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On S-2-Absorbing Primary Submodules

Osama A. Najia

aDepartment of Mathematics, Sakarya University, Sakarya, Turkey

Abstract. This article introduces the concept of S-2-absorbing primary submodule as a generalization of
2-absorbing primary submodule. Let S be a multiplicatively closed subset of a ring R and M an R-module.
A proper submodule N of M is said to be an S-2-absorbing primary submodule of M if (N :R M) ∩ S = φ
and there exists a fixed element s ∈ S such that whenever abm ∈ N for some a, b ∈ R and m ∈ M, then
either sam ∈ N or sbm ∈ N or sab ∈

√
(N :R M). We give several examples, properties and characterizations

related to the concept. Moreover, we investigate the conditions that force a submodule to be S-2-absorbing
primary.

1. Introduction

Throughout this article, all rings are commutative with nonzero identity and all modules are unital.
Let R always represent such a ring and M represent such an R-module. Prime submodules play a crucial
role in module theory, since they interfere with many classes of algebra and represent an important tool in
helping to understand the structure of modules. This importance was an incentive for many researchers
to work to generalize this term. Badawi started in [6] one of these endeavors, as he introduced the notion
of 2-absorbing ideals as a generalization of prime ideals. Later, the concept of absorption has been studied
intensively. See, for example [4, 5, 7, 8, 11, 13] and [12]. Recall from [7, 8] that a submodule P of M is said to
be 2-absorbing (2-absorbing primary) if whenever xym ∈ P for some x, y ∈ R and m ∈M, then either xm ∈ P
or ym ∈ P or xy ∈ (P :R M) (xy ∈

√
(P :R M)), respectively. Recently, a new approach has been introduced

to generalize prime submodules using a multiplicatively closed subset S of R (i.e. 1 ∈ S and ss′ ∈ S for
each s, s′ ∈ S). The authors in [14] defined a submodule N of M to be S-prime if (N :R M) ∩ S = φ and
there exists an s ∈ S such that rm ∈ N for some r ∈ R and m ∈ M implies that sr ∈ (N :R M) or sm ∈ N.
Expectedly, a proper ideal I of R is an S-prime (2-absorbing) ideal if and only if I is an S-prime (2-absorbing)
submodule of R-module R, respectively. We aim in this article to introduce the concept of S-2-absorbing
primary submodule and to investigate some properties related to it.

In the interest of completeness, we start with some definitions and notations that appear throughout this
article. Let N be an R-submodule of M, L be a nonempty subset of M and A be an ideal of R. Then the residuals
of N by L and N by A are defined as follows: (N :R L) = {a ∈ R : aL ⊆ N} and (N :M A) = {x ∈ M : Ax ⊆ N}.
In particular, let annR(M) denote the ideal (0 :R M). If annR(M) = 0, then M is called a faithful module.
Recall from [9] that, an R-module M is called a multiplication module if each submodule L of M has the
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form L = AM for some ideal A of R, or equivalently, L = (L :R M)M. A proper submodule L of M is called
irreducible if L can not be written as an intersection of two submodules of M that properly contain it.

In this paper, we study the concept of S-2-absorbing primary submodules of a module which can be
considered a generalization of many clases of submodules such as S-prime, primary, 2-absorbing, S-2-
absorbing and 2-absorbing primary submodules. Also, this concept combines the two previous methods
that we mentioned above in generalizing the prime submodules. A submodule N of M is said to be an S-2-
absorbing primary (S-2-absorbing [15]) submodule if (N :R M)∩S = φ and there exists a fixed element s ∈ S
such that whenever abm ∈ N for some a, b ∈ R and m ∈M implies that either sab ∈

√
(N :R M) (sab ∈ (N :R M))

or sam ∈ N or sbm ∈ N, respectively. Note that directly from the definition, if a submodule N of M is 2-
absorbing primary or S-2-absorbing, then N is also S-2-absorbing primary provided that (N :R M) ∩ S = φ.
However, the converses are not true (See Example 2.3 and Example 2.4). Moreover, in a quick overview of
the concept, we see that when S ⊆ u(R), 2-absorbing and S-2-absorbing are identical concepts, where u(R)
is the set of all units in R. Among other results in this study, in Section 2, we study some basic properties of
S-2-absorbing primary submodules and transfer some well known results to fit the new notion. Also, we
give some relations between 2-absorbing primary and S-2-absorbing primary under some certain types of S
(See Proposition 2.5). In Theorem 2.10, we show that N is an S-2-absorbing primary submodule of M if and
only if there exists a fixed element s ∈ S such that IJK ⊆ N for some ideals I, J of R and some submodule K
of M implies that either sIK ⊆ N or sJK ⊆ N or sIJ ⊆

√
(N :R M). Furthermore, we investigate the conditions

that force a submodule to be S-2-absorbing primary (Theorem 2.20, Proposition 2.21 and Proposition 2.22).
In Section 3, we study some additional traditional properties related to these types of concepts. We

explore the behavior of S-2-absorbing primary under homomorphism, quotient module, in trivial extension
and in cartesian product of modules (Proposition 3.2, Corollary 3.3, Proposition 3.1 and Proposition 3.8).
Also, using the same sense in this paper, we generalize primary submodules to S-primary. In Theorem 3.6,
we give a characterization of primary submodule in terms of primary ideal and S-primary submodules.
Finally, we show that every irreducible submodule is S-primary provided that M is a Noetherian module
(Proposition 3.7).

2. Characterizations of S-2-Absorbing Primary Submodules

Definition 2.1. Let S be a multiplicatively closed subset of a ring R and M an R-module. A submodule N of M
is said to be S-2-absorbing primary if (N :R M) ∩ S = φ and there exists a fixed element s ∈ S such that whenever
a, b ∈ R and m ∈M with abm ∈ N, then sam ∈ N or sbm ∈ N or sab ∈

√
(N :R M).

Definition 2.2. Let S be a multiplicatively closed subset of a ring R. An ideal I of R is said to be S-2-absorbing
primary if I ∩ S = φ and there exists an s ∈ S such that for any a, b, c ∈ R with abc ∈ I, then sab ∈ I or sac ∈ I or
sbc ∈

√
I.

Example 2.3. Suppose that S ⊆ R is a multiplicatively closed subset and N is an R-submodule of M. If S ⊆ u(R),
then N is 2-absorbing primary if and only if N is S-2-absorbing primary.

In other words, the above example shows that S-2-absorbing primary submodule need not to be S-2-
absorbing. This can be seen by taking S = u(R) and recalling that 2-absorbing primary does not imply
2-absorbing. The following example illustrate the idea in case S is not trivial.

