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Abstract. The paper deals with the existence and uniqueness of a non-trivial solution to non-homogeneous
p(x)−laplacian equations, managed by non polynomial growth operator in the framework of variable
exponent Sobolev spaces on Riemannian manifolds. The mountain pass Theorem is used.

1. Introduction

Let (M, 1) be a complete non-compact Riemannian manifold, we consider the following equation

−∆p(x)u(x) + h(x,u(x),∇u(x)) + |u(x) |p(x)−2u(x) = f (x,u(x)), (1)

where −∆p(x)u(x) = − div (| ∇u(x) |p(x)−2 .∇u(x)) is the p(x)-laplacian in (M, 1). The conditions assumed on the
functions f and h are:
( f1) : f (x, 0) = 0 and f is measurable to the first variable and continuous to the second variable.
( f2) : There exists β > p+ and some A > 0 such as for each |α | > A we have

0 <
∫

M
F(x, α) dv1(x) ≤

∫
M

f (x, α) .
α
β

dv1(x) a.e x ∈M,

where F(x, α) =

∫ α

0
f (x, t) dt being the primitive of f (x, α).

( f3) : lim
|α |→∞

f (x, α)
|α |p(x)−1

= 0 uniformly a.e x ∈M.

Example 1.1.
f (x, α) = c |α |K(x)−1

∀c > 0, β < K(x) < p(x)

is a function satisfying the above conditions.
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(h1) : h(x, s) : M ×R −→ R be a Carathéodory function such as for a.e x ∈M and for all s ∈ R,

| h(x, s) | ≤ γ(x) + l(s) . | s |p(x),

where l : R −→ R+ is a continuous increasing positive function that belongs to L∞(M) and γ(x) ∈ L1(M).
The study of variational problems with non-standard growth conditions is an interesting topic in recent
years. p(x)−growth condition can be regarded as an important case of non-standard (p, q)−growth condi-
tions. Recently, the study of these kind of problems has attracted more and more attention. For example
Fan Xian-Ling and Zhang Qi-Hu, in [9], proved the existence of solutions to the Dirichlet problem of
p(x)−laplacian 

−div( | ∇u |p(x)−2
∇u ) = f (x,u) x ∈ Ω ,

u = 0 x ∈ ∂Ω ,

with several sufficient conditions, and a criterion of existence for an infinite number of pairs of solutions to
this problem. For more result we refer the reader to [5, 18]. The typical applications of variable exponent
equations include models for electrorheological fluids [3], image restoration processing [7], non-Newtonian
fluid dynamics [14], Poisson equation [8], elasticity equations [15, 20], and thermistor model [21].
Moving on to another field undergoing great development; the Sobolev space on Riemannian manifolds.
The theory of Sobolev space for non compact manifold arose in the 1970s with the work of Aubin, Cantor
Hoffman, and Spruck, many of the results presented in their lecture notes have been collected between
the 1980s and the 1990s. It has been studied very intensively for over fifty years see [4, 12, 16] and also
e.g [10, 11, 13, 17].This is also the case for the applications already mentioned to scalar curvature and
generalized scalar curvature equation, we quote [6]. Additionally, Yamabe problem for conformal metrics
with prescribed scalar curvature [19], and to obtain isoperimetric type inequalities [16].

Considering that some basic properties of the standard Lebesgue space are not valid in the variable
exponent case. For example, Zhikov [21] observed that in general smooth functions are not dense in
WK,p(.)(Ω). Besides, the challenges coming are due to the absence of topological properties like convergence
and embedding.

In this paper, we will be applying the Sobolev spaces with their variable exponents on the non-compact
Riemannian manifolds theory to our equation (1). As for the structure of the paper, we will be sectioning
it into: Recalling some definitions and Lemmas. We will then move to prove the existence of non-trivial
solution using the mountain pass Theorem, and we will finish it by a demonstration of the uniqueness of
non-trivial solution with f as the Contraction Lipschitz Continuous function.

2. Framework Space: Notations and Basic Properties

First of all, we must recall the most important and pertinent properties and notations, by that, referring
to [4, 12, 18] for more details.

Definition 2.1. Let ∇ be the Levi-Civita connection. If u is a smooth function on M, then ∇ku denotes the k−th
covariant derivative of u, and | ∇ku | the norm of ∇ku defined in local coordinates by

| ∇
ku |2 = 1i1 j1 · · · 1ik jk (∇ku)i1···ik (∇ku) j1··· jk

where Einstein’s convention is used.
• Given a variable exponent p in P(M) and a natural number k, introduce

Cp(.)
k (M) = {u ∈ C∞(M) such that ∀ j 0 ≤ j ≤ k | ∇ku | ∈ Lp(.)

