Filomat 35:6 (2021), 2055-2069

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2106055B

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

e/ A
) @

i &

gy as’

Do,

&
Ipapor®

On Solvability Of Infinite System Of Integral Equations of Volterra
Together With Hammerstein Type in the Fréchet Spaces

Shahram Banaei?

“Department of Mathematics, Bonab Branch, Islamic Azad University, Bonab, Iran.

Abstract.

In this paper, we prove some fixed point theorems associated with Tychonoff fixed point theorem and
measure of noncompactness in the Fréchet spaces. Moreover, as an application of our results, we analyze
the existence of solutions for infinite system of integral equations of Volterra together with Hammerstein
type. Finally, we present an example to illustrate the effectiveness of our results.

1. Introduction

The concept of measure of noncompactness was introduced by Kuratowski [12] which plays an essential
role in the study of system of integral and differential equations. Up to now, many authors and researchers
such as in [2-7, 9-11, 13-17] investigated solvability of integral and differential equations in one or two
variables. The theory of infinite system of differential or integral equations creates an important branch
of nonlinear analysis. Olszowy [15] and Mursaleen [13] studied solvability of infinite system of integral
equations. In this paper, we investigate the existence of solutions for infinite system of integral equations
of Volterra together with Hammerstein type in two variables of the forms

n(]/) 0ty (X)
un(X, Y) = fuX, Yo 11 (6, Y), oo (X, ) +Gn (X, Y, 1 (X, ), - (X, Y)) fo fo An(X, Y, 1,5, (uj(r, )72, )drds,
1)

and

(%, Y) = fu(x, y,01(x,Y), - -, 0u(X, Y)+Gu(x, ¥, 01(X, ), - -, 0u(X, Y)) fo fo kn(x, y,1,5) hu (1,5, (vj(1,5)) 2 )drds,

(2)
where, n € N, x,y € Rand u,,v, € BC(R; X R}).
The results of this article improve and extend those obtained in papers [2-6, 11]. Advantage of our article

is to investigate solvability of infinite system of integral equations of Volterra together with Hammerstein
type in two variables.
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2. Notation and auxiliary facts

Here, we recall some notations and basic facts concerning with measures of noncompactness. Let
(BC(R+))“ be countable cartesian product of BC(IR,) with itself and (E, || - ||) be a real Banach space. Denote

by R the set of real numbers and put R; = [0, o). The symbol X, ConvX stand for the closure and closed
convex hull of a subset X of E, respectively. Furthermore, let us denote by Mig the family of nonempty
bounded subsets of E and by M its subfamily consisting of all relatively compact subsets of E.

A Fréchet space is a locally convex space which is complete with respect to a translation-invariant metric.

Definition 2.1. [3] Let M be a class of subsets of a Fréchet space E, we say M is admissible class if 9tg N M # 0 and
if X € M, then Conov(X), X € M.

Definition 2.2. [8] Let M be an admissible class of a Fréchet space E, we say that o : M — R, is a measure of
noncompactness on Fréchet space E if it satisfies the following conditions:

(1°) The family ker o = {X € M : a(X) = 0} is nonempty and ker a C Ng;
2°) XCY = a(X) < a(Y);

(3°) a(X) = a(X);

(4°) a(ConvX) = (X);

(5°) a(AX + (1= A)Y) < Aa(X) + (1 - A)a(Y) for A € [0,1];

°) If {Xu} is a sequence of closed sets from M such that X,,,1 C X,, forn =1,2,---, and if lim a(X,,) = 0, then
n—oo
Xoo = ﬂ;‘;an # 0.

Theorem 2.3. (Tychonoff fixed point theorem [1]) Let E be a Hausdorff locally convex linear topological space, C be
a convex subset of E and F : C — E be a continuous mapping such that

FCO)cACC
with A compact. Then F has at least one fixed point.
Theorem 2.4. [3] Suppose a; be a measure of noncompactness on Banach spaces E; for all i € N. If we define

H sup a;(1;(C))} < o0},

i=1
where 1;(C) denotes the natural projection of H E;into E; and a : M — R, is defined by
i=1
a(C) = suplai(r;(C)) : i € N},

(o]

then M is an admissible set and o is a measure of noncompactness on X = H Ei.
i=1

3. Main result

In this section, we introduce a new contraction and study extension of Tychonoff fixed point theorem.
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Theorem 3.1. Let T be a nonempty, closed and convex subset of a Fréchet space E, M is admissible class such that
I'e Mand a : M — R, is a measure of noncompactness on E. Let F,G : I' — T be two continuous mappings
such that

a(FX) + Y(a(GY)) < p(a(X) + Y(a(Y)), 3)

and F(X), G(Y) € M for any nonempty subset X,Y € M where ¢,y : R, — R, are nondecreasing and right
continuous functions such that ¢(0) = Y(0) = 0 and @(t) < t for each t > 0. Then F and G have at least one fixed
point in the set T.