Example 2.4. Consider the Z-submodule N = qZ × p3Z of the module M = Z ×Z and the multiplicatively closed
subset S =

{
qn : n ≥ 0

}
ofZ, where p , q are prime integers. N is not S-2-absorbing. Since for any n ≥ 0 and s = qn,

p2(q, p) ∈ N, but sp(q, p) < N and sp2 < (N :R M) = qp3Z. At the same time, N is S-2-absorbing primary. This can
easily be shown by taking s = q and whenever ab(m1,m2) ∈ N then sam ∈ N or sbm ∈ N or sab ∈

√
(N :R M) = qpZ

for any a, b,m1,m2 ∈ Z.

Let S−1M denote the module of fractions of M with respect to the multiplicatively closed subset S ⊆ R
over the quotient ring S−1R. Each submodule of S−1M has the form

S−1N =
{n

s
∈ S−1M : for some n ∈ N and s ∈ S

}
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where N is a submodule of M. Recall from [10] that a saturation set of S is defined by S? =
{
r ∈ R : r

1 is a unit of S−1R
}

and S is called a saturated set if S = S?. Indeed, S? is a saturated set that contains S. Suppose that M is an
R-module. The set UM(R) = {a ∈ R : aM =M} is a saturated multiplicatively closed subset of R that contains
the set of all units u(R) of R.

Proposition 2.5. Let M be an R-module and S ⊆ R a multiplicatively closed subset. Then the following statements
hold:

(i) Suppose that S1 ⊆ S2 are two multiplicatively closed subsets of R. If N is an S1-2-absorbing primary submodule
such that (N :R M) ∩ S2 = φ, then N is also an S2-2-absorbing primary submodule. In particular, every 2-absoring
primary submodule N with (N :R M) ∩ S = φ is S-2-absorbing primary.

(ii) Assume that S? is the saturation of S. Then a submodule N of M is S-2-absorbing primary if and only if it is
S?-2-absorbing primary.

(iii) Suppose that M = Rm is a cyclic R-module and S ⊆ UM(R). Then N is a 2-absorbing primary submodule if
and only if N is an S-2-absorbing primary submodule.

(iv) If N is an S-2-absorbing primary submodule, then S−1N is a 2-absorbing primary S−1R-submodule.

Proof. (i) It is clear.
(ii) Suppose that N is S-2-absorbing primary. It is obvious that (N :R M) and S? are disjoint. Since S ⊆ S?,
then by (i), N is S?-2-absorbing primary. For the converse, let abm ∈ N for some a, b ∈ R and m ∈ M.
Since N is an S?-2-absorbing primary submodule, there exists an s ∈ S? such that sam ∈ N or sbm ∈ N
or sab ∈

√
(N :R M). As s

1 is a unit of S−1R, there exist x ∈ R and t ∈ S with s
1

x
t = 1. Hence, usx = ut

for some u ∈ S. Now, put s′ = ut ∈ S. This yields s′am = ux(sam) ∈ N or s′bm = ux(sbm) ∈ N or
s′ab = ux(sab) ∈

√
(N :R M). Therefore, N is an S-2-absorbing primary submodule.

(iii) (⇒) Take S1 = {1} and S2 = S. Then by part (i), the result follows.
(⇐) Suppose that N is an S-2-absorbing primary submodule. Let abx ∈ N for some x = rm ∈M and a, b, r ∈ R.
Then there exists an s ∈ S such that sax ∈ N or sbx ∈ N or sab ∈

√
(N :R M). If sax ∈ N, then sarRm = arRm ⊆ N

and hence ax = arm ∈ N. Similarly when sbx ∈ N, we get bx ∈ N. If sab ∈
√

(N :R M), then (sab)k
∈ (N :R M)

for some k ∈ N. Note that M is a multiplication module and so (ab)kM = (sab)kM ⊆ (N :R M)M = N. Thus,
N is a 2-absorbing primary submodule.
(iv) Assume that N is S-2-absorbing primary. Let a

s
b
t

m
u ∈ S−1N, where a

s ,
b
t ∈ S−1R and m

u ∈ S−1M. Then
(va)bm ∈ N for some v ∈ S. Hence, there exists an s′ ∈ S such that s′vam ∈ N or s′bm ∈ N or s′vab ∈

√
(N :R M),

which implies that a
s

m
u =

s′vam
s′vsu ∈ S−1N or b

t
m
u =

s′bm
s′tu ∈ S−1N or a

s
b
t ∈ S−1

√
(N :R M) ⊆

√
(S−1N :S−1R S−1M).

Therefore, S−1N is a 2-absorbing primary submodule of S−1M.

The converses of Proposition 2.5 (i) and (iv) are not true in general. The following examples illustrate that.

Example 2.6. (i) Consider the Z-module Z72 and S = re1(Z) = Z − {0} to be a multiplicatively closed subset
of Z. Then the submodule N = {0, 36} is not 2-absorbing primary. Since 2.2.9 ∈ N and neither 2.9 ∈ N nor
2.2 ∈

√
(N :R M) = 6Z. On the other hand, it is clear that the submodule N is S-2-absorbing primary (For example,

by taking s = 36).
(ii) Consider the Z-module Q × Z and S = Z − {0}. Take the submodule N = Z × {0}. N is not an S-2-absorbing
primary submodule. Since for any element s ∈ S, choose a prime integer p such that 1cd(s, p) = 1 and then note that,
p2( 1

p2 , 0) ∈ N, but sp2 <
√

(N :Z Q ×Z) = {0} and sp( 1
p2 , 0) < N. Moreover, S−1Z = Q is a field. Hence, every

submodule of S−1(Q ×Z) is 2-absorbing primary.

Here we point out that some modules do not have any S-2-absorbing primary submodule. Let p , q
be two fixed prime integers and consider the Z-module Z(p∞) = {λ ∈ Q/Z : λ = a

pn + Z for some a ∈
Z and n ≥ 0} and the multiplicatively closed subset S = {qn : n ≥ 0} of Z. Every proper submodule of
Z(p∞) has the form Gt = {λ ∈ Q/Z : λ = a

pt +Z for some a ∈ Z} for some t ≥ 0. Gt is not an S-2-absorbing

primary submodule of Z(p∞). Since for any n ≥ 0 and s = qn, p2
(

1
pt+2 +Z

)
∈ Gt, while sp

(
1

pt+2 +Z
)
< Gt and
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sp2 <
√(

Gt :Z Z(p∞)
)
= 0.

The following proposition shows that the converses of Proposition 2.5 (i) and (iv) can be true under some
specific conditions. Recall from [2] that a multiplicatively closed set S is said to satisfy the maximal multiple
condition if there exists s ∈ S such that s′ divides s for each s′ ∈ S. Note that all finite multiplicatively closed
sets and the set of units in R are examples of multiplicatively closed set satisfying the maximal multiple
condition.

Proposition 2.7. Let N be a submodule of an R-module M. Then the following statements hold:
(i) Suppose that S1 ⊆ S2 are two multiplicatively closed subsets of R and for every u ∈ S2, there exists v ∈ R such

that uv ∈ S1. If N is S2-2-absorbing primary, then N is also S1-2-absorbing primary.
(ii) Let S be a multiplicatively closed subset of R satisfying the maximal multiple condition. If S−1N is a 2-absorbing

primary submodule of S−1M, then, N is an S-2-absorbing primary submodule of M.

