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Some Norm Inequalities for Upper Sector Matrices
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Abstract. We generalize some norm inequalities for 2× 2 block accretive-dissipative matrices and positive
semi-definite matrices that compare the diagonal blocks with the off-diagonal blocks. Moreover, we partially
extend a norm inequality of n × n block accretive-dissipative matrices.

1. Introduction

Let Mn(C) be the set of all n × n complex matrices and In be the identity matrix in Mn(C). For any
T ∈ Mn(C), T∗ stands for the conjugate transpose of T. Every matrix T has the Cartesian (or Toeptliz)
decomposition,

T = A + iB, (1)

in which A = 1
2 (T + T∗), B = 1

2i (T − T∗) are Hermitian. We say that T is called accretive-dissipative if A, B
are positive semidefinite. In this paper, we will always represent the decomposition (1) as follows,(

T11 T12
T21 T22

)
=

(
A11 A12
A21 A22

)
+ i

(
B11 B12
B21 B22

)
, (2)

where T jk ∈Mn(C), j,k=1,2.

Recall that a norm || · || on Mn is unitarily invariant if ||UAV|| = ||A|| for any A ∈ Mn(C) and unitarily
matrices U,V ∈Mn(C). For p ≥ 1 and A ∈Mn(C), let ||A||p = (

∑n
j=1 sp

j (A))
1
p , where s1(A) ≥ s2(A) ≥ · · · ≥ sn(A)

are the singular values of A. This is the Schatten p-norm of A. If A is Hermitian, then all eigenvalues
of A are real and ordered as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). We denote s(A) = (s1(A), s2(A), ..., sn(A)) and
λ(A) = (λ1(A), λ2(A), ..., λn(A)).

Let x = (x1, . . . , xn), y =
(
y1, . . . , yn

)
∈ Rn. We rearrange the components of x and y in nonincreasing

order: x↓1 ≥ · · · ≥ x↓n; y↓1 ≥ · · · ≥ y↓n. If
∑k

i=1 x↓i ≤
∑k

i=1 y↓i
(∏k

i=1 x↓i ≤
∏k

i=1 y↓i
)
, k = 1, . . . ,n. We say that x is
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weakly (log) majorized by y, denoted by x ≺ω y
(
x ≺ω log y

)
. If, in addition, the last inequality is an equality,

i.e.
∑n

i=1 x↓i =
∑n

i=1 y↓i
(∏n

i=1 x↓i =
∏n

i=1 y↓i
)
, we say that x is (log) majorized by y, written as x ≺ y

(
x ≺log y

)
.

Let A = (ai j) and B = (bi j) be m × n matrices, the Hadamard product of A, B is the entry-wise product:
A ◦ B = (ai jbi j).

The numerical range of A ∈Mn(C) is defined by

W(A) = {x∗Ax|x ∈ Cn, x∗x = 1}.

For α ∈ [0, π2 ), Sα denotes the sector in the complex plane given by

Sα = {z ∈ C|Rz ≥ 0, |Iz| ≤ (Rz) tan(α)}

and let
S
′

α = {z ∈ C|Rz ≥ 0,Iz ≥ 0,Iz ≤ (Rz) tan(α)}.

Clearly, A is positive definite if and only if W(A) ⊆ S0, and if W(A),W(B) ⊆ Sα for some α ∈ [0, π2 ), then
W(A + B) ⊆ Sα. As 0 < Sα, then A is nonsingular. Some recent studies of sector matrices can be found in
[6, 12, 14–17].
Recent research interest in this class of matrices starts with a resolution of a problem from numerical analysis
[3].

Lin and Zhou [13, Theorem 3.3, Theorem 3.11] proved the following unitarily invariant norm inequalities:

Theorem 1.1. [13, Theorem 3.3] Let T ∈ B(H ) be accretive-dissipative and partitioned as in (2). Then

||T12|| ||T21|| ≤ max{||T12||
2, ||T21||

2
} ≤ 4||T11|| ||T22|| (3)

for any unitarily invariant norm || · ||.