}

on Cp(.)
k (M) define the norm

||u ||Lp(.)
k

=

k∑
j=0

|| ∇
ju ||Lp(.)
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Definition 2.2. Given (M, 1) a smooth Riemannian manifold, and γ : [ a, b ] −→ M a curve of class C1, the length
of γ is

l(γ) =

∫ b

a

√
1 (

dγ
dt
,

dγ
dt

) dt,

and for a pair of points x, y ∈M, we define the distance d1(x, y) between x and y by

d1(x, y) = inf { l(γ) : γ : [ a, b ]→M such that γ(a) = x and γ(b) = y }

Definition 2.3. A function s : M −→ R is log-Hölder continuous if there exists a constant c such that for every pair
of points {x, y} in M we have

| s(x) − s(y) | ≤
c

lo1(e + 1
d1(x,y) )

.

We note by Plo1(M) the set of log-Hölder continuous variable exponents.

Proposition 2.4. Let p ∈ Plo1(M), and let (Ω, φ) be a chart such that

1
2
δi j ≤ 1i j ≤ 2 δi j

as bilinear forms, where δi j is the delta Kronecker symbol. Then poφ−1
∈ P

lo1(φ(Ω)).

Definition 2.5. We say that the n-manifold (M, 1) has property Bvol(λ, v) if its geometry is bounded in the following
sense:

• Rc(1) ≥ λ(n − 1) 1 for some λ
• There exists some v > 0 such that |B1(x) |1 ≥ v ∀x ∈M.

Proposition 2.6. Let (M, 1) be a complete Riemannian n-manifold. Then, if the embedding L1
1(M) ↪→ L

n
n−1 (M) holds,

then whenever the real numbers p and q satisfy
1 ≤ p < n,

and
p ≤ q ≤ p∗ =

np
n − p

,

the embedding Lp
1(M) ↪→ Lq(M) also holds.

Proposition 2.7. Assume that the complete n-manifold (M, 1) has property Bvol(λ, v) for some (λ, v). Then there
exist positive constants δ0 = δ0(n, λ, v) and A = A(n, λ, v), we have, if R ≤ δ0, if x ∈ M if 1 ≤ p ≤ n, and if
u ∈ Lp

1,0( BR(x) ) the estimate
||u ||Lq ≤ Aq || ∇u ||Lp ,

where 1
q = 1

p −
1
n .

Proposition 2.8. Assume that for some (λ, v) the complete n-manifold (M, 1) has property Bvol(λ, v). Let q ∈ P(M)
be uniformly continuous with p+ < n. Then Lp(.)

1 (M) ↪→ Lq(.)(M) ∀p ∈ P(M) such that p � q � p∗ =
np

n−p . In fact,
for ||u ||Lp(.)

1
sufficiently small we have the estimate

%q(.)(u) ≤ G ( %p(.)(u) + %p(.)(| ∇u |) ),

where G is a positive constant depend on n, λ, v, p and q.
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3. Existence of Non-trivial Solution

Definition 3.1. u ∈ Lp(.)
1 (M) is said to be a weak solution of the problem (1) if for every φ ∈ D(M) we have∫

M
| ∇u(x) |p(x)−21(∇u(x),∇φ(x)) dv1(x) +

∫
M

h(x, u(x)) . φ(x) dv1(x)

+

∫
M
|u(x) |p(x)−2u(x)φ(x) dv1(x) =

∫
M

f (x,u(x))φ(x) dv1(x) (2)

Theorem 3.2. Suppose that ( f1)− ( f3) and (h1) are true. Then the problem (1) possesses a non-trivial weak solution.

To access our main premises, the ones shown in the first Theorem, we have to initially demonstrate few
lemmas related to the mountain pass Theorem and Palais-Smale condition. Considering the functional

A(u) =

∫
M

1
p(x)

( | ∇u(x) |p(x) + |u(x) |p(x) ) dv1(x) +

∫
M

H(x, u(x)) dv1(x)

−

∫
M

F(x, u(x)) dv1(x),

with H(x, u(x)) =

∫ α

0
h(x, t) dt being the primitive of h(x, α). And H(x, 0) = 0.