Proof. (i) It is explicit.
(ii) Assume that S is a multiplicatively closed subset of R satisfying the maximal multiple condition. Then
there exists s ∈ S such that s′ divides s for each s′ ∈ S, that is, Rs ⊆ Rs′. Let abm ∈ N for some a, b ∈ R and
m ∈ M. Since S−1N is 2-absorbing primary, then a

1
m
1 ∈ S−1N or b

1
m
1 ∈ S−1N or a

1
b
1 ∈

√
(S−1N :S−1R S−1M). If

a
1

m
1 ∈ S−1N or b

1
m
1 ∈ S−1N, we get sam ∈ N or sbm ∈ N. If a

1
b
1 ∈

√
(S−1N :S−1R S−1M), then for every x ∈ M,

ak

1
bk

1
x
1 ∈ S−1N for some k ∈ N. which implies that (sab)kx ∈ N. Hence, sab ∈

√
(N :R M). Therefore, N is an

S-2-absorbing primary submodule.

Lemma 2.8. Let S be a multiplicatively closed subset of R. If N is a submodule of M with (N :R M) ∩ S = φ, then
the following statements are equivalent:

(i) N is an S-2-absorbing primary submodule of M.
(ii) There exists an s ∈ S such that whenever Iam ⊆ N for some ideal I of R, a ∈ R and m ∈M implies either sam ∈ N
or sIm ⊆ N or sIa ⊆

√
(N :R M).

Proof. (i)⇒(ii) Assume that N is an S-2-absorbing primary submodule of M. Then there exists an s ∈ S such
that xyu ∈ N for some x, y ∈ R and u ∈ M implies sxy ∈

√
(N :R M) or sxu ∈ N or syu ∈ N. Let Iam ⊆ N for

some a ∈ R, m ∈ M and an ideal I of R. Let sam < N and sIa *
√

(N :R M). So there exists b ∈ I such that
sab <

√
(N :R M). Since abm ∈ N and N is S-2-absorbing primary, we obtain sbm ∈ N. We show that sIm ⊆ N.

Let c ∈ I, then (b + c)am ∈ N and hence either s(b + c)m ∈ N or s(b + c)a ∈
√

(N :R M). If s(b + c)m ∈ N, then
by sbm ∈ N it follows that scm ∈ N. If s(b + c)a ∈

√
(N :R M), then sca <

√
(N :R M). But we have cam ∈ N, so

scm ∈ N. Thus, sIm ⊆ N.
(ii)⇒(i) It is clear.

Lemma 2.9. Let S be a multiplicatively closed subset of R. If N is a submodule of M with (N :R M) ∩ S = φ, then
the following statements are equivalent:

(i) N is an S-2-absorbing primary submodule of M.
(ii) There exists an s ∈ S such that IJm ⊆ N for some ideals I, J of R and m ∈ M, then either sIm ⊆ N or sJm ⊆ N or
sIJ ⊆

√
(N :R M).

Proof. (i)⇒(ii) Suppose that N is an S-2-absorbing primary submodule of M. Then we keep in mind that
there exists a fixed s ∈ S that satisfies the S-2-absorbing primary condition. Let IJm ⊆ N for some ideals I, J
of R and m ∈M and assume that sI * (N :R m) and sJ * (N :R m). We are going to show that sIJ ⊆

√
(N :R M).

Let c ∈ I and d ∈ J. There is an a ∈ I − (N :R m) such that sam < N. As aJm ⊆ N, then by Lemma 2.8, we
get saJ ⊆

√
(N :R M) and so s[I − (N :R sm)]J ⊆

√
(N :R M). Similarly, there exists b ∈ J − (N :R m) such that

sIb ⊆
√

(N :R M) and sI[J − (N :R sm)] ⊆
√

(N :R M). Hence we have sab ∈
√

(N :R M), sad ∈
√

(N :R M) and
scb ∈

√
(N :R M). Since a+c ∈ I and b+d ∈ J, it gives that (a+c)(b+d)m ∈ N. Thus, s(a+c)m ∈ N or s(b+d)m ∈ N

or s(a + c)(b + d) ∈
√

(N :R M). If s(a + c)m ∈ N, then scm < N which implies that c ∈ I − (N :R sm) and so
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scd ∈
√

(N :R M). Similarly, by s(b+d)m ∈ N, we conclude that scd ∈
√

(N :R M). If s(a+c)(b+d) ∈
√

(N :R M),
then sab + sad + scb + scd ∈

√
(N :R M) and this yields scd ∈

√
(N :R M). Therefore, sIJ ⊆

√
(N :R M).

(ii)⇒(i) It is clear.

Theorem 2.10. Let S be a multiplicatively closed subset of R and N a submodule of R-module M with (N :R M)∩S =
φ.Then, N is an S-2-absorbing primary submodule of M if and only if there exists a fixed s ∈ S such that whenever
IJK ⊆ N for some ideals I, J of R and some submodule K of M, then either sIK ⊆ N or sJK ⊆ N or sIJ ⊆

√
(N :R M).

Proof. (⇒) Suppose that s ∈ S satisfies S-2-absorbing primary condition. Assume that IJK ⊆ N for some
ideals I, J of R and a submodule K of M and sIJ *

√
(N :R M). Then by Lemma 2.9, for any x ∈ K we obtain

sIx ⊆ N or sJx ⊆ N. If for every x ∈ K, sIx ⊆ N, then we are done. Similarly, if for all x ∈ K, sJx ⊆ N, we are
done. Suppose that there exist x1, x2 ∈ K such that sIx1 * N and sJx2 * N. Hence, sJx1 ⊆ N and sIx2 ⊆ N.
Since IJ(x1 + x2) ⊆ N, then either sI(x1 + x2) ⊆ N or sJ(x1 + x2) ⊆ N. If sI(x1 + x2) ⊆ N, it follows that sIx1 ⊆ N
which is a contradiction. Similarly by sJ(x1 + x2) ⊆ N, we obtain a contradiction. Thus, either sIK ⊆ N or
sJK ⊆ N.
(⇐) It is clear.

Corollary 2.11. Let S be a multiplicatively closed subset of R and I an ideal of R with I ∩ S = φ. Then the following
statements are equivalent:
(i) I is an S-2-absorbing primary ideal of R.
(ii) There exists an s ∈ S such that I1I2I3 ⊆ I for some ideals I1, I2 and I3 of R implies sI1I2 ⊆ I or sI1I3 ⊆ I or
sI2I3 ⊆

√
I.

Proposition 2.12. Let S be a multiplicatively closed subset of R. If N is an S-2-absorbing primary submodule of M,
then (N :R M) is an S-2-absorbing primary ideal of R.