Theorem 1.2. [13, Theorem 3.11] Let T ∈ B(H ) be accretive-dissipative and partitioned as in (2). Then

||T|| ≤
√

2||T11|| + ||T22|| (4)

for any unitarily invariant norm || ||. Furthermore, if T12 = T21, then

||T|| ≤
√

2||T11 + T22||. (5)

Gumus et al. [7, Theorem 4.2] proved the following Schatten p-norm and quasinorm inequalities.

Theorem 1.3. [7, Theorem 4.2] Let T ∈Mn(C) be accretive-dissipative partitioned as in (2). Then

||T12||
p
p + ||T21||

p
p ≤ 2P−1

||T11||
p/2
p ||T22||

p/2
p , f or p ≥ 2

and

||T12||
p
p + ||T21||

p
p ≤ 23−p

||T11||
p/2
p ||T22||

p/2
p , f or 0 < p ≤ 2.

Basing on the above theorem, Kittaneh and Sakkijha [10, Theorem 2.4] presented the following norm
inequalities, which compares the Schatten p-norms and the quasinorms of the off diagonal blocks and those
of the diagonal blocks, respectively.

Theorem 1.4. [10, Theorem 2.4] For i,j = 1,2,· · · ,n, let Ti j be square matrices of the same size such that the block
matrix

T =


T11 T12 · · · T1n
T21 T22 · · · T2n
...

... · · ·
...

Tn1 Tn2 · · · Tnn

 (6)
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is accretive-dissipative. Then

∑
i, j

||Ti j||
p
p ≤ (n − 1)2|p−2|

n∑
i=1

||Tii||
p
p, (p ≥ 0).

Lin and Fu [14, Theorem 2.9] extended the above Theorem 1.4 to the sector matrices.

Theorem 1.5. [14, Theorem 2.9] Suppose that T is a sector matrix represented as in (6). Then

∑
i, j

||Ti j||
p
p ≤ (n − 1) secp(α)

n∑
i=1

||Tii||
p
p f or p > 0.

Gumus et al. [7, Definition 3.1] introduced the special class C of all nonnegative increasing functions h
on [0,∞) satisfying the following condition: If x = (x1, x2, . . . , xn) and y =

(
y1, y2, . . . , yn

)
are two decreasing

sequences of nonnegative real numbers such that
∏k

j=1 x j ≤
∏k

j=1 y j (k = 1, 2, . . . ,n), then
∏k

j=1 h
(
x j

)
≤∏k

j=1 h
(
y j

)
(k = 1, 2, . . . ,n).

Afraz et al.[1, Theorem 17] extended Theorem 1.4 to the sector matrices involving the functions of class
C.

Theorem 1.6. Suppose that T is a sector matrix represented as in (6), h ∈ C is submultiplicative and α ∈
[
0, π2

)
. If

p is positive real number, then

∑
i, j

∥∥∥∥∥h
(∣∣∣Ti j

∣∣∣2)∥∥∥∥∥p

≤ (n − 1)
n∑

i=1

∥∥∥h2 (sec(α) |Tii|)
∥∥∥p

for every unitarily invariant norm ‖ · ‖. In particular, we have

∑
i, j

∥∥∥∥∥h
(∣∣∣Ti j

∣∣∣2)∥∥∥∥∥p

p
≤ (n − 1)

n∑
i=1

∥∥∥h2 (sec(α) |Tii|)
∥∥∥p

p .

At last, Lee [11, Theorem 2.1] proved the following result which is considered as an extension of the
classical Rotfel’d theorem.

Theorem 1.7. [11, Theorem 2.1] Let f(t) be a non-negative concave function on [0,∞) . Then, given an arbitrary
partitioned positive semi-definite matrix,

|| f (
(

A X
X∗ B

)
)|| ≤ || f (A)|| + || f (B)||. (7)

for all unitarily invariant norms.

What are we interested in the above theorem is whether the right-hand side of the inequality (7) can be
placed in one norm. And we give a result under some conditions.

Besides, in this paper, we will extend inequalities (3), (4) and (5) to a larger class matrices, i.e. the upper
sector matrices. And on the basis of the extension of (3), we partially generalize Theorem 1.4.