Proof. By induction, we obtain sequences {I',} and {A,} such that

To=Ag=T,
T, = Conv(FT'),—1) nx>1,
A, = Conv(GA,—1) n>1.

It is obvious that I';, A, € M for all n € IN. If there exists an integer N > 0 such that a(I'y) = a(Ay) =0,
then I'y and Ay are compact. Therefore, Theorem 2.3 implies that F and G have a fixed point. Now assume
that a(I'y) # 0 or a(A,) # 0 for n > 0. Since we have FI'o = FI' C I' = I'y,I'1 = Conov(FI'y) € I' = Iy, and by
continuing this process we obtain

Iy2Ih 21,2,

and
AN 2D2AM2A D+,

so a(I'y) and a(A,) are positive decreasing sequence of real numbers. Therefore, there are 7,7, > 0 such
that a(I';) — r1 and a(A,) — 72 as 1 — oco. On the other hand, in view of (3), we get

lim sup a(T'y+1) + P(a(Ap41) < limsup (p(a(l"n) + ¢(a(AH))).

n—oo

This show that r; + (r2) < (p(r1 + 1#(1*2)). Consequently r; + ¢(r2) = 0, so r1 = r, = 0. Hence we deduce
that a(I';) — 0 and a(A,) — 0 as n — oo. Since the sequences (I';) and (A,) are nested, in view of axiom

0o

(6°) of Definition 2.2 we derive that the sets I'., = ﬂ I'yand A, = ﬂ A, are nonempty, closed and convex
n=1 n=1

subsets of the set I'. Moreover, the sets I'., and A, are invariant under the operators F and G respectively,

and belongs to ker . Now, Tychonoff fixed point theorem implies that F and G have fixed points in the set

r. o

Corollary 3.2. Let T be a nonempty, closed and convex subset of a Fréchet space E, M satisfies the assumptions of
Theorem 3.1 and T € M. Let F,G : T — T be two continuous mappings such that

a(FX) + P(a(GY)) < ka(X) + p(a(Y))],
and F(X), G(Y) € M for any nonempty subset X, Y € Mwhere ¢ : R, — R, is nondecreasing and right continuous
function such that Y(0) = 0, a is an arbitrary measure of noncompactness on Mand k € [0,1). Then F and G have

at least a fixed point in the set T

Proof. Take @(t) = kt in Theorem 3.1. [

We present the following useful corollary which will be applied in the sequel.
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Corollary 3.3. Let I'; (i € IN) be a nonempty, convex and closed subset of a Banach space E;, o; an arbitrary measure
of noncompactness on E; and sup,{a;(I';)} < co. Let F;, G; : H It — T (i=1,2,...) be continuous operators such

i=1
that

ai(F(| [ U + (G| [ v < o suplaa) + wa(vo)y), 4)
i=1 i=1 i
for any subsets U; and V; of T'; (i € N) where @, : Ry — IR, satisfies the assumptions of Theorem 3.1. Then there

exist (u]. ) and (v]. 1€ 1_1[ ['j such that for all i € N
]:

{Fi((u})}’il) =,
Gi(@)%,) = .

Proof. Assume that F, G: H I, — H I'; are defined as follows
i=1 i=1

F(())2,) = (Fa((@))2), Fa(@))2y), - Fil@)2y), -,

and _
G(©)2) = Gu@)2), Cal@)2) -, GH@)2), ),

for all (xj)]f"’:1 and (yi)]f"’:l € H I;. It is obvious that F and G are continuous. It suffices to show that the
i=1

assumption (3) of Theorem 3.1 holds where « is defined by Theorem 2.4. Take arbitrary nonempty subset

U and V of H I';. Now, by (2°) and (4) we obtain
i=1

a(E() + (@G < [ [E] [ s + wia([ T 6] [ =ivm)

=1 =1 =1 =1

= sup ay(Fi((] | i) + pisup iG] [ (V)
i =1 i =1

< suplas(Fi(([ [ 7)) + v G| | v

j=1 =1
< sup ( supla;(m;(Uy) + (e, (V)})
i j
< (p( sup aj(r;(U;))) + lp(sqp a]-(n]-(Vj))))
j j
< pla(l) + P(a(V))).
Thus, all of the conditions of Theorem 3.1 are satisfied. Therefore, F and G have fixed points and there exist

)2, (@)%, € H T; such that
i

{ ()2, = F0)Z,) = Fu@)Z)FAW)2), . @)D, -,
@)%, = G@)2) = G@)2)GA@)Z,), .., GAE)T,), ),
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that (5) holds. O

4. Application

In this section, we will show how the obtained results in the previous part can be applied to solvability
an infinite systems of integral equations of Volterra together with Hammerstein type in two variables. Let
Banach space BC(R; X IR,) consisting of all real functions defined, bounded and continuous on R, X R,
equipped with the standard norm

llull = supflu(x, y)l : x, y = O}.

