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Abstract. A Banach space B is said to satisfy the Banach-Saks property with respect to a regular summability
method if every bounded subsequence has a summable subsequence. We show that if a Banach space
satisfies the Banach-Saks property with respect to a Robison-Hamilton regular summability method, for
every bounded double sequence there exists a β-subsequence whose subsequences are all summable to the
same limit.

1. Introduction

A Banach space B is said to have the Banach-Saks property with respect to a regular summabiliy method
〈ai, j〉i, j if for every bounded sequence, there exists a summable subsequence. Erdös and Magidor showed
that if the Banach space B has the Banach-Saks property with respect to a summabiliy method 〈ai, j〉 then
every bounded sequence has a summable subsequence such that every subsequence of the subsequence is
also 〈ai, j〉-summable [2]. In this short note, we take advantage of a new type of subsequence of a double
sequence recently introduced by Dumitru and Franco [1] to generalize the result of Erdös and Magidor to
double sequences and Robison-Hamilton regular summability methods.

1.1. Definitions and Notation

In [1], a new type of double subsequence of a double sequence was introduced. Let ψ :N ×N→N be
defined recursively in the following way

ψ(1,n) = (n − 1)2 + 1,

ψ(m, 1) = m2,

ψ(m,n) =

ψ(m − 1,n) + 1 if 1 < m ≤ n,
ψ(m,n − 1) − 1 if 1 < n < m.
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In matrix form, this looks like the following,
ψ(1, 1) ψ(1, 2) ψ(1, 3) ψ(1, 4) · · ·

ψ(2, 1) ψ(2, 2) ψ(2, 3) ψ(2, 4) · · ·

ψ(3, 1) ψ(3, 2) ψ(3, 3) ψ(3, 4) · · ·

ψ(4, 1) ψ(4, 2) ψ(4, 3) ψ(4, 4) · · ·

...
...

...
...

. . .


=


1 2 5 10 · · ·

4 3 6 11 · · ·

9 8 7 12 · · ·

16 15 14 13 · · ·

...
...

...
...

. . .


.

Then, define a β-section Sβ ⊆N ×N by

Sβ :=
{

(m,n) ∈N ×N
∣∣∣∣∣ 1
β
≤

m
n
≤ β

}
.

Definition 1.1 (β-subsequence [1]). Let x = [xk,l] be a double sequence and let β > 1 be an extended real. The
double sequence y(π,β) is called a β-subsequence of the double sequence x if and only if there exists a strictly increasing
function π : ψ(Sβ)→ ψ(Sβ) such that

y(π,β)
p,q =

zψ(p,q), if 1
β >

p
q or p

q > β

zπ(ψ(p,q)), if 1
β ≤

p
q ≤ β

where zi = xψ−1(i). If β = +∞, the inequalities are understood in the limit sense.

Definition 1.2 (Summability Method [6]). Let A be a four dimensional summability method that maps the complex
double sequences x into the double sequence Ax where the m,n-th term of Ax is given by

(Ax)m,n =

∞∑
k,l=1

am,n,k,lxk,l.

Definition 1.3 (P-convergence [5]). A double sequence x = [xk,l] has a Pringsheim limit L if and only if for every
ε > 0, there exists N ∈N such that

|xk,l − L| < ε,

whenever k, l > N. In this case, we say x is P-convergent and we denote it by

L = lim
k,l→∞

xk,l.

Unless otherwise specified, the notation lim
k,l→∞

is reserved in this article to limits in the Pringsheim sense.

Definition 1.4 (RH-regular [6]). Let A be a four dimensional matrix. A is said to be RH-regular if it maps every
bounded P-convergent sequence into a P-convergent sequence with the same P-limit.

Hamilton and Robison provide a characterization of RH-regularity that will be useful for the rest of the
article.

Theorem 1.5 (Hamilton [4], Robison [6]). A 4-dimensional matrix A is RH-regular if and only if

(RH1) lim
m,n→∞

am,n,k,l = 0 for each (k, l) ∈N2;

(RH2) lim
m,n→∞

∞,∞∑
k,l=0

am,n,k,l = 1;

(RH3) lim
m,n→∞

∞∑
k=0

|am,n,k,l| = 0, for each l ∈N;
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(RH4) lim
m,n→∞

∞∑
l=0

|am,n,k,l| = 0, for each k ∈N;

(RH5) lim
m,n→∞

∞,∞∑
k,l=0

|am,n,k,l| is P-convergent;

(RH6) there exist finite positive integers A and B such that∑
k>B
l>B

|am,n,k,l| < A

for each (m,n) ∈N2.

In order to keep our notation consistent to [3] and [2], we introduce the following definitions.

Definition 1.6. Let S be a set and κ a cardinal. Then,

1. 2S := {X | X ⊆ S} and

2. [S]κ = {X ⊆ S | |X| = κ}.

Let ω denote the set of natural numbers and let P(ω) denote the set of all infinite subsets of ω.

Definition 1.7. A subset S of 2ω is Ramsey if and only if there exists M ∈ [ω]|ω| such that either [M]|ω| ⊆ S or
[M]|ω| ⊆ 2ω \ S.