2. Main result

We begin this section with some lemmas which are useful to establish our main results.
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Lemma 2.1. [2, p. 54] Let x = (x1, x2, · · · ), y = (y1, y2, · · · ), α = (α1, α2, · · · ) be sequence of real numbers with
entries arranged in decreasing order. Moreover, we assume the entries of α are nonnegative. If

∑k
j=1 x j ≤

∑k
j=1 y j for

all k = 1, 2, · · · , then

k∑
j=1

α jx j ≤

k∑
j=1

α jy j

for all k = 1, 2, · · · .

Lemma 2.2. Let A,B ∈Mn, W(A + iB) ⊆ S′α for some α ∈ [0, π2 ) and A + iB be the Cartesian decomposition of the
full matrix like (1). Then

s j(B) ≤ sinα s j(A + iB). (8)

Proof. First, when α = 0, inequality (8) is trivial.
Label the eigenvectors of B as e1, · · · , en in such a way that

s j(B) = |〈e j,Be j〉|.

For W(A + iB) ⊆ Sα, we get

B ≤ A tan(α). (9)

cscαs j(B) = cscα|〈e j,Be j〉| =
√

1 + cot2 α|〈e j,Be j〉|

= |〈e j, (cotαB + iB)e j〉|

≤ |〈e j, (A + iB)e j〉| by (9)
≤ ||e j|| ||(A + iB)e j||.

Since s j(A) = max
dim(M)= j

min
x∈M
‖x‖=1

‖Ax‖ (see, e. g. [2, p.75]), whereM represent a subspace of Cn for A ∈ Mn, we

deduce the inequality (8).

Lemma 2.3. [18, p. 352] Let A, B, C be n × n complex matrices such that
(

A B
B∗ C

)
≥ 0. Then

s(B) ≺ω log λ
1
2 (A) ◦ λ

1
2 (C).

Lemma 2.4. [4, 9] Let A,B ∈M+
n and W(A + iB) ⊆ S′α for some α ∈ [0, π2 ). Then for any unitarily invariant norm

|| · ||,

||A + iB|| ≤ ||A + B|| ≤ a||A + iB||,

where a = min{1 + tan(α),
√

2}.

The first main result can be stated as follows.

Theorem 2.5. Let T ∈M2n(C) be partitioned as in (2) and assume W(T) ⊆ S′α for some α ∈ [0, π2 ). Then

max{‖T12‖
2, ‖T21‖

2
} ≤ (1 + sinα)2

‖T11‖‖T22‖, (10)

for any unitarily invariant norm ‖ · ‖.
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Proof. Let ν = (ν1, ν2, · · · , νn) be a sequence with nonnegative entries and ν1 ≥ ν2 ≥ · · · ≥ νn. Define
‖X‖ν =

∑n
k=1 ν js j(X) for X ∈Mn.

||T12||ν = ||

n∑
k=1

ν js j(T12)||

=

n∑
k=1

ν js j(A12 + iB12)

≤

n∑
k=1

ν j[s j(A12) + s j(B12)] (by Lemma 2.1)

≤

n∑
k=1

ν j[s j(A11)1/2s j(A22)1/2 + s j(B11)1/2s j(B22)1/2] (by Lemma 2.3)

≤

n∑
k=1

ν j[s j(A11) + s j(B11)]1/2[s j(A22) + s j(B22)]1/2 (by Cauchy − Schwarz)

≤

n∑
k=1

ν j[(1 + sinα)s j(A11 + iB11)]1/2[(1 + sinα)s j(A22 + iB22)]1/2 (by [2,PropositionIII.5.1] and Lemma 2.2)

= (1 + sinα)
n∑

k=1

ν js j(T11)1/2s j(T22)1/2

≤ (1 + sinα)(
n∑

k=1

ν js j(T11))1/2(
n∑

k=1

ν js j(T22))1/2 (by Cauchy − Schwarz)

= (1 + sinα)||T11||
1/2
ν ||T22||

1/2
ν .

Similarly, we can get

||T21||ν ≤ (1 + sinα)||T11||
1/2
ν ||T22||

1/2
ν .