It’s follow from (2) and the hypothesis of ( f1)−( f3), (h1) and the above definition of H, that A is C1 functional.
Let DA = DB −DC the differential of A = B − C with

DB =

∫
M
| ∇u(x) |p(x)−21(∇u(x),∇φ(x)) dv1(x)

+

∫
M

h(x, u(x)) . φ(x) dv1(x)

+

∫
M
|u(x) |p(x)−2u(x)φ(x) dv1(x),

and

DC =

∫
M

f (x,u(x))φ(x) dv1(x).

Lemma 3.3. The functional A satisfies mountain pass geometry in the sense that:
i/ A(0) = 0.
ii/ There exists r, η > 0 such that A(u) ≥ η if ||u || > r.
iii/ There exists u, ||u || > r such that A(u) ≤ 0.

Proof. i/ A(0) = 0 is obvious.
ii/ we need the assumptions ( f2), ( f3) and (h1), then we obtain∫

M
F(x,u(x)) dv1(x) ≤

1
β

∫
M
|u(x) |p(x) dv1(x)

≤
1
β
%p(.)(u),

and ∣∣∣∣∣ ∫
M

H(x, u(x)) dv1(x)
∣∣∣∣∣ ≤ ∫

M

( ∫ u

0
| h(x, t) | dt

)
dv1(x)

≤ c1 + c2 %p(.)( |u | ), where c1, c2 two positive constants.
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Choose ||u || = r sufficiently small, so that %p(.)(u) ≤ ||u ||pp(x) since ||u || = r < 1. Now using the Poincaré
inequality, we get

A(u) =

∫
M

1
p(x)

( | ∇u(x) |p(x) + |u(x) |p(x) ) dv1(x) +

∫
M

H(x, u(x)) dv1(x)

−

∫
M

F(x, u(x)) dv1(x)

≥
1

p+
( %p(.)( | ∇u | ) + %p(.)(u) ) − c2 %p(.)(u) −

1
β
%p(.)(u)

≥
1

G p+
ρq(.)(u) −

(
c2 +

1
β

)
ρp(.)(u)

≥
1

G p+
||u ||q

−

−

(
c2 +

1
β

)
||u ||p

+

,

as in [11], since q− ≥ p+ and if ||u||Lp(.)(M) = γ small enough, we have ||u||q
−

Lp(.)(M)
<< ||u||q

+

Lp(.)(M)
. Hence

A(u) > 0.

We can prove iii/ by using ( f2) and (h1), for t > 0 and u , 0. So,

A(tu) =

∫
M

1
p(x)

( | ∇tu |p(x)
− | tu |p(x) ) dv1(x) +

∫
M

H(x, tu) dv1(x)

−

∫
M

F(x, tu) dv1(x)

=

∫
M

tp(x)

p(x)
( | ∇tu |p(x)

− | tu |p(x) ) dv1(x) +

∫
M

H(x, tu) dv1(x)

−

∫
M

F(x, tu) dv1(x)

≤

∫
M

tp(x)

p(x)
( | ∇tu |p(x)

− | tu |p(x) ) dv1(x) +
1
β

∫
M
| tu |p(x) dv1(x) + c1

+ c2

∫
M
| tu |p(x) dv1(x).

This implies:

A(tu) ≤
tp+
−p−

p−
(
ρp(.)(| ∇u |) − ρp(.)(u)

)
+ c3 tp−ρp(.)(u), (3)

dividing (3) by tp+
and passing the limit t −→ ∞we get A(tu) −→ −∞, since p+ > p−.

Hence, A(u) satisfies the hypothesis of mountain pass Theorem.

Lemma 3.4. The functional A satisfies Palais-Smale condition.

Proof. Let {un } be a Palais-Smale sequence, such as the associated sequence of real numbers {A(un) } is
bounded, and DA(un) −→ 0 in ( Lp(.)

1 (M) )′. We will first demonstrate that ( un ) is bounded in Lp(.)
1 (M). And

prove it throughout contradiction.
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Let ||un ||Lp(.)
1 (M) −→ ∞ as n −→ ∞. Then, we have

A(un) −
1
β
< DA(un), un > =

( 1
p+
−

1
β

) ∫
M

( | ∇un |
p(x)
− | un |

p(x) ) dv1(x)

+

∫
M

(
H(x,un) − h(x,un) .

un

β

)
dv1(x)

+

∫
M

(
f (x,un) .

un

β
− F(x,un)

)
dv1(x),

by ( f2), we obtain

A(un) −
1
β
< DA(un), un > ≥

( 1
p+
−

1
β

) ∫
M

( | ∇un |
p(x)
− | un |

p(x) ) dv1(x)

+

∫
M

(
H(x,un) − h(x,un) .

un

β

)
dv1(x)

≥ J(un) + I(un),

with,

J(un) =
( 1

p+
−

1
β

) ∫
M

( | ∇un |
p(x)
− | un |

p(x) ) dv1(x),

and

I(un) =

∫
M

(
H(x,un) − h(x,un) .

un

β

)
dv1(x).