In other words, an infinite subset S of 2ω is Ramsey if and only if there exists an infinite subset of the
natural numbers M such that every infinite subset of M belongs to S or every infinite subset of M does not
belong to S. Lastly, in the proof of the following theorem we use the concept of a Borel set. Therefore, we
remind the reader of this definition.

Definition 1.8 (Borel Sets). Let X be a topological space. The Borel σ-algebra of X is the smallest σ-algebra that
contains all open sets of X. Elements of the Borel σ-algebra are called Borel sets.

We remark that all Borel sets in P(ω) are Ramsey sets [3].

2. Main Theorem

Theorem 2.1. Let 〈ei, j〉i, j∈N be a bounded double sequence of elements in a Banach space B and 〈ai, j,k,l〉i, j∈N a
RH-regular summability method. Then, there exists a β-subsequence 〈eiγ, jδ〉γ,δ∈N such that:

1. every β-subsequence of 〈eiγ, jδ〉γ,δ∈N is summable with respect to 〈ai, j,k,l〉i, j,k,l∈N, where they all are summed to the
same limit; or

2. no β-subsequence of 〈eiγ, jδ〉γ,δ∈N is summable with respect to 〈ai, j,k,l〉i, j,k,l∈N.

Proof. The proof is adapted from [2]. As in [2], we consider the topology on P(ω) generated by the subbasis
{An}n∈ω ∪ {Bn}n∈ω, where

An = {X ∈ P(ω) | n < X}, Bn = {X ∈ P(ω) | n ∈ X}.

There exists a unique bijective and increasing map τ : ψ(Sβ)→N (see Figure 1). We impose the topology
on P(ψ(Sβ)) induced by this map and the topology on P(ω).

Consider a set X ∈ P(ψ(Sβ)). It is clear that there exists a unique bijective and monotonically increasing
function from ψ(Sβ) to X. Denote this function by πX : ψ(Sβ) → X. Now, we consider β-subsequence of
〈ei, j〉i, j∈N corresponding to X to be the β-subsequence 〈e(πX ,β)

i, j 〉i, j∈N as defined in Definition 1.1.
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ψ(ω × ω)
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τ ◦ ψ(Sβ)
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Figure 1: Pictorial representation of the map τ.

Partition P(ω) into two sets,

A = {X ∈ P(ω) | 〈e
(πτ−1(X),β)

i, j 〉i, j∈N is 〈ai, j,k,l〉i, j,k,l∈N summable},

B = P(ω) \ A.

We will show next that A is a Ramsey set. If this is the case, then there exists an M ∈ P(ω) such that either
all infinite subsets of M are in A, or else they all are not in A. Since each of those M’s corresponds to a

β-subsequence of 〈e
(πτ−1(X),β)

i, j 〉i, j∈N, then they would all be either 〈ai, j,k,l〉i, j,k,l∈N-summable, or else they would
all be not 〈ai, j,k,l〉i, j,k,l∈N-summable.

It suffices to show that A is a Borel set in P(ω).
To simplify the notation, define

〈dX
r,s〉r,s∈N := 〈e

(πτ−1(X),β)

i, j 〉i, j∈N

and consider

Bε,m,n,p,q =

X ∈ P(ω) |

∥∥∥∥∥∥∥∥
∞,∞∑

i, j=1,1

am,n,k,ldX
k,l −

∞,∞∑
i, j=1,1

ap,q,k,ldX
k,l

∥∥∥∥∥∥∥∥ < ε
 .

With respect to this definition,

A =

∞⋂
k=1

∞⋃
N=1

⋂
m,n,p,q≥N

B1/k,m,n,p,q.

As a result, to show that A is a Borel set, it suffices to show that Bε,m,n,p,q is open. Let ε′ > 0 be such that∥∥∥∥∥∥∥∥
∞,∞∑

i, j=1,1

am,n,k,ldX
k,l −

∞,∞∑
i, j=1,1

ap,q,k,ldX
k,l

∥∥∥∥∥∥∥∥ < ε′ < ε.
Let T > 0 be an upper bound of 〈ei, j〉i, j∈N and by (RH2) pick J > 0 large enough so that following inequalities
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are simultaneously satisfied

T

J−1,∞∑
i, j=1,J

|am,n,k,l| +

J−1,∞∑
i, j=1,J

|ap,q,k,l|

 < ε − ε′

4
, by (RH3),

T

∞,J−1∑
i, j=J,1

|am,n,k,l| +

∞,J−1∑
i, j=J,1

|ap,q,k,l|

 < ε − ε′

4
, by (RH4),

T

∞,∞∑
i, j=J,J

|am,n,k,l| +

∞,∞∑
i, j=J,J

|ap,q,k,l|

 < ε − ε′

4
, by (RH5).

Let X ∈ Bε,m,n,p,q. We construct next an open neighborhood C of X such that C ⊆ Bε,m,n,p,q. We start by
defining the set

SK = {c ∈ ω |πτ−1(X) ◦ τ
−1(c) < ψ(K,K)},

where K = max{p ∈N | 1/β ≤ p/J ≤ β}.
Finally, we define

C = {Y ∈ P(ω) | Y ∩ SK = X ∩ SK}.

