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Abstract. In this paper, we point out that the proof of Theorem 2.4(5), Proposition 2.6(1) and Proposition
2.8(1) in the paper titled ”On (L,M)-fuzzy convex structures” (Filomat 33(13): 4151-4163, 2019) are not true
in general. Then, we give three correct proofs of these results.

1. Introduction

Sayed et al.[4] defined a new class of L-fuzzy sets called r-L-fuzzy biconvex sets in (L,M)-fuzzy convex
structures. The transformation method between L-fuzzy hull operators and (L,M)-fuzzy convex structures
were introduced, and a characterization of the product of the L-fuzzy hull operator was obtained. The aim
of this article is to correct some errors in the proof of Theorem 2.4(5),Proposition 2.6(1) and Proposition
2.8(1) proposed by Sayed et al. ([4]).

2. Preliminaries

Throughout this paper, let X be a non-empty set, both L and M be two completely distributive lattices
with order reversing involution ′ where ⊥M (⊥L) and >M(>L) denote the least and the greatest elements in
M(L) respectively, and M⊥M = M− {⊥M}(L⊥L = L− {⊥L}). Recall that an order-reversing involution ′ on L is a
map (−)′ : L −→ L such that for any a, b ∈ L, the following conditions hold: (1) a ≤ b implies b′ ≤ a′. (2) a′′ = a.
The following properties hold for any subset {bi : i ∈ I} ∈ L: (1) (

∨
i∈I bi)′ =

∧
i∈I b′i ; (2) (

∧
i∈I bi)′ =

∨
i∈I b′i .

An L-fuzzy subset of X is a mapping µ : X −→ L and the family LX denoted the set of all fuzzy subsets of
a given X ([1]). The least and the greatest elements in LX are denoted by χ∅ and χX, respectively. For each
α ∈ L, let α denote the constant L-fuzzy subset of X with the value α. The complementation of a fuzzy subset
are defined as µ′(x) = (µ(x))′ for all x ∈ X, (e.g. µ′(x) = 1 − µ(x) in the case of L = [0, 1]). We say {µi : i ∈ Γ}
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is a directed (resp. co-directed ) subset of LX, in symbols {µi : i ∈ Γ}
dir
⊆ LX (resp. {µi : i ∈ Γ}

cdir
⊆ LX ) if for

each µ1, µ2 ∈ {µi : i ∈ Γ}, there exists µ3 ∈ {µi : i ∈ Γ} such that µ1, µ2 ≤ µ3 (resp. µ1, µ2 ≥ µ3). An element
a ,⊥M in a lattice is called coprime if a ≤ b ∨ c implies a ≤ b or a ≤ c for all b, c ∈ M. Further, a is said
to be join-irreducible if a = b ∨ c implies a = b or a = c for all b, c ∈ M. The set of all non-zero coprime
elements (resp. join-irreducible elements) of M is denoted Copr(M) (resp. J(M)). It can be verified that
if M is distributive, then a ∈ M is coprime iff it is join-irreducible, which means Copr(M) = J(M). So, for
convenience, we usually use J(M) to stand for the set of all coprime elements of M if M is distributive. If M
is a completely distributive lattice and x/

∨
t∈T yt, then there must be t? ∈ T such that x/ yt? (here x/a means:

K ⊂ M, a ≤
∨

K ⇒ ∃y ∈ K such that x≤y), and for each b ∈ M, b =
∨
{a ∈ M : a / b} =

∨
{a ∈ J(M) : a / b}.

Some more properties of / can be found in [2] and [6].
First, we recall two definitions which will be used in this paper.

Definition 2.1. ([5]) The pair (X,C) is called an (L,M)-fuzzy convex structure ( (L,M)-fcs, for short), where
C : LX

−→M satisfying the following axioms:
(LMC1) C(0) = C(1) = >M.
(LMC2) If {µi : i ∈ Γ} ⊆ LX is nonempty, then

C(
∧
i∈Γ

µi) ≥
∧
i∈Γ

C(µi).

(LMC3) If {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion, then

C(
∨
i∈Γ

µi) ≥
∧
i∈Γ

C(µi).

The mappingC is called an (L,M)-fuzzy convexity on X andC(µ) can be regarded as the degree to which
µ is an L-convex fuzzy set.

Definition 2.2. ([3]) Let f : X −→ Y. Then the image f→(µ) of µ ∈ LX and the preimage f←(ν) of ν ∈ LY are
defined by:

f→(µ)(y) =
∨
{µ(x) : x ∈ X, f (x) = y}

and f←(ν) = ν ◦ f , respectively. It can be verified that the pair ( f→, f←) is a Galois connection on (LX,≤)
and (LY,≤).