As ν is arbitrarily chosen, the alleged inequality follows form [8, Corollary 3.5.9].

Seeing this result, we naturally want to make a comparison between the result of the above Theorem 2.5
and that of Lemma 2.6 in [14] (i.e. [17, Theorem 3.2] ). Whether (1 + sinα)2 can be less than sec2 α ? when
(1 + sinα)2 is less than sec2 α ? Now we define a funciton

f (α) = cosα(1 + sinα) − 1 α ∈ (0,
π
2

),

so

(1 + sinα)2
≤ sec2 α⇔ f (α) ≤ 0, (11)

By the calculation of matlab, we get f (α) ≤ 0 on (0.9960, π2 ), i.e. 1 + sinα ≤ secα, α ∈ (0.9960, π2 ) and
1 + sinα > secα, α ∈ (0, 0.9960).

For p ≥ 1, since the Schatten p-norms are the examples of the unitarily invariant norms, we could get
the following two results.

Corollary 2.6. Let T ∈M2n(C) be partitioned as in (2) and assume W(T) ⊆ S′α. Then

max{‖T12‖
p
p, ‖T21‖

p
p} ≤ (1 + sinα)p

‖T11‖
p/2
p ‖T22‖

p/2
p , f or p ≥ 1. (12)
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Theorem 2.7. Let T ∈M2n(C) be partitioned as in (2) and W(T) ⊆ S′α. Then

‖T12‖
p
p + ‖T21‖

p
p ≤ 2(1 + sinα)p

‖T11‖
p/2
p ‖T22‖

p/2
p , f or p ≥ 1. (13)

Proof.

‖T12‖
p
p + ‖T21‖

p
p ≤ (1 + sinα)p

‖T11‖
p/2
p ‖T22‖

p/2
p + (1 + sinα)p

‖T11‖
p/2
p ‖T22‖

p/2
p (12)

= 2(1 + sinα)p
‖T11‖

p/2
p ‖T22‖

p/2
p .

In view of the above results, we give a generalization of the Theorem 1.4 in the case p ≥ 1.

Theorem 2.8. For i,j = 1,2,· · · ,n, let Ti j be square matrices of the same size such that

T =


T11 T12 · · · T1n
T21 T22 · · · T2n
...

... · · ·
...

Tn1 Tn2 · · · Tnn


and assume W(T) ⊆ S′α. Then

∑
i, j

||Ti j||
p
p ≤ (n − 1)(1 + sinα)p

n∑
i=1

||Tii||
p
p f or p ≥ 1.

Proof. It is easy to obtain that a principal submatrix
(

Tii Ti j
T ji T j j

)
of T is also accretive-dissipative and its

numerical range is contained in S′α. Now, applying (13) to
(

Tii Ti j
T ji T j j

)
, we get

‖Ti j‖
p
p + ‖T ji‖

p
p ≤ 2(1 + sinα)p

‖Tii‖
p/2
p ‖T j j‖

p/2
p

for i , j and p ≥ 1.

Consequently, using the arithmetic-geometric mean inequality, we have

‖Ti j‖
p
p + ‖T ji‖

p
p ≤ (1 + sinα)p(‖Tii‖

p
p + ‖T j j‖

p
p)

for i , j and p ≥ 1.
Adding up the previous inequalities for i, j = 1, 2, · · · ,n, we get

∑
i, j

‖Ti j‖
p
p ≤ (n − 1)(1 + sinα)p

n∑
i=1

‖Tii‖
p
p,

which proves the inequality.

Remark 2.9. From inequality (11), we know that the results of Theorem 2.7 and Theorem 2.8 are tigher than that of
[14, Theorem 2.8, 2.9], correspondingly, when α ∈ (0.9960, π2 ), for p ≥ 1.

Next, we extend Theorem 1.2 to the upper sector matrices.
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Theorem 2.10. Let T ∈M2n(C) be partitioned as in (2) and assume W(T) ⊆ S′α. Then

||T|| ≤ a(||T11|| + ||T22||), (14)

for any unitarily invariant norm ‖ · ‖. Furthermore, if the off diagonal blocks of RT and IT are Hermitian or
skew-Hermitian, then

||T|| ≤ a(||T11 + T22||), (15)

where a = min{1 + tan(α),
√

2}.