It can be verified that if Y ∈ C, then dX
k,l = dY

k,l. In particular,∥∥∥∥∥∥∥∥
J−1,J−1∑
i, j=1,1

am,n,k,ldY
k,l −

J−1,J−1∑
i, j=1,1

ap,q,k,ldY
k,l

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
J−1,J−1∑
i, j=1,1

am,n,k,ldX
k,l −

J−1,J−1∑
i, j=1,1

ap,q,k,ldX
k,l

∥∥∥∥∥∥∥∥ .
The set C is open in the topology on P(ω) and clearly X ∈ C. We now show that C ⊆ Bε,m,n,p,q.∥∥∥∥∥∥ ∞,∞∑

i, j=1,1

am,n,k,ldY
k,l −

∞,∞∑
i, j=1,1

ap,q,k,ldY
k,l

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥

J−1,J−1∑
i, j=1,1

am,n,k,ldY
k,l −

J−1,J−1∑
i, j=1,1

ap,q,k,ldY
k,l

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
∞,∞∑
i, j=J,J

am,n,k,ldY
k,l −

∞,∞∑
i, j=J,J

ap,q,k,ldY
k,l

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
J−1,∞∑
i, j=1,J

am,n,k,ldY
k,l −

J−1,∞∑
i, j=1,J

ap,q,k,ldY
k,l

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
∞,J−1∑
i, j=J,1

am,n,k,ldY
k,l −

∞,J−1∑
i, j=J,1

ap,q,k,ldY
k,l

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥
J−1,J−1∑
i, j=1,1

am,n,k,ldX
k,l −

J−1,J−1∑
i, j=1,1

ap,q,k,ldX
k,l

∥∥∥∥∥∥∥∥
+ T

∞,∞∑
i, j=J,J

|am,n,k,l| +

∞,∞∑
i, j=J,J

|ap,q,k,l|


+ T

J−1,∞∑
i, j=1,J

|am,n,k,l| +

J−1,∞∑
i, j=1,J

|ap,q,k,l|


+ T

∞,J−1∑
i, j=J,1

|am,n,k,l| +

∞,J−1∑
i, j=J,1

|ap,q,k,l|


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and thus∥∥∥∥∥∥ ∞,∞∑
i, j=1,1

am,n,k,ldY
k,l −

∞,∞∑
i, j=1,1

ap,q,k,ldY
k,l

∥∥∥∥∥∥ <
∥∥∥∥∥∥∥∥
∞,∞∑

i, j=1,1

am,n,k,ldX
k,l −

∞,∞∑
i, j=1,1

ap,q,k,ldX
k,l

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
∞,∞∑
i, j=J,J

am,n,k,ldX
k,l −

∞,∞∑
i, j=J,J

ap,q,k,ldX
k,l

∥∥∥∥∥∥∥∥
+

3(ε − ε′)
4

< ε′ + ε − ε′ = ε.

Therefore, C ⊆ Bε,m,n,p,q. Hence every element of Bε,m,n,p,q has an open neighborhood C included in Bε,m,n,p,q,
therefore Bε,m,n,p,q is open.

As noted above, this implies that A is a Ramsey set. Hence there exists an infinite subset of the natural
numbers M such that every infinite subset of M belongs to A or every infinite subset of M does not belong
to A. If M < A, then for any infinite X ⊂ M the subsequence 〈dX

r,s〉r,s∈N is not 〈ai, j,k,l〉i, j,k,l∈N-summable. In this
case, conclusion (2) is obtained.

Otherwise, if M ∈ A it is clear that for all infinite X ⊂ M the subsequence 〈dX
r,s〉r,s∈N is 〈ai, j,k,l〉i, j,k,l∈N-

summable. Moreover, one can argue in the same way as in [2] to show that for all infinite X ⊂ M the
subsequences 〈dX

r,s〉r,s∈N sum to the same limit.

Corollary 2.2. Assume that 〈ei, j〉i, j∈N and 〈ai, j,k,l〉i, j∈N are as in Theorem 2.1. Assume further, that B satisfies
the Banach-Saks property with respect to the summability method 〈ai, j,k,l〉i, j∈N. Then, there exists a β-subsequence
〈eiγ, jδ〉γ,δ∈N such that every β-subsequence of 〈eiγ, jδ〉γ,δ∈N is summable with respect to 〈ai, j,k,l〉i, j,k,l∈N, where they all are
summed to the same limit.
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[2] P. Erdős and M. Magidor. A note on regular methods of summability and the Banach-Saks property. Proc. Amer. Math. Soc.,
59(2):232–234, 1976.

[3] Fred Galvin and Karel Prikry. Borel sets and Ramsey’s theorem. J. Symbolic Logic, 38:193–198, 1973.
[4] H. J. Hamilton. Transformations of multiple sequences. Duke Math. J., 2(1):29–60, 1936.
[5] A. Pringsheim. Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann., 53(3):289–321, 1900.
[6] G. M. Robison. Divergent double sequences and series. Trans. Amer. Math. Soc., 28(1):50–73, 1926.