Proof. Suppose that N is an S-2-absorbing primary submodule of M. Let abc ∈ (N :R M) for some a, b, c ∈ R.
Then we get RaRb(cM) ⊆ N. Hence by Theorem 2.10, there is an s ∈ S such that sRaRb ⊆

√
(N :R M) or

sRa(cM) ⊆ N or sRb(cM) ⊆ N. Thus, either sab ∈
√

(N :R M) or sac ∈ (N :R M) or sbc ∈ (N :R M). Therefore,
(N :R M) is an S-2-absorbing primary ideal of R.

The converse of Proposition 2.12 is not true in general. If (N :R M) is an S-2-absorbing primary ideal, then
N may not be S-2-absorbing primary. Consider theZ-module M = Z×Z12 and S = {3n : n ∈N∪{0}}. Let N
be the zero submodule, then (N :R M) = {0} is an S-2-absorbing primary ideal. On the other hand, N is not
S-2-absorbing primary. Since for any n ∈N∪{0} and s = 3n, we have 2.2(0, 3) ∈ N, but s22 <

√
(N :R M) = {0}

and s2(0, 3) < N.

Proposition 2.13. Let S be a multiplicatively closed subset of R. If A is an S-2-absorbing primary ideal of R, then
√

A is an S-2-absorbing ideal of R.

Proof. Suppose that A is S-2-absorbing primary and s ∈ S satisfies S-2-absorbing primary condition. Clearly,
√

A ∩ S = φ. Now, let a, b, c ∈ R such that abc ∈
√

A, sac <
√

A and sbc <
√

A. Then, there exists a positive
integer k such that (abc)k = akbkck

∈ A. Hence by assumption, we conclude that skakbk = (sab)k
∈ A, and thus

sab ∈
√

A. Therefore,
√

A is an S-2-absorbing ideal of R.

Proposition 2.14. Let S be a multiplicatively closed subset of R and N an S-2-absorbing primary submodule of
R-module M. Then the following statements hold:
(i) If (N :R m) ∩ S = φ, for some m ∈M −N, then (N :R m) is an S-2-absorbing primary ideal of R.
(ii) If ((N :M r) :R M) ∩ S = φ, for some r ∈ R − (N :R M), then (N :M r) is an S-2-absorbing primary submodule of
M.
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Proof. (i) Assume that m ∈ M −N and abc ∈ (N :R m) for some a, b, c ∈ R. Since N is S-2-absorbing primary
and (ab)cm ∈ N, then there exists an s ∈ S such that either sabm ∈ N or scm ∈ N or sabc ∈

√
(N :R M). Assume

that (sa)bc ∈
√

(N :R M), Then by Proposition 2.13,
√

(N :R M) is an S-2-absorbing ideal of R. Let t ∈ S be
the element which satisfies the S-2-absorbing condition and put s′ = ts ∈ S and fix it. Hence, s′ab = tsab ∈√

(N :R M) ⊆
√

(N :R m) or s′ac = tsac ∈
√

(N :R M) ⊆
√

(N :R m) or s′bc = tsbc ∈
√

(N :R M) ⊆
√

(N :R m). If
the first two terms sabm ∈ N or scm ∈ N are satisfied, then it follows that s′ab ∈ (N :R m) or s′bc ∈ (N :R m)
and we are done. Thus, in each case, we have (N :R m) is an S-2-absorbing primary ideal of R.
(ii) Suppose that r ∈ R − (N :R M). Let a, b ∈ R and m ∈ M such that abm ∈ (N :M r). This implies
that abrm ∈ N. Since N is an S-2-absorbing primary submodule of M, then there exists s ∈ S such that
either sarm ∈ N or sbrm ∈ N or sab ∈

√
(N :R M). From the first two cases, we get that sam ∈ (N :M r) or

sbm ∈ (N :M r). If sab ∈
√

(N :R M), Then there exists a positive integer k such that (sab)kM ⊆ N ⊆ (N :M r).
Hence, sab ∈

√
((N :M r) :R M). Therefore, (N :M r) is an S-2-absorbing primary submodule of M.

Next proposition shows that in a finitely generated faithful multiplication module, if a submodule N is
S-2-absorbing primary, then M-rad(N) is also S-2-absorbing primary, where M-rad(N) is the M-radical of N.
To see this, we recall the following lemma.

Lemma 2.15. [11]Let M be a finitely generated multiplication R-module. Then for any submodule N of M,√
(N :R M) = (M-rad(N) :R M).

Proposition 2.16. Let S be a multiplicatively closed subset of R and M a finitely generated multiplication R-module.
If N is an S-2-absorbing primary submodule of M, then M-rad(N) is an S-2-absorbing primary submodule of M.

Proof. First, it is obvious that (M-rad(N) :R M)∩S = φ. Let IJK ⊆M-rad(N) for some ideals I, J of R and some
submodule K of M. Then by Lemma 2.15, IJ(K :R M)M ⊆ (M-rad(N) :R M)M =

√
(N :R M)M. This implies

that IJ(K :R M) ⊆
√

(N :R M). Since N is S-2-absorbing primary, so by Proposition 2.12 and Proposition
2.13,

√
(N :R M) is an S-2-absorbing ideal. Then there exists a fixed s ∈ S such that either sIJ ⊆

√
(N :R M)

or sI(K :R M) ⊆
√

(N :R M) or sJ(K :R M) ⊆
√

(N :R M). Thus, we obtain sIJ ⊆
√

(M-rad(N) :R M) or
sIK = sI(K :R M)M ⊆

√
(N :R M)M =M-rad(N) or sJK = sJ(K :R M)M ⊆

√
(N :R M)M =M-rad(N).

Recall from [1] that the product of two submodules K and L of a multiplication R-module M is defined as
KL = IJM, where K = IM and L = JM for some ideals I and J of R. Moreover, we point out that the product
of two submodules is independent of the presentations of submodules of M [1, Theorem 3.4].

Proposition 2.17. Let M be a finitely generated multiplication R-module, S be a multiplicatively closed subset of R
and N a submodule of M with (N :R M) ∩ S = φ. Then the following statements are equivalent:
(i) N is an S-2-absorbing primary submodule of M.
(ii) There exists an s ∈ S such that KLP ⊆ N for some submodules K,L, and P of M implies sKL ⊆ N or sKP ⊆ N or
sLP ⊆M-rad(N).

Proof. Follows directly by using Theorem 2.10 and Lemma 2.15.

Lemma 2.18. Let M be an R-module and S a multiplicatively closed subset of R. Suppose that N is an S-2-absorbing
primary submodule of M. Then the following statements hold:
(i) There exists s ∈ S such that (N :M s3) = (N :M sn) for all n ≥ 3.
(ii) There exists s ∈ S such that (N :R s3M) = (N :R snM) for all n ≥ 3.