J(un) ≥
( 1

p+
−

1
β

)
( %p(.)(un) + %p(.)( | ∇un | ) ),

or %p(.)( | ∇un | ) + %p(.)(un) ≥ 21−p+
||un ||

p+

Lp(.)
1 (M)

. So,

J(un) ≥
( 1

p+
−

1
β

)
21−p+

||un ||
p+

Lp(.)
1 (M)

≥

( 1
p+
−

1
β

)
.

21−p+

Gp− . ||un ||
p−

Lq(.)(M)
,

with G being the positive constant of the embedding Lp(.)
1 (M) ↪→ Lq(.)(M). And by (h1), we get∫

M
h(x,un) .un dv1(x) ≤ c1 + c2 || |un | ||

p(x)+1

Lp(.)
1 (M)

.

And ∫
M

H(x,un) dv1(x) =

∫
M

( ∫ un

0
f (x, t) dt

)
dv1(x)

≥ −c1 − c2%p(.)(|un |).

Thus,

I(un) ≥ −c1 − c2 . %p(.)(|un|) −
c1

β
−

c2

β
. ||un ||

p++1

Lp(.)
1 (M)

≥ −c1

(
1 +

1
β

)
− c2

(
1 +

1
β
. ||un ||Lp(.)

1 (M)

)
. %p(.)(|un|).
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Hence,

A(un) −
1
β
< DA(un), un > ≥

( 1
p+
−

1
β

) . 21−p+

. ||un ||
p+

Lp(.)
1 (M)

− −c1

(
1 +

1
β

)
− c2

(
1 +

1
β
. ||un ||Lp(.)

1 (M)

)
. %p(.)(|un|). (4)

Now, dividing both sides of (4) by ||un ||Lp(.)
1 (M) and passing to the limit n −→ ∞, we get 0 ≥ ∞ as β ≥ p+ > 1

which is absurd.
Hence, (un) is bounded in Lp(.)

1 (M).
• Since {un } is bounded in Lp(.)

1 (M), there exists a subsequence of {un }, noted again by {un }, that converges
in Lp(.)

1 (M). We will prove that {un } is Cauchy in Lp(.)
1 (M) i.e that

lim
m,n→∞

%p(.)(um − un) = 0 = lim
m,n→∞

%p(.)(| ∇( um − un) | ). (5)

And to finish the demonstration of the Theorem 1, it suffice to show that the subsequence of {un } still noted
by {um } is a Cauchy sequence in Lp(.)

1 (M).
Consider the following functionals

B1(u) =

∫
p(x)<2

( | ∇u(x) |p(x) + |u(x) |p(x) + H(x,u) ) dv1(x), (6)

and

B2(u) =

∫
p(x)≥2

( | ∇u(x) |p(x) + |u(x) |p(x) + H(x,u) ) dv1(x), (7)

on Lp(.)
1 (M), and note that

%p(.)(um − un) + %p(.)( | ∇( um − un ) | ) = B1(um − un) − B2(um − un), (8)

consider also the following inequalities

| ζ − µ |p ≤
2

p − 1

[
( | ζ |p−2 ζ − |µ |p−2 µ ) . ( ζ − µ )

] p
2 . ( | ζ | − |µ | )

2q−q2

2 for 1 ≤ p ≤ 2, (9)

and

| ζ − µ |p ≤ 2p ( | ζ |p−2 ζ − |µ |p−2 µ ) . ( ζ − µ ) for p ≥ 2, (10)

where, ζ, µ ∈ RN and (2) we deduce that

B2(um − un) ≤
∫

p(x)≥2
( | ∇( um − un ) |p(x) + |um − un |

p(x) + H(x,um)

−H(x,un) ) dv1(x)

≤ 2p+
[ ∫

p(x)≥2
( | ∇um |

p(x)−2
∇um − |∇un |

p(x)−2
∇un ) .∇( um − un) dv1(x)

+

∫
p(x)≥2

( |um |
p(x)−2 um − | un |

p(x)−2 un ) . (um − un) dv1(x)
]

+ c2

∫
p(x)≥2

|um |
p(x) dv1(x) − c2

∫
p(x)≥2

|un |
p(x) dv1(x) + c3.



