each topological vector space X supports supercyclic transitive sets
of operators.

Example 3.2. Assume that X is a locally convex space. Let x, y ∈ X and let fy be a linear form on X such that
fy(y) , 0. We define an operator T fy,x by

T fy,x : X −→ X
z 7−→ fy(z)x.
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Let Γ be a set of operators on X defined by Γ = {T fy,x : x, y ∈ X such that fy(y) , 0}. Then Γ is a supercyclic transitive
set of operators. Indeed, let U and V be two nonempty open subsets of X. There exist x, y ∈ X such that x ∈ U and
y ∈ V. We have

T fy,x(y) = fy(y)x.

Since fy(y) , 0, it follows that x = 1
fy(y) T fy,x(y). Hence x ∈ U and x ∈ 1

fy(y) T fy,x(V), which implies that U ∩
1

fy(y) T fy,x(V) , ∅. Thus Γ is a supercyclic transitive set of operators.

The supercyclic transitivity of a single operators is preserved under quasi-similarity, see [10, Proposition
1.13]. The following proposition proves that this result holds for sets of operators.

Proposition 3.3. Assume that Γ ⊂ L(X) and Γ1 ⊂ L(Y) are quasi-similar. If Γ is supercyclic transitive in Y, then Γ1
is supercyclic transitive in Y.

Proof. Let U, V be nonempty open and subsets of Y. Since φ is of dense range, φ−1(U) and φ−1(V) are
nonempty and open subsets of X. Since Γ is supercyclic transitive in X, there exist y ∈ φ−1(U) and α ∈ C,
T ∈ Γ with αTy ∈ φ−1(V), which implies that φ(y) ∈ U and αφ(Ty) ∈ V. Let S ∈ Γ such that S ◦ φ = φ ◦ T.
Then, φ(y) ∈ U and αSφ(y) ∈ V. Thus, αS(U) ∩ V , ∅. Hence, Γ1 is supercyclic transitive in Y.

Corollary 3.4. Assume that Γ ⊂ L(X) and Γ1 ⊂ L(Y) are similar. Then, Γ is supercyclic transitive in X if and only
if Γ1 is supercyclic transitive in Y.

In the following result, we give necessary and sufficient conditions for a set of operators to be supercyclic
transitive.

Theorem 3.5. Let X be a normed space and Γ ⊂ L(X). The following assertions are equivalent:

(i) Γ is supercyclic transitive;

(ii) For each x, y ∈ X, there exist sequences {k} in N, {xk} in X, {αk} in C and {Tk} in Γ such that xk −→ x and
Tk(αkxk) −→ y;

(iii) For each x, y ∈ X and for W a neighborhood of zero, there exist z ∈ X, α ∈ C and T ∈ Γ such that x − z ∈ W
and T(αz) − y ∈W.

Proof. (i) ⇒ (ii) Let x, y ∈ X. For all k ≥ 1, let Uk = B(x, 1
k ) and Vk = B(y, 1

k ). Then Uk and Vk are nonempty
open subsets of X. Since Γ is supercyclic transitive, there exist αk ∈ C and Tk ∈ Γ such that Tk(αkUk)∩Vk , ∅.
For all k ≥ 1, let xk ∈ Uk such that Tk(αkxk) ∈ Vk, then ‖xk − x‖ < 1

k and ‖Tk(αkxk) − y‖ < 1
k which implies that

xk −→ x and Tk(αkxk) −→ y.
(ii)⇒ (iii) Clear;
(iii) ⇒ (i) Let U and V be two nonempty open subsets of X. There exist x, y ∈ X such that x ∈ U and

y ∈ V. Since for all k ≥ 1, Wk = B(0, 1
k ) is a neighborhood of 0, there exist zk ∈ X, αk ∈ C and Tk ∈ Γ such that

‖x − zk‖ <
1
k and ‖Tk(αkzk) − y‖ < 1

k . This implies that zk −→ x and Tk(αkzk) −→ y. There exists N ∈ N
such that zk ∈ U and Tk(αkzk) ∈ V, for all k ≥ N. This implies that Γ is supercyclic transitive.

Theorem 3.6. Let X be a second countable Baire topological vector space and Γ a subset of L(X). The following
assertions are equivalent:

(i) SC(Γ) is dense in X;

(ii) Γ is supercylic transitive.