Proof. (i): Assume that N is an S-2-absorbing primary submodule of M and s ∈ S is the element which
satisfies the condition of S-2-absorbing primary. Let m ∈ (N :M s4). Then s4m = s2s2m ∈ N. We deduce
that s(s2m) = s3m ∈ N or s5

∈
√

(N :R M). If s5
∈

√
(N :R M), then s5k

∈ (N :R M) ∩ S for some positive
integer k, which is a contradiction. Hence, m ∈ (N :M s3). Since the other inclusion is always satisfied,
so (N :M s3) = (N :M s4). Now, assume that (N :M s3) = (N :M sk) for all k < n. We will show that
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(N :M s3) = (N :M sn). Let x ∈ (N :M sn). Then snx = s2(sn−2)x ∈ N. As N is an S-2-absorbing primary
submodule of M, we obtain s3x ∈ N or sn−1x ∈ N or sn+1

∈
√

(N :R M). Since the last case gives a
contradiction, we have x ∈ (N :M s3) ∪ (N :M sn−1) = (N :M s3). Thus, we have (N :M s3) = (N :M sn).
(ii) : Follows directly from (i).

In next theorem, we characterize S-2-absorbing primary submodules in terms of 2-absorbing primary
residual submodules.

Theorem 2.19. Let M be an R-module and S ⊆ R a multiplicatively closed subset. Suppose that N is a submodule
of M with (N :R M) ∩ S = φ. Then the following statements are equivalent:
(i) N is an S-2-absorbing primary submodule.
(ii) (N :M s) is a 2-absorbing primary submodule for some s ∈ S.

Proof. (ii)⇒(i) Suppose that (N :M s) is a 2-absorbing primary submodule for some s ∈ S. Let abm ∈ N ⊆
(N :M s) for some a, b ∈ R and m ∈ M. Then, either ab ∈

√
((N :M s) :R M) or am ∈ (N :M s) or bm ∈ (N :M s).

Hence, sab ∈
√

(N :R M) or sam ∈ N or sbm ∈ N. Therefore, N is an S-2-absorbing primary submodule.
(i)⇒(ii) Assume that N is an S-2-absorbing primary submodule and s ∈ S satisfies the S-2-absorbing primary
condition. Then by Lemma 2.18, we have (N :M s3) = (N :M sn) and (N :R s3M) = (N :R snM) for all n ≥ 3.
We show that (N :M s6) = (N :M s3) is a 2-absorbing primary submodule of M. Take abm ∈ (N :M s6)
for some a, b ∈ R and m ∈ M. Then we get s6(abm) = (s2a)(s2b)(s2m) ∈ N. Since N is an S-2-absorbing
primary submodule, we deduce that either s(s2a)(s2b) = s5ab ∈

√
(N :R M) or s(s2a)(s2m) = s5am ∈ N or

s(s2b)(s2m) = s5bm ∈ N. If s5ab ∈
√

(N :R M), then for some positive integer k, (s5ab)k
∈ (N :R M), which

implies that (ab)k
∈ (N :R s5kM) = (N :R s6M) = ((N :M s6) :R M) and so ab ∈

√
((N :M s6) :R M). If s5am ∈ N

or s5bm ∈ N, it follows that am ∈ (N :M s5) = (N :M s6) or bm ∈ (N :M s5) = (N :M s6). Thus, (N :M s6) is a
2-absorbing primary submodule of M.

The following results examine the causes and conditions that make a submodule to be S-2-absorbing
primary.

Theorem 2.20. Let N be a submodule of R-module M and S ⊆ R a multiplicatively closed subset. Suppose that
(N :R M) is a prime ideal of R with (N :R M) ∩ S = φ. Then the following statements are equivalent:
(i) N is an S-2-absorbing primary submodule of M.
(ii) There exists an s ∈ S such that for any x1, x2 ∈ M, if (N :R x1) − (N :R s2x2) ∪

√
(N :R M) , φ, then

N = (N + Rx1) ∩ (N + Rsx2).

Proof. (i)⇒(ii) Assume that N is an S-2-absorbing primary submodule of M and s ∈ S satisfies the S-
2-absorbing primary condition. Let ab ∈ (N :R x1) − (N :R s2x2) ∪

√
(N :R M), where a, b ∈ R. Then

abx1 ∈ N and s2abx2 < N and skab <
√

(N :R M) for k ∈ N. It is clear that N ⊆ (N + Rx1) ∩ (N + Rsx2). Let
n ∈ (N + Rx1) ∩ (N + Rsx2). Then n = n1 + r1x1 = n2 + r2sx2, where n1,n2 ∈ N and r1, r2 ∈ R. Hence, we have
abn = abn1 + abr1x1 = abn2 + abr2sx2 and since abr1x1, abn1, abn2 ∈ N, so abr2sx2 = (sab)(r2)x2 ∈ N. Since N is
an S-2-absorbing primary submodule of M and s2abx2 < N, therefore either r2sx2 ∈ N or s2abr2 ∈

√
(N :R M).

Take the case s2abr2 ∈
√

(N :R M). Then there exists a positive integer l such that (s2ab)l(r2)l
∈ (N :R M).

Since (N :R M) is prime and skab <
√

(N :R M) implies (s2ab)l < (N :R M). Therefore (r2)l
∈ (N :R M),

which gives r2 ∈ (N :R M) and so r2sx2 ∈ N. Thus, in both cases, we have n = n2 + r2sx2 ∈ N. Therefore,
N = (N + Rx1) ∩ (N + Rsx2).
(ii)⇒(i) Let s ∈ S satisfy condition (ii) and fix t = s2

∈ S. Suppose that abm ∈ N where a, b ∈ R, m ∈ M and
s2am < N and s2ab <

√
(N :R M). We have to show that s2bm ∈ N. Now, we have a ∈ (N :R bm) − (N :R

s2m) ∪
√

(N :R M). Put x1 = bm, x2 = m in given assumption, then we have N = (N + Rbm) ∩ (N + Rsm).
Thus, we obtain s2bm ∈ N. Therefore, N is an S-2-absorbing primary submodule of M.

Proposition 2.21. Let N be a submodule of R-module M and S ⊆ R a multiplicatively closed subset. Suppose that
(N :R M) ∩ S = φ and there exists an s ∈ S such that (N :M sa) = (N :M sa2) for all a ∈ R −

√
(N :R M). Then, if N

is an irreducible submodule of M, then N is an S-2-absorbing primary submodule of M.
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Proof. Assume that s ∈ S satisfies (N :M sa) = (N :M sa2) for all a ∈ R −
√

(N :R M). Fix s and let a, b ∈ R and
m ∈M such that abm ∈ N but sab <

√
(N :R M). Then, we have to show that sam ∈ N or sbm ∈ N. On contrary,

we assume that sam < N and sbm < N. It is obvious that a <
√

(N :R M) and b <
√

(N :R M). Now, (N+Rsam)
and (N + Rsbm) are two submodules of M that properly contain N, so N ⊆ (N + Rsam) ∩ (N + Rsbm). Let
n ∈ (N +Rsam)∩ (N +Rsbm). Then n = n1 + r1sam = n2 + r2sbm, where n1,n2 ∈ N and r1, r2 ∈ R. Hence, an =
an1+ r1sa2m = an2+ r2sabm. Since an1, an2, r2sabm ∈ N, we get r1sa2m ∈ N. Thus, r1m ∈ (N :M sa2) = (N :M sa).
This implies that r1sam ∈ N and so n ∈ N. Thus, N = (N + Rsam) ∩ (N + Rsbm) which is a contradiction,
since N is an irreducible submodule. Therefore, N is an S-2-absorbing primary submodule of M.