Next, we recall Theorem 2.4, Proposition 2.6 and Proposition 2.8 of [4] as follows.

Theorem 2.3. ([4, Theorem 2.4]) Let (X,C) be an (L,M)-fuzzy convex structure. For each µ ∈ LX and r ∈ M⊥M ,
we define a mapping COC : LX

×M⊥M −→ LX as follows:

COC(µ, r) =
∧
{ν ∈ LX : µ ≤ ν, C(ν) ≥ r}.

For µ, ν ∈ LX and r, s ∈M⊥M the operator COC satisfies the following conditions:

(1) COC(0, r) = 0.
(2) µ ≤ COC(µ, r).
(3) If µ ≤ ν, then COC(µ, r) ≤ COC(ν, r).
(4) If r ≤ s, then COC(µ, r) ≤ COC(µ, s).
(5) COC(COC(µ, r), r) = COC(µ, r).
(6) For {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion,

COC(
∨
i∈Γ

µi, r) =
∨
i∈Γ

COC(µi, r).

A mapping COC is called L-fuzzy hull operator generated by an (L,M)-fuzzy convex structure.
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Proposition 2.4. ([4, Proposition 2.6(1)]) Let (X,C1,C2) be an (L,M)-fbcs. For each r ∈ M⊥M and µ ∈ LX, a
mapping CCO12 : LX

−→M is defined as follows

CCO12 (µ) =
∨
{r ∈M⊥M : µ = CO12(µ, r)},

where CO12(µ, r) = COC1(µ, r) ∧ COC2(µ, r) satisfies the conditions (1)-(6) of Theorem 2.3 (see [4]). Then CCO12 is
an (L,M)-fuzzy convexity on X.

Proposition 2.5. ([4, Proposition 2.8]) Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. Then f : X −→ Y
is

(1) An (L,M)-fuzzy convexity preserving function if and only if f→(COC(µ, r)) ≤ COD( f→(µ), r) for all µ ∈ LX

and r ∈M⊥M .
(2) An (L,M)-fuzzy convex-to-convex function if and only if COD( f→(µ), r) ≤ f→(COC(µ, r)) for all µ ∈ LX and

r ∈M⊥M .

3. Main Results

First, we point out that the proof of Theorem 2.4(5), Proposition 2.6(1) and Proposition 2.8(1) are not
true in general (see [4]). Here is why:

Notice that L (M) is a completely distributive lattice, not a unit interval [0,1]. So, if a � b, it doesn’t imply
a > b. Because there exists another case that a and b may are not compparable, i.e., a ‖ b.

Now, we provide three correct proofs of these results as follows.

Proposition 3.1. ([4, Theorem 2.4(5)]) Let (X,C) be an (L,M)-fuzzy convex structure. For each µ ∈ LX and
r ∈M⊥M , we define a mapping COC : LX

×M⊥M −→ LX as follows:

COC(µ, r) =
∧
{ν ∈ LX : µ ≤ ν, C(ν) ≥ r}.

Then
COC(COC(µ, r), r) = COC(µ, r).

Proof. For all µ ∈ LX and r ∈ M⊥M . By the definition of COC(µ, r), we have µ ≤ COC(µ, r). Hence,
COC(COC(µ, r), r) ≥ COC(µ, r).

On the other hand,

COC(COC(µ, r), r) = COC
(∧ {

ν ∈ LX : µ ≤ ν, C(ν) ≥ r
}
, r

)
≤

∧
µ≤ν, C(ν)≥r

COC(ν, r)

=
∧

µ≤ν, C(ν)≥r

∧
ν≤$, C($)≥r

$

=
∧

µ≤$, C($)≥r

$

= COC(µ, r).

Hence COC(COC(µ, r), r) = COC(µ, r).

Proposition 3.2. ([4, Proposition 2.6(1)]) Let (X,C1,C2) be an (L,M)-fbcs. For each r ∈ M⊥M and µ ∈ LX, a
mapping CCO12 : LX

−→M is defined as follows

CCO12 (µ) =
∨
{r ∈M⊥M : µ = CO12(µ, r)}.

Then CCO12 is an (L,M)-fuzzy convexity on X.
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Proof. (LMC1) Since for all r ∈M⊥M , CO12(1, r) ≥ 1 and CO12(0, r) = 0, we have

CCO12 (0) = CCO12 (1) = >M.