As a consequence, a supercyclic transitive set is supercyclic.



M. Amouch, O. Benchiheb / Filomat 35:5 (2021), 1619–1627 1624

Proof. Since X is a second countable topological vector space, we can consider (Um)m≥1 a countable basis of
the topology of X.
(i) ⇒ (ii) : Assume that SC(Γ) =

⋂
n≥1

(⋃
β∈C\{0}

⋃
T∈Γ T−1(βUn)

)
is dense in X. Hence, for all n ≥ 1 the set

An =
⋃
β∈C\{0}

⋃
T∈Γ T−1(βUn) is dense in X. Thus, for all n, m ≥ 1, we have An ∩ Um , ∅ which implies that

for all n, m ≥ 1 there exist β ∈ C \ {0} and T ∈ Γ, such that T(βUm)∩Un , ∅, which implies that Γ supercyclic
transitive.
(ii)⇒ (i) : Let n, m ≥ 1, then there exist β ∈ C \ {0} and T ∈ Γ such that T(βUm) ∩Un , ∅ which implies that
T−1( 1

βUn) ∩Um , ∅. Hence, for all n ≥ 1 the set
⋃

T∈Γ
⋃
β∈C\{0} T−1(βUn) is dense in X.

In the following, we prove that the converse of Theorem 3.6 holds with some additional assumptions.

Theorem 3.7. Let Γ ⊂ L(X) such that for all T, S ∈ Γ with T , S, there exists A ∈ Γ such that T = AS. Then Γ is
supercyclic implies that Γ is supercyclic transitive.

Proof. Since Γ is supercyclic, there exists x ∈ X such that COrb(Γ, x) is a dense subset of X. Let U, V be
nonempty and open subsets of X, then there exist α, β ∈ C \ {0}, and T, S ∈ Γ such that

αTx ∈ U and βSx ∈ V. (1)

There exists A ∈ Γ such that T = AS. By (1), we have αA(Sx) ∈ U and βA(Sx) ∈ A(V) which implies that
U ∩ A(αβV) , ∅. Hence, Γ is supercyclic transitive.

Remark 3.8. Let Γ be a set of mutually commuting operators, that is; for each T, and S in Γ, we have TS = ST.
Assume that each operator of Γ is of dense range. Then Γ is supercyclic implies that Γ is supercyclic transitive.

Definition 3.9. We say that Γ ⊂ L(X) is strictly supertransitive if for each pair of nonzero elements x, y in X, there
exist α ∈ C and T ∈ Γ such that αTx = y.

Example 3.10. Let X be a locally convex space and f a nonzero linear form on X. Let D be a subset of X such

CD := {αx : α ∈ C, x ∈ D}

is dense in X. Let Γ f be the set of operators defined as in Example 2.4. Let x and y be two elements of X, then

Tx(y) = f (y)x = αx.

Hence Γ f is strictly supertransitive.

Proposition 3.11. A strictly supertransitive set is supercyclic transitive. As a consequence, a strictly supertransitive
set is supercyclic.

Proof. Let Γ ⊂ L(X) be a strictly supertransitive set. If U and V are two nonempty open subsets of X, there
exist x, y ∈ X such that x ∈ U and y ∈ V. Since Γ is strictly supertransitive, there exist α ∈ C and T ∈ Γ such
that αTx = y. Hence, αTx ∈ αT(U) and αTx ∈ V. Thus, αT(U) ∩ V , ∅, which implies that Γ is supercyclic
transitive.

Proposition 3.12. Assume Γ ⊂ L(X) and Γ1 ⊂ L(Y) are similar. Then Γ is strictly supertransitive in X if and only
Γ1 is strictly supertransitive in Y.

Proof. Let x, y ∈ Y. There exist a, b ∈ X such that φ(a) = x and φ(b) = y. Since Γ is strictly supertransitive in
X, there exist α ∈ C and T ∈ Γ such that αTa = b. Let S ∈ Γ1 such that S ◦φ = φ ◦T, this implies that αSx = y.
Hence Γ1 is strictly supertransitive in Y.
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The strong operator topology (SOT for short) on L(X) is the topology for which a neighborhood of T ∈ L(X)
is given by

Ω = {S ∈ L(X) : Sei − Tei ∈ U, i = 1, 2, . . . , k},

where k ∈N, e1, e2, . . . ek ∈ X are linearly independent and U is a neighborhood of zero in X.
In the following theorem, the proof is true for norm-density if X is assumed to be a normed linear space.