Let M be an R-module and S a multiplicatively closed subset of ring R. We say that M is an S-cancellative
module if there exists an s ∈ S such that whenever rx = ry for elements x, y ∈ M and r ∈ R, then x = sy and
y = sx. Recall that a submodule K of M is called pure if aM ∩ K = aK for every a ∈ R.

Proposition 2.22. Let S be a multiplicatively closed subset of ring R and M an S-cancellative R-module M. If a
proper submodule N is pure with (N :R M) ∩ S = φ, then the following satements are satisfied:
(i) N is an S-2-absorbing primary submodule of M with

√
(N :R M) = {0}.

(ii) N is an S-2-absorbing submodule of M.

Proof. (i) Suppose that s ∈ S satisfies the S-cancellative property. Let abx ∈ N for some a, b ∈ R and x ∈ M.
Since N is pure, abx ∈ abM ∩ N = abN. Hence, abx = aby for some y ∈ N. By S-cancellative property we
get, bx = sby and by = sbx and so sbx ∈ N. Thus, N is an S-2-absorbing primary submodule of M. Now,
Let r ∈

√
(N :R M) for some nonzero element r of R. Since N is proper, let m ∈ M − N. Then there exists a

positive integer k such that rkm ∈ rkM∩N = rkN. So rkm = rkn for some n ∈ N. This implies that m = sn and
n = sm for some s ∈ S. Hence, m ∈ N which is a contradiction. Therefore,

√
(N :R M) = {0}.

(ii) From part (i) we have {0} ⊆ (N :R M) ⊆
√

(N :R M) = {0}. Hence in this case, S-2-absorbing and
S-2-absorbing primary are equivalent.

3. Some More Properties of S-2-Absorbing Primary Submodules

Let M be an R-module. The idealization of M or trivial extension R ∝ M = R ⊕M is a commutative
ring with componentwise addition and multiplication defined by (r1, x1)(r2, x2) = (r1r2, r1x2 + r2x1) for each
r1, r2 ∈ R and x1, x2 ∈M [3]. Assume that A is an ideal of R and N is a submodule of M.Then A ∝ N is an ideal
of R ∝M if and only if AM ⊆ N [3, Theorem 3.1]. Note that by [3, Theorem 3.2],

√
A ∝ N =

√
A ∝M. Suppose

that S is a multiplicatively closed subset of R and N is a submodule of M. Then S ∝ N is a multiplicatively
closed subset of R ∝ M [3, Theorem 3.8]. Now, we characterize S-2-absorbing primary ideals of R in terms
of S ∝M-2-absorbing primary ideals of R ∝M.

Proposition 3.1. Suppose that S ⊆ R is a multiplicatively closed subset and I is an ideal of R with I ∩ S = φ. Then
the following statements are equivalent:
(i) I is an S-2-absorbing primary ideal of R.
(ii) I ∝M is an S ∝ 0-2-absorbing primary ideal of R ∝M.
(iii) I ∝M is an S ∝M-2-absorbing primary ideal of R ∝M.

Proof. (i)⇒(ii) Let (a,m1)(b,m2)(c,m3) = (abc, abm3+acm2+bcm1) ∈ I ∝M for some a, b, c ∈ R and m1,m2,m3 ∈

M. Then we get abc ∈ I. By the assumption, there is an s ∈ S such that sab ∈ I or sac ∈ I or sbc ∈
√

I. Then
we obtain (s, 0)(a,m1)(b,m2) = (sab, sam2 + sbm1) ∈ I ∝ M or (s, 0)(a,m1)(c,m3) = (sac, sam3 + scm1) ∈ I ∝ M
or (s, 0)(b,m2)(c,m3) = (sbc, sbm3 + scm2) ∈

√
I ∝ M =

√
I ∝M, where (s, 0) ∈ S ∝ 0. Thus, I ∝ M is an

S ∝ 0-2-absorbing primary ideal of R ∝M.
(ii)⇒(iii) : It is obvious from Proposition 2.5, since S ∝ 0 ⊆ S ∝M.
(iii)⇒(i) Suppose that abc ∈ I for some a, b, c ∈ R. Then (a, 0)(b, 0)(c, 0) ∈ I ∝ M. Since I ∝ M is an S ∝ M-2-
absorbing primary ideal of R ∝ M, there is an (s, x) ∈ S ∝ M such that (s, x)(a, 0)(b, 0) = (sab, abx) ∈ I ∝ M
or (s, x)(b, 0)(c, 0) = (sbc, bcx) ∈ I ∝ M or (s, x)(a, 0)(c, 0) = (sac, acx) ∈

√
I ∝M =

√
I ∝ M and hence we have

sab ∈ I or sbc ∈ I or sac ∈
√

I. Thus, I is an S-2-absorbing primary ideal of R.
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Proposition 3.2. Suppose that f : M → M′ is an R-homomorphism and S is a multiplicatively closed subset of R.
The following statements hold:
(i) If N′ is an S-2-absorbing primary submodule of M′ and ( f−1(N′) :R M)∩S = φ, then f−1(N′) is an S-2-absorbing
primary submodule of M.
(ii) If f is an epimorphism and N is an S-2-absorbing primary submodule of M containing Ker( f ), then f (N) is an
S-2-absorbing primary submodule of M′.