(LMC2) Suppose that b ∈ J(M) and b /
∧
i∈Γ
CCO12 (µi). Then b / CCO12 (µi) for all i ∈ Γ. There exists ri

0 ∈M⊥M

such that µi = CO12(µi, ri
0) and b / ri

0 (thus b ≤ ri
0 ). Put r0 =

∧
i∈Γ ri

0, then b ≤ r0. Since CO12 satisfies the
conditions (1)-(6) of Theorem 2.3, we have CO12(

∧
i∈Γ
µi, ri

0) ≤ CO12(µi, ri
0) for all i ∈ Γ. Then it follows that

CO12(
∧
i∈Γ

µi, r0) ≤
∧
i∈Γ

CO12(
∧
i∈Γ

µi, ri
0) ≤

∧
i∈Γ

CO12(µi, ri
0) =

∧
i∈Γ

µi.

On the other hand, by Theorem 2.3 (2), we have

CO12(
∧
i∈Γ

µi, r0) ≥
∧
i∈Γ

µi.

So, we obtain
CO12(

∧
i∈Γ

µi, r0) =
∧
i∈Γ

µi.

By the definition of CCO12 (
∧
i∈Γ
µi), we obtain CCO12 (

∧
i∈Γ
µi) ≥ r0 ≥ b. Hence

CCO12 (
∧
i∈Γ

µi) ≥
∧
i∈Γ

CCO12 (µi).

(LMC3) Let {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion. Suppose that b ∈ J(M) and
b /

∧
i∈Γ
CCO12 (µi). Then b / CCO12 (µi) for all i ∈ Γ. There exists ri

0 ∈ M⊥M such that µi = CO12(µi, ri
0) and b / ri

0

(thus b ≤ ri
0 ). Put r0 =

∧
i∈Γ ri

0, then b ≤ r0. By Theorem 2.3 (6), we have∨
i∈Γ

µi ≤ CO12(
∨
i∈Γ

µi, r0) =
∨
i∈Γ

CO12(µi, r0) ≤
∨
i∈Γ

CO12(µi, ri
0) =

∨
i∈Γ

µi

So, we obtain
CO12(

∨
i∈Γ

µi, r0) =
∨
i∈Γ

µi.

By the definition of CCO12 (
∨
i∈Γ
µi), we obtain CCO12 (

∨
i∈Γ
µi) ≥ r0 ≥ b. Hence CCO12 (

∨
i∈Γ
µi) ≥

∧
i∈Γ
CCO12 (µi).

Proposition 3.3. ([4, Proposition 2.8(1)]) Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. Then f : X −→
Y is an (L,M)-fuzzy convexity preserving function if and only if f→(COC(µ, r)) ≤ COD( f→(µ), r) for all µ ∈ LX and
r ∈M⊥M .

Proof. (=⇒) Since f : X −→ Y is an (L,M)-fuzzy convexity preserving function, we obtain C( f←($)) ≥ D($)
for all $ ∈ LY. So, for each r ∈M⊥M and µ ∈ LX, we obtain

f←[COD( f→(µ), r)] = f←
[∧ {

$ ∈ LY : f→(µ) ≤ $, D($) ≥ r
}]

=
∧{

f←($) ∈ LX : f→(µ) ≤ $, D($) ≥ r
}

≥

∧{
f←($) ∈ LX : µ ≤ f←($), C( f←($)) ≥ r

}
≥

∧{
ν ∈ LX : µ ≤ ν, C(ν) ≥ r

}
= COC(µ, r).

Hence
f−→(COC(µ, r)) ≤ f−→ f←[COD( f→(µ), r)] ≤ COD( f→(µ), r).
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(⇐=) Suppose that b ∈ J(M) and b /D($) for all $ ∈ LY, then b ≤ D($). So,

f→(COC( f←($), b)) ≤ COD( f→( f←($)), b) ≤ COD($, b) = $.

It follows that
f←($) ≤ COC( f←($), b) ≤ f←($).

Therefore, COC( f←($), b) = f←($). Furthermore,

C( f←($)) = C(COC( f←($), b)) = C
(∧{

ν ∈ LX : f←($) ≤ ν, C(ν) ≥ b
})
≥

∧
f←($)≤ν, C(ν)≥b

C(ν) ≥ b.

Hence C( f←($)) ≥ D($) and f : X −→ Y is an (L,M)-fuzzy convexity preserving function.

4. Conclusion

In this paper, we point out that the proof of Theorem 2.4(5),Proposition 2.6(1) and Proposition 2.8(1) in
[4] are incorrect, and then, we present the modified versions.
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