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Abstract. In this paper, we obtain certain sharp estimates for the maximal modulus of a rational function
with prescribed poles. The proofs of the obtained results are based on the new version of the Schwarz
lemma for regular functions which was suggested by Osserman. The obtained results produce several
inequalities for polynomials as well.

1. Introduction

For an arbitrary function f , let ‖ f ‖ = max|z|=1 | f (z)|, the sup-norm of f on the unit circle |z| = 1. By Pn,
we denote the class of all complex polynomials P(z) :=

∑n
ν=0 cνzν of degree n. The study of polynomial

inequalities that relate the norm between polynomials on the disk |z| = R, R > 0, and their various versions
are a classical topic in analysis. Various results of majorization can be found in the comprehensive books of
Milovanović et al. [11], Marden [9] and Rahman and Schmeisser [15], where some approaches to obtaining
polynomial inequalities are developed on applying the methods and results of the geometric function
theory. On the other hand, several papers pertaining to Bernstein-type inequalities for rational functions
have appeared in the rational approximation problems. These rational inequalities generalizing the classical
polynomial inequalities in approximation theory are of interest in their own right which is witnessed by
many recent articles (c.f. [8], [10], [12]–[14]). Let us start with introducing the set of rational functions
involved in this article.

For aν ∈ C, with ν = 1, 2, . . . ,n, let

W(z) :=
n∏
ν=1

(z − aν),

and let

B(z) :=
n∏
ν=1

(1 − aνz
z − aν

)
, Rn := Rn(a1, a2, . . . , an) =

{ P(z)
W(z)

: P ∈ Pn

}
.
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Then Rn is the set of rational functions with poles a1, a2, . . . , an at most and with finite limit at∞. Note that
B(z) ∈ Rn and |B(z)| = 1 for |z| = 1.

Definition 1.1. (i) For P ∈ Pn with P(z) :=
∑n
ν=0 cνzν, the conjugate transpose P∗ of P is defined as P∗(z) =

znP (1/z) =
∑n
ν=0 cn−νzν.

(ii) For r ∈ Rn with r(z) := P(z)/W(z), the conjugate transpose r∗ of r is defined as r∗(z) = B(z)r (1/z) =
P∗(z)/W(z).

If P ∈ Pn, then concerning the estimate of the maximum modulus of P on the circle |z| = R ≥ 1, we have

max
|z|=R
|P(z)| ≤ Rn

‖P‖, (1)

where as, if P(z) , 0 in |z| < 1, then

max
|z|=R
|P(z)| ≤

Rn + 1
2
‖P‖. (2)

The inequality (1) is an immediate consequence of the Maximum Modulus Principle (for reference, see [16]),
and (2) is due to Ankeny and Rivlin [1]. Equality in (1) holds for P(z) = λzn, λ , 0, and equality in (2) holds
for P(z) = αzn + β, |α| = |β|.

In the past few years, various versions of (1) and (2) have approved in the literature in more generalized
forms in which the underlying polynomials are replaced by more general classes of functions. Govil and
Mohapatra [7] gave a new perspective to (1) and (2) and extended them to rational functions r ∈ Rn with
poles outside the unit disk. In fact, they proved that if r ∈ Rn, then

|r(z)| ≤ |B(z)|‖r(z)‖, |z| ≥ 1, (3)

and if r(z) , 0 in |z| < 1, then

|r(z)| ≤
(
|B(z)| + 1

2

)
‖r(z)‖, |z| ≥ 1. (4)

Equality in (3) is attained for r(z) = λB(z), λ ∈ C, and equality in (4) is attained for r(z) = αB(z) + β, |α| = |β|.
Very recently, Milovanović and Mir [10, Remark 5] obtained a refinement of (3), by showing that if

r ∈ Rn, then for |z| ≥ 1,

|r(z)| ≤
{
1 −

(‖r‖ − |r∗(0)|)(|z| − 1)
|r∗(0)| + ‖r‖ |z|

}
|B(z)|‖r‖, (5)

provided

|r∗(0)|2 + ‖r‖|r∗′(0)| ≤ ‖r‖2, (6)