O. Benslimane et al. / Filomat 35:5 (2021), 1453–1463 1460

Thus,

2−p+

B2(um − un) ≤< um − un, DB(um) −DB(un) > . (11)

And using (6) and (9), we obtain

p− − 1
2

B1(um − un) ≤
∫

p(x)<2
1( | ∇um |

p(x)−2
∇um − |∇un |

p(x)−2
∇un, ∇(um − un) )

× (| ∇um | + | ∇un |)
2q(x)−q(x)2

2 dv1(x)

+

∫
p(x)<2

( | ∇um |
p(x)−2um − | un |

p(x)−2 un ) . (um − un )
p(x)

2

× (|um | + |un |)
2q(x)−q(x)2

2 dv1(x)

+

∫
p(x)<2

H(x,um) dv1(x) −
∫

p(x)<2
H(x,un) dv1(x). (12)

Remark 3.5. If a and b are two positive functions on M, then by Hölder’s inequality∫
p<2

a
p
2 b

2p−p2

2 ≤ 2 ||1p<2 a
p
2 ||

L
2
p
. ||1p<2 b

2p−p2

2 ||
L

2
2−p
. (13)

where 1 is the indicator function of M, moreover, since

||1p<2 a
2
p ||

L
2
p
≤ max{ %1(a), %1(a)

p−

2 }

and
||1p<2 b

2p−p2

2 ||
L

2
2−p
≤ max{ %p(b)

2−p−

2 , 1 },

we get,∫
p<2

a
p
2 . b

2p−p2

2 ≤ 2 max { %1(a), %1(a)
p−

2 } max { %p(b)
2p−p2

2 , 1 }. (14)

Thus, using (14) twice in (12) we infer that

( P− − 1 ) B1(um − un) ≤ P(< um − un,DB(um) −DB(un) > ) Q( ||um ||Lp
1
, ||un ||Lp

1
), (15)

for some constructible continuous functions P(x) and Q(y, z) with P(0) = 0.
Since the sequence { ||un ||Lp(.)

1
} is bounded, from (15), (11) and (8) we conclude that if

lim
m,n→∞

< um − un, DB(um) −DB(un) >= 0.

To obtain such that a limit, recall that DA = DB −DC hence

< um − un,DB(um) −DB(un) >= < um − un, DA(um) −DA(un) >
+ < um − un, DC(um) −DC(un) >,

we estimate

< um − un, DC(um) −DC(un) >≤
1
G
||N f (um) −N f (un) ||( Lp(.)

1 (M) )′

× || um − un ||Lq(.)
1 (M),
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where G being the positive constant of the embedding Lp(.)
1 (M) ↪→ Lq(.)(M)

and N f : Lp(.)(M) −→ ( Lp(.)(M) )′ is the Nemytskii operator induced by f , with
N f [u](x) = f (x,u(x)).
Hence, using the continuity of Nemytskii map, the convergence of {un } in Lp(.)(M) the boundedness of
{ ||un ||Lq(.)(M) } and the hypothesis on DA(un) −→ ∞ as n −→ ∞, we deduce that the functional A satisfies the
Palais-Smale Condition.

4. Uniqueness of Non-trivial Solution

Now, let us show the uniqueness of solution.

Theorem 4.1. Assume that condition ( f1) − ( f3) and (h1) are true. With f ∈ Lp′(x)(M) is a contraction Lipschitz
continuous function such that ∃α with 0 ≤ α < 1

| f ( x,u1 ) − f ( x,u2 ) | ≤ α |u1 − u2 |. (16)

Then, the problem (1) has a unique non-trivial solution.

Proof. Suppose that u1 and u2 satisfy (1). Then we have∫
M
| ∇u1 |

p(x)−2 .∇u1 . (∇u1 − ∇u2 ) dv1(x) +

∫
M

h( x,u1 ) . ( u1 − u2 ) dv1(x)

+

∫
M
|u1 |

p(x)−2 .u1 . ( u1 − u2 ) dv1(x) =

∫
M

f ( x,u1 ) . ( u1 − u2 ) dv1(x),

and ∫
M
| ∇u2 |

p(x)−2 .∇u2 . (∇u2 − ∇u1 ) dv1(x) +

∫
M

h( x,u2 ) . ( u2 − u1 ) dv1(x)

+

∫
M
|u2 |

p(x)−2 .u2 . ( u2 − u1 ) dv1(x) =

∫
M

f ( x,u2 ) . ( u2 − u1 ) dv1(x).