Theorem 3.13. Let X be a topological vector space. Then for each pair of nonzero linearly independent vectors x,
y ∈ X there exists a SOT-dense set Γxy ⊂ L(X) which is not strictly supertransitive. Furthermore, Γ ⊂ L(X) is a
dense nonstrictly transitive set if and only if Γ is a dense subset of Γxy for some x, y ∈ X.

Proof. Fix nonzero linearly independent vectors x, y ∈ X and put

Γxy = {T ∈ L(X) : y and Tx are linearly independent}.

It is clear that Γxy is not strictly supertransitive. Let Ω be a nonempty open subset of L(X) and S ∈ Ω. If
Sx and y are linearly independent, then S ∈ Ω ∩ Γxy. Otherwise, putting Sn = S + 1

n I, we see that Sk ∈ Ω
for some k, but Skx and y are linearly independent. Hence, Ω ∩ Γxy , ∅ and the proof of the first part is
complete.

We prove the second part of the theorem. Suppose that Γ is a dense subset of L(X) that is not strictly
supertransitive. Then there exist nonzero vectors x, y ∈ X such that Tx and y are linearly independent for
all T ∈ Γ and hence Γ ⊂ Γxy. To show that Γ is dense in Γxy, assume that Ω0 is an open subset of Γxy. Thus,
Ω0 = Γxy ∩Ω for some open set Ω in L(X). Then Γ ∩Ω0 = Γ ∩Ω , ∅.

For the converse, let Γ be a dense subset of Γxy for some x, y ∈ X. Then Γ is not strictly supertransitive.
Also, since Γxy is a dense open subset of L(X), we conclude that Γ is also dense in L(X). Indeed, if Ω is any
open set in L(X) then Ω ∩ Γxy , ∅ since Γxy is dense in L(X). On the other hand, Ω ∩ Γxy is open in Γxy and
so it must intersect Γ since Γ is dense in Γxy. Thus, Ω ∩ Γ , ∅ and so Γ is dense in LX).

Corollary 3.14. Let X be a topological vector space and Γ be a SOT-dense subset of L(X). Then there is a subset Γ1

of Γ such that Γ1
SOT

= L(X) and Γ1 is not strictly supertransitive.

Proof. For nonzero linearly independent vectors x, y put Γ1 = Γ ∩ Γxy.

Definition 3.15. A set Γ ⊂ L(X) is said to be supertransitive if SC(Γ) = X \ {0}.

Remarks 3.16. Let T ∈ L(X).

(i) If T is supertransitive, then it is injective of dense range.

(ii) T is supertransitive if and only if Tp is supertransitive, for all p ≥ 2.

The next proposition shows that supertransitivity implies supercyclic transitivity.

Proposition 3.17. If Γ is supertransitive, then it is supercyclic transitive.

Proof. Let U, V be nonempty and open subsets of X. There exists x ∈ X \ {0} such that x ∈ U. Since Γ is
supertransitive, there exist α ∈ C and T ∈ Γ such that αTx ∈ V, it follows that αT(U) ∩ V , ∅. Hence, Γ is
supercyclic transitive.

Proposition 3.18. Assume that Γ ⊂ L(X) and Γ1 ⊂ L(Y) are similar. Then, Γ is supertransitive on X if and only if
Γ1 is supertransitive on Y.

Proof. It suffices to use Proposition 2.8 and verify that φ(X \ {0}) = X \ {0}.

The following result shows that the SOT-closure of Γ is not large enough to have more supercyclic
vectors than Γ.
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Proposition 3.19. Let Γ ⊂ L(X). Then SC(Γ) = SC
(
Γ

SOT
)
.

Proof. Let x ∈ SC
(
Γ

SOT
)
. If U is an open set of X, then there is some α ∈ C and T ∈ Γ

SOT
such that αTx ∈ U.

Since Ω = {S ∈ L(X) : αSx ∈ U} is a SOT-neighborhood of T, there is some S ∈ Γ such that αSx ∈ U and this
shows that x ∈ SC(Γ).