Proof. (i) Let abm ∈ f−1(N′) for some a, b ∈ R and m ∈ M. Then we have f (abm) = ab f (m) ∈ N′. Since N′

is an S-2-absorbing primary submodule, there exists s ∈ S such that either sab ∈
√

(N′ :R M′) or sa f (m) =
f (sam) ∈ N′ or sb f (m) = f (sbm) ∈ N′. If sab ∈

√
(N′ :R M′) then we conclude that sab ∈

√
( f−1(N′) :R M),

since (N′ :R M′) ⊆ ( f−1(N′) :R M). On the other hand, if f (sam) ∈ N′ or f (sbm) ∈ N′, we obtain either
sam ∈ f−1(N′) or sbm ∈ f−1(N′). Thus, f−1(N′) is an S-2-absorbing primary submodule of M.
(ii) Assume that N is an S-2-absorbing primary submodule of M containing Ker( f ). If ( f (N) :R M′) ∩ S , φ,
there is an s ∈ S such that s ∈ ( f (N) :R M′). This implies that sM′ ⊆ f (N) and so f (sM) = s f (M) = sM′ ⊆ f (N).
Hence, we get sM ⊆ sM + Ker( f ) ⊆ N + Ker( f ) = N. Thus, s ∈ (N :R M) ∩ S, which is a contradiction. Now,
assume that aby ∈ f (N) for some a, b ∈ R and y ∈M′. Then there exist n ∈ N and x ∈M such that y = f (x) and
aby = ab f (x) = f (abx) = f (n). This implies f (abx − n) = 0 which gives abx − n ∈ Ker( f ) ⊆ N and so abx ∈ N.
Since N is an S-2-absorbing primary submodule of M, there exists an s ∈ S such that sab ∈

√
(N :R M) or

sax ∈ N or sbx ∈ N. As (N :R M) ⊆ ( f (N) :R M′), consequently, we conclude that sab ∈
√

( f (N) :R M′) or
f (sax) = sa f (x) = say ∈ f (N) or f (sbx) = sb f (x) = sby ∈ f (N). Therefore, f (N) is an S-2-absorbing primary
submodule of M′.

Corollary 3.3. Let K be a submodule of an R-module M and S ⊆ R be a multiplicatively closed subset. The following
statements hold:
(i) If N′ is an S-2-absorbing primary submodule of M with (N′ :R K) ∩ S = φ, then K ∩ N′ is an S-2-absorbing
primary submodule of K.
(ii) Suppose that N is a submodule of M containing K. Then N is an S-2-absorbing primary submodule of M if and
only if N/K is an S-2-absorbing primary submodule of M/K.

Proof. (i) Consider that the injection i : K→M defined by i(x) = x for all x ∈ K. Then we have i−1(N′) = K∩N′.
Now, we show that (i−1(N′) :R K)∩S = φ. Let s ∈ (i−1(N′) :R K)∩S, then we have sK ⊆ i−1(N′) = K∩N′ ⊆ N′

and so s ∈ (N′ :R K) ∩ S, which gives a contradiction. Then, the result follows from Proposition 3.2.
(ii)(⇒) Consider the canonical homomorphism π : M → M/K defined by π(x) = x + K for all x ∈ M. Then,
the result follows from Proposition 3.2.
(⇐) Let abm ∈ N for some a, b ∈ R and m ∈ M. Then we have ab(m + K) = abm + K ∈ N/K. Thus,
there exists an s ∈ S such that sab ∈

√
(N/K :R M/K) =

√
(N :R M) or sa(m + K) = sam + K ∈ N/K or

sb(m + K) = sbm + K ∈ N/K by the assumption. Hence, we get sab ∈
√

(N :R M) or sam ∈ N or sbm ∈ N.
Consequently, N is an S-2-absorbing primary submodule of M.

Definition 3.4. Let S be a multiplicatively closed subset of a ring R and M an R-module. A submodule N of M is
said to be S-primary if (N :R M) ∩ S = φ and there exists a fixed s ∈ S such that whenever r ∈ R and m ∈ M with
rm ∈ N, then either sm ∈ N or sr ∈

√
(N :R M).

An ideal I is an S-primary ideal of R if I is an S-primary submodule of R-module R.

Remark 3.5. It is clear from the definition of S-primary submodule that every primary is S-primary. Moreover, every
S-primary is S-2-absorbing primary.

Let N be an R-submodule of M. It is known that if N is primary , then (N :R M) is a primary ideal of R.
However, the converse is not true in general. Now, we characterize certain primary submodules in terms
of S -primary submodules.
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Theorem 3.6. Suppose that N is a submodule of M provided (N :R M) ⊆ J(R), where J(R) is the Jacobson radical of
R. The following statements are equivalent:
(i) N is a primary submodule of M.
(ii) (N :R M) is a primary ideal of R and N is an (R−M)-primary submodule of M for each maximal idealM ∈Max(R).

Proof. (i)⇒(ii) Assume that N is a primary submodule of M. Then (N :R M) is a primary ideal of R. Since
(N :R M) ⊆ J(R), (N :R M) ⊆ M for each maximal idealM ∈Max(R), hence (N :R M)∩ (R−M) = φ. The rest
follows from Remark 3.5.
(ii)⇒(i) Suppose (N :R M) is a primary ideal and N is an (R − M)-primary submodule of M for each
M ∈ Max(R). Let rm ∈ N with r <

√
(N :R M) for some r ∈ R and m ∈ M. Let M ∈ Max(R). As N is

(R −M)-primary , then there exists for sure an sM ∈ R −M such that sMr ∈
√

(N :R M) or sMm ∈ N. If
sMr ∈

√
(N :R M), then, since

√
(N :R M) is prime, we get r ∈

√
(N :R M) or (sM)k

∈ (N :R M) ∩ (R − M)
for some positive integer k. In both cases we have a contradiction. So we have sMm ∈ N. Now consider
the set T = {sM : ∃M ∈ Max(R), sM < M and sMm ∈ N} Then, it is easy to see that (T ) = R. This yields
1 = a1sM1 + a2sM2 + · · · + ansMn for some ai ∈ R and sMi < Mi with sMi m ∈ N, where Mi ∈ Max(R) for
each i = 1, 2, . . . ,n. This implies that m = a1sM1 m + a2sM2 m + · · · + ansMn m ∈ N. Therefore, N is a primary
submodule.

Proposition 3.7. Let S be a multiplicatively closed subset of a ring R and M a Noetherian R-module. Then, every
irreducible submodule is S-primary.

Proof. Assume that N is not S-primary. Then for every s ∈ S, there exist a ∈ R and x ∈M with ax ∈ N such that
sx < N and (sa)n < (N :R M) for every n ∈N. Consider the increasing chain of submodules {(N :M (sa)n)}n∈N
of M. Since M is Noetherian, there exists a positive integer k such that (N :M (sa)k) = (N :M (sa)k+1).
We want to show that N = (N + Rskaky) ∩ (N + Rsx), where y ∈ M such that (sa)ky < N. It is clear that
N ⊆ (N +Rskaky)∩ (N +Rsx). Now, let n = u+ r1skaky = v+ r2sx, where u, v ∈ N and r1, r2 ∈ R. Since ax ∈ N,
we have an = av+ r2sax ∈ N and so r1(sa)k+1y ∈ N. By (N :M (sa)k) = (N :M (sa)k+1), we obtain that r1skaky ∈ N
and hence n ∈ N. Since sx < N and (sa)ky < N, the submodules (N + Rskaky) and (N + Rsx) properly contain
N. Thus, N is not irreducible.