where r∗(z) is given as in Definition 1.1.
It may be remarked here that the upper bound estimate obtained in the form of (5) sharpens (3) with

the additional condition (6), and hence the inequality (5) does not provide a direct refinement of (3).
The main aim of this paper is to strengthen (3) and (4), and our method of proof is different from the

method of Govil and Mohapatra. The proofs of our results are based on the new version of the Schwarz
lemma for regular functions suggested by Osserman [14], and the essence in the papers of Dubinin ([4], [5])
is the origin of thought for the new inequalities presented in this paper. The obtained results sharpen some
inequalities on the maximum modulus of polynomials as well.
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2. Main Results

In the sequel, we always assume that all the poles a1, a2, . . . , an, of the rational r(z) lie in |z| > 1. We shall
first show that the inequality (5) which is a refinement of (3) holds with out the condition (6).

Theorem 2.1. If r ∈ Rn, then for |z| ≥ 1,

|r(z)| ≤
{
1 −

(‖r‖ − |r∗(0)|)(|z| − 1)
|r∗(0)| + ‖r‖ |z|

}
|B(z)|‖r‖. (7)

Equality in (7) holds for r(z) = λB(z), λ ∈ C.

Remark 2.1. Since r∗(z) = B(z)r (1/z), therefore, |r(z)| = |r∗(z)| for |z| = 1. Also, since

r∗(z) =
P∗(z)
W(z)

=
P∗(z)

n∏
ν=1

(z − aν)
,

with |aν| > 1 for 1 ≤ ν ≤ n, it follows that r∗(z) is analytic in |z| ≤ 1. Therefore, by the Maximum Modulus
Principle, |r∗(0)| ≤ ‖r∗‖ = ‖r‖. By using this fact, one can easily check that the left hand side of (7) is less than
or equal to the left hand side of (3). Thus, Theorem 2.1 yields a sharpening of (3).

Our next result is a refinement of (4).

Theorem 2.2. If r ∈ Rn and all the zeros of r(z) lie in |z| ≥ 1, then for |z| ≥ 1,

|r(z)| ≤
(
|B(z)| + 1

2

) {
1 −

(|r(0)| − |r∗(0)|)(|z| − 1)
(|r(0)| + |r∗(0)|)(|z| + 1)

}
‖r‖. (8)

Equality in (8) holds for r(z) = αB(z) + β, |α| = |β| , 0.

Remark 2.2. Since r(z) , 0 in |z| < 1, therefore, r∗(z) = B(z)r (1/z), has all its zeros in |z| ≤ 1. This implies that,
the function r∗(z)/r(z) is analytic in |z| ≤ 1. Also |r(z)| = |r∗(z)| for |z| = 1, hence by the Maximum Modulus
Principle, we have |r∗(z)| ≤ |r(z)| for |z| ≤ 1. This in particular yields |r∗(0)| ≤ |r(0)|.

Remark 2.3. As shown in Remark 2.2, |r∗(0)| ≤ |r(0)|, which is equivalent to

|z| |r∗(0)| + |r(0)|
(1 + |z|)(|r(0)| + |r∗(0)|)

≤
1
2
,

for |z| ≥ 1. This shows that Theorem 2.1 sharpens (4).

Remark 2.4. Since r ∈ Rn and r(z) , 0 for |z| < 1. Let r(z) = P(z)/W(z), where P(z) =
∑n
ν=0 cνzν and

W(z) =
∏n

ν=1(z − aν), with |aν| > 1 for 1 ≤ ν ≤ n. Also, r∗(z) = P∗(z)/W(z), where

P∗(z) = znP
(1

z

)
=

n∑
ν=0

cn−νzν.

Further,

|r(0)| =
∣∣∣∣∣ P(0)
W(0)

∣∣∣∣∣ =
|c0|

n∏
ν=1
|aν|

and |r∗(0)| =
∣∣∣∣∣P∗(0)
W(0)

∣∣∣∣∣ =
|cn|

n∏
ν=1
|aν|
.