Adding the above two equations yields.∫
M

(
| ∇u1 |

p(x)−2 .∇u1 − |∇u2 |
p(x)−2 .∇u2

)
. (∇u1 − ∇u2 ) dv1(x)

+

∫
M

(
h( x,u1 ) − h( x,u2 )

)
. ( u1 − u2 ) dv1(x)

+

∫
M

(
|u1 |

p(x)−2 .u1 − | u2 |
p(x)−2 .u2

)
. ( u1 − u2 ) dv1(x)

=

∫
M

( f ( x,u1 ) − f ( x,u2 ) ) . ( u1 − u2 ) dv1(x),

by ( f2), ( f3) and (16) we obtain∫
M

(
| ∇u1 |

p(x)−2 .∇u1 − |∇u2 |
p(x)−2 .∇u2

)
. (∇u1 − ∇u2 ) dv1(x)

+

∫
M

(
h( x,u1 ) − h( x,u2 )

)
. ( u1 − u2 ) dv1(x)

+

∫
M

(
|u1 |

p(x)−2 .u1 − | u2 |
p(x)−2 .u2 + α ( u1 − u2 )

)
. ( u1 − u2 ) dv1(x) ≥ 0.
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Then,∫
M

(
| h( x,u1 ) | − | h( x,u2 ) |

)
. ( u1 − u2 ) dv1(x) ≥∫

M

(
| ∇u1 |

p(x)−2 . | ∇u1 | − | ∇u2 |
p(x)−2 . | ∇u2 |

)
. ( | ∇u1 | − | ∇u2 | ) dv1(x)

+

∫
M

(
|u1 |

p(x)−2 . |u1 | − | u2 |
p(x)−2 . |u2 |

)
. ( |u1 | − | u2 | ) dv1(x)

≥

∫
M

(
| ∇u1 |

p(x)−1
− |∇u2 |

p(x)−1
)
. ( | ∇u1 | − | ∇u2 | ) dv1(x)

+

∫
M

( |u1 |
p(x)−1

− | u2 |
p(x)−1 ) . ( |u1 | − | u2 | ) dv1(x)

+ α

∫
M

( |u1 | − | u2 | )2 dv1(x).

So, by (h1) we have∫
M

(
| h( x,u1 ) | − | h( x,u2 ) |

)
. ( u1 − u2 ) dv1(x)

≤

∫
M

( l(u1) . |u1 |
p(x)
− l(u2) . |u2 |

p(x) ) . ( |u1 | − | u2 | ) dv1(x).

Hence,∫
M

( l(u1) . |u1 |
p(x)
− l(u2) . |u2 |

p(x) ) . ( |u1 | − | u2 | ) dv1(x)

≥

∫
M

(
| ∇u1 |

p(x)−1
− |∇u2 |

p(x)−1
)
. ( | ∇u1 | − | ∇u2 | ) dv1(x)

+

∫
M

( |u1 |
p(x)−1

− | u2 |
p(x)−1 ) . ( |u1 | − | u2 | ) dv1(x)

+ α

∫
M

( |u1 | − | u2 | )2 dv1(x).

Which implies that

0 ≥
∫

M

(
| ∇u1 |

p(x)−1
− |∇u2 |

p(x)−1
)
. ( | ∇u1 | − | ∇u2 | ) dv1(x)

+

∫
M

( |u1 |
p(x)−1

− l(u1) . |u1 |
p(x)
− | u2 |

p(x)−1
− l(u2) . |u2 |

p(x) )

× ( |u1 | − | u2 | ) dv1(x)

+ α

∫
M

( |u1 | − | u2 | )2 dv1(x)

≥

∫
M

(
| ∇u1 |

p(x)−1
− |∇u2 |

p(x)−1
)
. ( | ∇u1 | − | ∇u2 | ) dv1(x).

Hence, we obtain that u1 = u2 almost everywhere. This complete the proof of uniqueness.

5. Conclusion

In sum, the first and second Theorems, are valid and substantiated. We can then say that the solution of
the problem (1) is a unique and non-trivial one.
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[14] P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska.Monotonicity methods in generalized Orlicz spaces for a class of non-

Newtonian fluids, Mathematical methods in the applied sciences. 33 (2010), no. 2, 125–137.
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