Let Mi be an Ri-module for each i = 1, 2. Suppose that R = R1×R2 and M =M1×M2. Then it is obvious that
M is an R-module and all submodules of M have the form N = N1 ×N2, where Ni is a submodule of Mi for
each i = 1, 2. Furthermore, if Si is a multiplicatively closed subset of Ri, then S = S1×S2 is a multiplicatively
closed subset of R. The following theorem studies the S-2-absorbing primary concept in cartesian product
of modules.

Proposition 3.8. Suppose that Mi is an Ri-module and Si is a multiplicatively closed subset of Ri for each i = 1, 2.
Let M = M1 ×M2, R = R1 × R2 and S = S1 × S2. Assume that N = N1 × N2 is a submodule of M, where N1 is a
submodule of M1 and N2 is a submodule of M2. Consider the following statements:
(A) N is an S-2-absorbing primary submodule of M.
(B1) (N1 :R1 M1) ∩ S1 , φ and N2 is an S2-2-absorbing primary submodule of M2.
(B2) (N2 :R2 M2) ∩ S2 , φ and N1 is an S1-2-absorbing primary submodule of M1.
(B3) N1 is an S1-primary submodule of M1 and N2 is an S2-primary submodule of M2.
Then the following statements hold:
(i) (A) implies (B1) or (B2) or (B3).
(ii) (B1) or (B2) implies (A).

Proof. (i) Suppose that N is an S-2-absorbing primary submodule of M. First, by Proposition 2.13 note
that

√
(N :R M) =

√
(N1 :R1 M1) ×

√
(N2 :R2 M2) is an S-2-absorbing ideal of R. So that (N1 :R1 M1) ∩ S1 = φ

or (N2 :R2 M2) ∩ S2 = φ. Suppose that (N1 :R1 M1) ∩ S1 , φ. We aim to show that N2 is an S2-2-
absorbing primary submodule of M2. Let abm ∈ N2 for some a, b ∈ R2 and m ∈ M2. Then we get
(0R1 , a)(0R1 , b)(0M1 ,m) = (0M1 , abm) ∈ N1 ×N2 = N. As N is an S-2-absorbing primary submodule of M, there
exists s = (s1, s2) ∈ S such that s(0R1 , a)(0R1 , b) = (0R1 , s2ab) ∈

√
(N :R M) or s(0R1 , a)(0M1 ,m) = (0M1 , s2am) ∈ N
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or s(0R1 , b)(0M1 ,m) = (0M1 , s2bm) ∈ N. This implies that either s2ab ∈
√

(N2 :R2 M2) or s2am ∈ N2 or s2bm ∈ N2.
Thus, N2 is an S2-2- absorbing primary submodule of M2. If (N2 :R2 M2)∩S2 , φ, by using the same argument,
we get N1 is an S1-2-absorbing primary submodule of M1. Now suppose that (N1 :R1 M1)∩S1 = φ and (N2 :R2

M2)∩S2 = φ. We will prove that N1 is an S1-primary submodule of M1 and N2 is an S2-primary submodule
of M2. First, by assumption, there is a fixed s = (s1, s2) ∈ S satisfying N to be an S-2-absorbing primary
submodule of M. Assume that N1 is not an S1-primary submodule of M1. Then there exists r ∈ R1 and x ∈M1

such that rx ∈ N1 but s1r <
√

(N1 :R1 M1) and s1x < N1. Moreover, (N2 :R2 M2) ∩ S2 = φ and s2 < (N2 :R2 M2),
so there exists y ∈ M2 such that s2y < N2. Now, we have (r, 1)(1, 0)(x, y) = (rx, 0M2 ) ∈ N1 × N2 = N. Since
N is an S-2-absorbing primary submodule of M, we obtain either (s1, s2)(r, 1)(1, 0) = (s1r, 0) ∈

√
(N :R M)

or (s1, s2)(r, 1)(x, y) = (s1rx, s2y) ∈ N or (s1, s2)(1, 0)(x, y) = (s1x, 0) ∈ N. Hence we conclude that either
s1r ∈

√
(N1 :R1 M1) or s1x ∈ N1 or s2y ∈ N2 which all of them are contradictions. Hence, N1 is an S1-primary

submodule of M1. Similarly, N2 is an S2-primary submodule of M2.
(ii) Suppose that (N1 :R1 M1)∩S1 , φ and N2 is an S2-2-absorbing primary submodule of M2. We will prove
that N is an S-2-absorbing primary submodule of M. First, it is clear that (N :R M) ∩ S = φ. Let a1, a2 ∈ R1,
b1, b2 ∈ R2, m1 ∈ M1 and m2 ∈ M2 such that (a1, b1)(a2, b2)(m1,m2) = (a1a2m1, b1b2m2) ∈ N. Since (N1 :R1

M1)∩ S1 , φ, there is s1 ∈ S1 such that s1x ∈ N1 for all x ∈M1. On the other hand, there exists a fixed s2 ∈ S2
satisfying N2 to be an S2-2- absorbing primary submodule of M2. Now, let s = (s1, s2) ∈ S. Since b1b2m2 ∈ N2

and N2 is an S2-2-absorbing primary submodule of M2, we conclude either s2b1b2 ∈
√

(N2 :R2 M2) or
s2b1m2 ∈ N2 or s2b2m2 ∈ N2. This yields that s(a1, b1)(a2, b2) = (s1a1a2, s2b1b2) ∈

√
(N1 :R1 M1)×

√
(N2 :R2 M2) =√

(N :R M) or s(a1, b1)(m1,m2) = (s1a1m1, s2b1m2) ∈ N1 × N2 = N or s(a2, b2)(m1,m2) = (s1a2m1, s2b2m2) ∈
N1 × N2 = N. Thus, we conclude that N is an S-2-absorbing primary submodule of M. Similarly, if N1
is an S1-2-absorbing primary submodule of M1 and (N2 :R2 M2) ∩ S2 , φ, N is an S-2-absorbing primary
submodule of M.

In the above theorem, the condition (Ni :Ri Mi) ∩ Si , φ is necessary. Generally, if N1 is S1-2-absorbing
primary submodule of M1 and N2 is S2-2-absorbing primary submodule of M2, then N1 ×N2 may not be an
S1 × S2-2-absorbing primary of M1 ×M2. The following example illustrate this.

Example 3.9. Consider the submodules N1 = 3Z and N2 = 8Z of Z-module Z. Let S1 = {2n : n ∈ N ∪ {0}} and
S2 = {3n : n ∈N ∪ {0}}. Note that (Ni :Ri Mi) ∩ Si = φ for i = 1, 2. Moreover, N1 and N2 are S1 and S2-2-absorbing
primary submodules of Z, respectively. On the other hand, N = N1 ×N2 is not an S = S1 × S2-2-absorbing primary
submodule of M = Z ×Z. Since (1, 2)(1, 2)(3, 2) ∈ N, but for each s = (s1, s2) ∈ S, s(1, 2)(1, 2) <

√
(N :Z×Z M) =

3Z × 2Z and s(1, 2)(3, 2) < N.
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