G. V. Milovanović et al. / Filomat 35:5 (2021), 1511–1517 1514

After substituting these values in (8), we get for |z| ≥ 1,∣∣∣∣∣∣ P(z)
n∏
ν=1

(z − aν)

∣∣∣∣∣∣ ≤ |z| |cn| + |c0|

(1 + |z|)(|c0| + |cn|)

1 +

n∏
ν=1

∣∣∣∣∣1 − aνz
z − aν

∣∣∣∣∣
 |P(z0)|

n∏
ν=1
|z0 − aν|

,

where

‖r(z)‖ = |r(z0)| =
|P(z0)|

n∏
ν=1
|z0 − aν|

, |z0| = 1.

This gives for |z| ≥ 1,

|P(z)| ≤ |P(z0)|
n∏
ν=1

∣∣∣∣∣ z − aν
z0 − aν

∣∣∣∣∣ ( |z| |cn| + |c0|

(1 + |z|)(|c0| + |cn|)

) 1 +

n∏
ν=1

∣∣∣∣∣1 − aνz
z − aν

∣∣∣∣∣
 ,

which on letting |aν| → ∞, 1 ≤ ν ≤ n, gives for |z| ≥ 1,

|P(z)| ≤
(
|z| |cn| + |c0|

(1 + |z|)(|c0| + |cn|)

)
(1 + |z|n) ‖P‖,

because |P(z0)| ≤ ‖P‖.

Thus, from Theorem 2.2, we get the following polynomial inequality which was also proved by Du-
binin [3].

Corollary 2.1. If P(z) =
∑n
ν=0 cνzν is a polynomial of degree n such that P(z) , 0 for |z| < 1, then for ρ ≥ 1,

max
|z|=ρ
|P(z)| ≤

(
(1 + ρn)(|c0| + ρ|cn|)

(1 + ρ)(|c0| + |cn|)

)
‖P‖. (9)

Equality in (9) holds for P(z) = zn + 1.

In the same way as in Remark 2.4, one can get the following refinement of (1) from Theorem 2.1.

Corollary 2.2. If P(z) =
∑n
ν=0 cνzν is a polynomial of degree n, then for ρ ≥ 1,

max
|z|=ρ
|P(z)| ≤

(
‖P‖ + ρ|cn|

ρ‖P‖ + |cn|

)
ρn
‖P‖. (10)

Equality in (10) holds for P(z) = λzn, λ ∈ C.

Remark 2.5. The inequality (10) was also proved by Govil [6, Lemma 3].

3. Auxiliary Results

We need the following lemmas to prove our theorems.
The next lemma is a new version of the Schwarz lemma for regular function suggested by Osserman [14].

Lemma 3.1. Let f (z) be analytic in |z| < 1 and | f (z)| < 1 for |z| < 1 and f (0) = 0. Then for |z| < 1,

| f (z)| ≤ |z|
|z| + | f ′(0)|

1 + |z| | f ′(0)|
.
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Let r(z) = P(z)/W(z) ∈ Rn and W(z) =
∏n

ν=1(z − aν) with |aν| > 1, 1 ≤ ν ≤ n, then r(z) is analytic in |z| ≤ 1.
By an application of Lemma 3.1 to the function f (z) = zr(z)/‖r‖, we immediately get the following lemma.

Lemma 3.2. If r ∈ Rn, then for |z| ≤ 1,

|r(z)| ≤
|z| ‖r‖ + |r(0)|
‖r‖ + |z| |r(0)|

‖r‖.

Lemma 3.3. If r ∈ Rn, then for |z| ≥ 1,

|r(z)| + |r∗(z)| ≤ (|B(z)| + 1)‖r‖.

The above lemma is due to Govil and Mohapatra [7].

4. Proofs of Theorems

Proof of Theorem 2.1. Recall that r(z) = P(z)/W(z) ∈ Rn, and therefore, the function r∗(z) = P∗(z)/W(z), with
W(z) =

∏n
ν=1(z− aν), |aν| > 1 for 1 ≤ ν ≤ n, is analytic in |z| ≤ 1. Applying Lemma 3.2 to the rational function

r∗(z), we get for |z| ≤ 1,

|r∗(z)| ≤
|z| ||r∗|| + |r∗(0)|
||r∗|| + |z| |r∗(0)|

‖r∗‖. (11)

Now, since ‖r‖ = ‖r∗‖ and noting that r∗(z) = B(z) r (1/z), we get from (11) that for |z| ≤ 1,∣∣∣∣∣∣r (1
z

)∣∣∣∣∣∣ ≤ |z| ‖r‖ + |r∗(0)|
‖r‖ + |z| |r∗(0)|

‖r‖
|B(z)|

.