Corollary 3.20. Let Γ ⊂ L(X). Then, Γ is supertransitive if and only if Γ
SOT

is supertransitive.

In the following definition, we introduce the notion of the supercyclicity criterion for a set of operators.

Definition 3.21. We say that Γ satisfies the criterion of supercyclicity if there exist two dense subsets X0, Y0 in X,
and sequences {k} ⊂N, {αk} ⊂ C \ {0}, {Tk} ⊂ Γ, and maps Sk : Y0 −→ X such that:

(i) αkTkx −→ 0 for all x ∈ X0;

(ii) α−1
k Sky −→ 0 for all y ∈ Y0;

(iii) TkSky −→ y for all y ∈ Y0.

Theorem 3.22. Let X be a second countable Baire topological vector space and Γ a subset of L(X). If Γ satisfies the
criterion of supercyclicity, then it is supercyclic.

Proof. Let U, V be nonempty open subsets of X. There exist x0, y0 in X such that x0 ∈ X0∩U and y0 ∈ Y0∩V.
For all k ≥ 1, let zk = x0 + α−1

k Sky. It follows that zk −→ x0, and αkTkzk −→ y0. Hence, there exists k such that
αkTk(U) ∩ V , ∅.

4. Supercyclicity of C-Regularized Groups

In this section, we study the particular case where Γ stands for a C-regularized group. Recall from [8],
that an entire C-regularized group is an operator family (S(z))z∈C on L(X) that satisfies:

(1) S(0) = C;

(2) S(z + w)C = S(z)S(w) for every z, w ∈ C,

(3) The mapping z 7→ S(z)x, with z ∈ C, is entire for every x ∈ X.

Example 4.1. Let X = C. For all z ∈ C, let S(z)x = exp(z)x, for all x ∈ C. (S(z))z∈C is a C-regularized
group of operators and we have COrb((S(z))z∈C, x) = C, for all x ∈ C \ {0}. Hence (S(z))z∈C is supercyclic and
SC((S(z))z∈C) = C \ {0}.

By Theorem 3.6, every supercyclic transitive C-regularized group is supercyclic. In the following, we
prove that the converse holds.

Theorem 4.2. Assume that C is of dense range. If (S(z))z∈C) is supercyclic, then it is supercyclic transitive.

Proof. Let x ∈ SC((S(z))z∈C). If U and V are two nonempty open subsets of X, then there exist α, β, z1, z2 ∈ C
such that αS(z1)x ∈ C−1(U) and βS(z2)x ∈ V. Let z3 = z1 − z2, then U ∩ α

βS(z3)(V) , ∅. Hence, (S(z))z∈C is a
supercyclic transitive C-regularized group.

Theorem 4.3. Let (S(z))z∈C be a supercyclic C-regularized group on a Banach infinite-dimensional space X. Assume
that C is of dense range. If x ∈ X is a supercyclic vector of (S(z))z∈C, then the following assertions hold:

(1) S(z)x , 0 for all z ∈ C;

(2) The set {αS(z)x : α, z ∈ C, |z| > |ω0|} is dense in X for all ω0 ∈ C.
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Proof. (1) Clear.
(2) Let ω0 ∈ C such that the set A := {αS(z)x : α, z ∈ C, |z| > |ω0|} is not dense in X. Hence there exists a
bounded open set U such that U ∩ A = ∅. Therefore we have

U ⊂ {αS(z)x : α, z ∈ C, |z| ≤ |ω0|}

by using the relation

X = {αS(z)x : α, z ∈ C} = {αS(z)x : α, z ∈ C, |z| > |ω0|} ∪ {αS(z)x : α, z ∈ C, |z| ≤ |ω0|}.

Since S(z)x is continuous with z and S(z)x , 0 holds for all z ∈ C by (1), there exist m1, m2 > 0 such that
0 < m1 ≤ ‖S(z)x‖ < m2 for z ∈ C with |z| ≤ |ω0|. There exists M > 0 such that ‖y‖ ≤ M for any y ∈ U because
U is bounded. So we have

U ⊂
{
αS(z)x : |z| ≤ |ω0|, |α| ≤

M
m1

}
,

which means that U is compact. Hence X is finite dimensional, which contradicts that X is infinite
dimensional.
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