Proof. Consider the Cartesian decomposition T = A+iB, where A and B are positive semi-definite. Compute

||T|| = ||A + iB||
≤ ||A + B|| (by Lemma 2.4)
≤ ||A11 + B11|| + ||A22 + B22|| (by (7))
≤ a(||A11 + iB11|| + ||A22 + iB22||) (by Lemma 2.4)
= a(||T11|| + ||T22||),

which prove the first inequality.

Now we prove the second inequality. we assume that A + B =

(
A11 + B11 A12 + B12
A21 + B21 A22 + B22

)
is positive with

Hermitian off diagonal blocks and using the simple fact that T∗T � TT∗ (unitarily congruent) we then
deduce

A + B � J(A + B)J∗ =

( A11+B11+A22+B22
2 ?
? A11+B11+A22+B22

2

)
,

where J = 1
√

2

(
iI −I
iI I

)
is a unitary matrix, I is an identity matrix in In and ? stands for the unspecified

matrices. Then

||T|| = ||A + iB||
≤ ||A + B|| (by Lemma 2.4)

= ||

( A11+B11+A22+B22
2 ?
? A11+B11+A22+B22

2

)
||

≤ ||
A11 + B11 + A22 + B22

2
|| + ||

A11 + B11 + A22 + B22

2
|| (by (7))

= ||A11 + B11 + A22 + B22||

≤ a||A11 + A22 + i(B11 + B22)|| (by Lemma 2.4)
= a||A11 + iB11 + A22 + iB22||

= a||T11 + T22||.

Similarly, if A+B =

(
A11 + B11 A12 + B12
A21 + B21 A22 + B22

)
is positive with skew Hermitian off diagonal blocks and still using

the simple fact that T∗T � TT∗ (unitarily congruent), T = 1
√

2

(
I −I
I I

)
we then deduce the same result.

Remark 2.11. It is clear, when a ≤
√

2, i.e. 0 ≤ α ≤ arctan(
√

2 − 1), the result in Theorem 2.10 is tigher than that
of Theorem 1.2.
For example, we take α = 15◦, i.e. W(T) ⊆ S′15◦ , we can get

||T|| ≤ 1.268(||T11|| + ||T22||).
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Inequality (15) correspondingly becomes

||T|| ≤ 1.268(||T11 + T22||).

At the end, we generalize the Theorem 1.7, as follows.

Theorem 2.12. Let A, B ∈Mn, and
(

A X
X∗ B

)
≥ 0 with Hermitian or skew-Hermitian off diagonal blocks. If f(t) is a

non-negative concave function on [0,∞), then

|| f (
(

A X
X∗ B

)
)|| ≤ 2|| f (

1
2

A) + f (
1
2

B)||. (16)

for all unitarily invariant norm.

Proof. If X = X∗(
A X
X∗ B

)
� J

(
A X
X∗ B

)
J∗ =

(
A+B

2 ?
? A+B

2

)

where J = 1
√

2

(
iI −I
iI I

)
is a unitary matrix, I is an identity matrix in In and ? stands for the unspecified

matrices. Then

|| f (
(

A X
X∗ B

)
)|| = f (J

(
A X
X∗ B

)
J∗)

≤ 2|| f (
A + B

2
)|| by (7)

≤ 2|| f (
1
2

A) + f (
1
2

B)||.

The last inequality is by [5, theorem 1.1]. Similarly, if X∗ = −X, let T = 1
√

2

(
I −I
I I

)
, we still deduce the same

result.

Corollary 2.13. Let A, B ∈Mn, and
(

A X
X∗ B

)
≥ 0 with Hermitian or skew-Hermitian off diagonal blocks. Then for

all unitarily invariant norm || · ||

||

(
A X
X∗ B

)p

|| ≤ 21−p
||Ap + Bp

|| (0 < p ≤ 1),

|| log(I +

(
A X
X∗ B

)
)|| ≤ 2|| log(I + A/2) + log(I + B/2)||.
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