This gives by replacing z by 1/z that for |z| ≥ 1,

|r(z)| ≤
‖r‖ + |z||r∗(0)|
|z|‖r‖ + |r∗(0)|

‖r‖
|B( 1

z )|
. (12)

Since, as is easy to verify that |B (1/z)| = 1/|B(z)|, which on using in (12) gives after simplification the
inequality (7).

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Since r(z) = P(z)/W(z) ∈ Rn, where W(z) =
∏n

ν=1(z − aν), with |aν| > 1, ν = 1, 2, . . . ,n.
Also r(z) , 0 for |z| < 1, therefore,

r∗(z) = B(z)r
(1

z

)
=

P∗(z)
W(z)

,

where P∗(z) = znP (1/z), will have all its zeros in |z| ≤ 1. Thus the function 1(z) = zr∗(z)/r(z) is analytic in
|z| < 1 with 1(0) = 0.

Applying Lemma 3.1 to 1(z), we get for |z| < 1,

|1(z)| ≤ |z|
|z| + |1′(0)|

1 + |z||1′(0)|
,

which is equivalent to

|r∗(z)| ≤
|z| |r(0)| + |r∗(0)|
|r(0)| + |z| |r∗(0)|

|r(z)|. (13)
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First note that, the inequality (13) is trivially true for all z on |z| = 1 by Remark 2.2. Again, since r∗(z) =

B(z)r (1/z), we get from (13) that for |z| ≤ 1,∣∣∣∣∣∣r (1
z

)∣∣∣∣∣∣ ≤ |z| |z| |r(0)| + |r∗(0)|
|r(0)| + |z| |r∗(0)|

|r(z)|
|B(z)|

. (14)

Replacing z by 1/z in (14) and noting that |B (1/z) | = 1/|B(z)|, we get |z| ≥ 1,

|r(z)| ≤
|r(0)| + |z| |r∗(0)|
|z| |r(0)| + |r∗(0)|

|r∗(z)|. (15)

The inequality (15) when combined with Lemma 3.3 gives for |z| ≥ 1,(
1 +
|z| |r(0)| + |r∗(0)|
|r(0)| + |z| |r∗(0)|

)
|r(z)| ≤ |r(z)| + |r∗(z)| ≤ (|B(z)| + 1)‖r‖,

which after simplification gives (8).
This completes the proof of Theorem 2.2.

We end this section by obtaining an inequality concerning the minimum modulus of a rational function
with prescribed poles. Let r ∈ Rn, and suppose r(z) has all its zeros in |z| ≤ 1. First suppose that r(z) has no
zeros on |z| = 1, then r∗(z) does not vanish in |z| ≤ 1 and |r(z)| = |r∗(z)| for |z| = 1, and

m = min
|z|=1
|r(z)| = min

|z|=1
|r∗(z)|.

Clearly m ≤ |r(z)| = |r∗(z)| for |z| = 1. Therefore, the function m/r∗(z) is analytic in |z| ≤ 1 and |m/r∗(z)| ≤ 1 for
|z| = 1. Hence, by the Maximum Modulus Principle, it follows that m ≤ |r∗(z)| for |z| ≤ 1. Replace z by 1/z
and noting that r∗(z) = B(z)r (1/z), we get

m ≤
∣∣∣∣∣B (1

z

)∣∣∣∣∣ |r(z)| for |z| ≥ 1.

Equivalently

|r(z)| ≥ m|B(z)| for |z| ≥ 1,

thereby, giving a rational analogue of an inequality due to Aziz and Dawood [2, Theorem 1]. The above
inequality obviously holds when r(z) has some zeros on |z| = 1.
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