Now, we present the definition of a special measure of noncompactness in BC(IR; X IR;) which will be
needed in our consideration.

Suppose U be a fixed nonempty and bounded subset of BC(IR; X IR;) and fix a positive number T. For
u € Uand € > 0, denote by w’ (u, €) the modulus of the continuity of function u on the interval [0, T], i.e.,

a)T(u, €) = supllu(x, y) —u(r,s)l : x,y,r,s € [0, T],Ix — 1| < €|y —s| <€}
Moreover, let us put
wl(Ue) = sup{a)T(u, €):uell,
wy(U) = EE(} wl(U,€)
and
wo(U) = %i_rilo wy (U).
Further, for two fixed numbers x, y € R, let us the define the function a on Nigc(r, xr,) by the formula

a(U) = wo(U) + limsup diamU(x, y),
[ICx,y)l[—o0

where [|(x, y)|| = max(x, y) and U(x, y) = {u(x,y) : u € U}. It is shown [8] that the function « is a measure of
noncompactness in the space BC(R; X Ry).

Now, we consider Equations (1) and (2) under the following assumptions:

(A1) fu, g0 : Ry xRy XR" — R (n € IN) are continuous with
N = sup{max{lfn(x,y,O,...,0)|, 1g:(x,y,0,...,0)l} : x,y e Ry, n € ]N} < 00.

Furthermore, there exists a nondecreasing, concave and upper semicontinuous function ¢ with p(t) < ¢
for all t > 0 such that

L,y 1, . un) = fulx, y,01,.00,00)1 < (p({g% [u; — vil),
and

|gn(x, y,ut, oo ) = gu(X, Y, 01,00, 00)] < (p({gglui—vil);

(B1) au, pn : Ry —> [0, 00) are continuous functions for all n € IN;
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(B2) gn : Ry xRy xRy xRy XxRY — R (n € IN) is continuous and there exists a positive constant D such
that

1 (Y) n(x)
D := sup{ “fo foﬂ qn(x, y,1,5, (u]-(r,s))]f"’zl) drds|: x,y € Ry, uj € BC(Ry XxRy),1<n< oo}.

Moreover,

1 (Y) ()
lim | fo foa [3n(x, v, 1,8, (uj(r,5))i20) = Gu(x, y, 105, (0)(1, 9))72,))drds| = 0,

[I(x, )ll—>00
uniformly respect to u,v; € BC(Ry X Ry);
(C1) ky : R — R are continuous functions for all n € IN;

(C2) hy : Ry xRy xR — R (n € IN) is a continuous and there exists a continuous function g, : R, XIR;, —
R, and a continuous and nondecreasing function b, : R, — R, such that

(1,5, (07)i20)] < an(r,$)bu( sup [oj]),

1Sj<c>o
for all r,s € R, and (vj)]i"’zl € R with sup [vj| < co. Also, the function (r,s) — a,(r,9)k,(r,s,x,y) is

1Sj<oo
integrable over R, X R, for any fixed x,y € R, and n € IN;

(C3) There exists a positive constant P such that

P = sup{f f ay(1,s) lkn(x, y,1,8)| drds : x,y € Ry, n € N} < oo,
o Jo
and

lim f f ay(r,s) lkn(x, y,7,9)| drds = 0.
0 Jo

[lx, yll— 00

(C4) The following equalities are hold:

00 T
lim {sup {f f an(r,9) kn(x, y, 1, 8) drds : x, y € IR+}} =0,
T Jo

T—o0

lim {sup {f f an(,8) lkn(x, y,7,8) drds : x,y € IR+}} =0,
0o Jr

T—co
foralln € IN;
(D1) There exists a positive solution ry of the inequalities
(1+D)(p() +N) <7,
and
(1+Pby()(p(r) +N) <7,
for all n € N such that

(max {1+ D, sup{l+ P b,(ro)}})e(t) < .
nelN
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Theorem 4.1. Suppose that conditions (A1) - (D) are satisfied. Then Eq. (1) and Eq. (2) have at least one solution
in the space (BC(Ry x Ry))*.

Proof. Let us fix arbitrarily n € N. F, and G,, : (BC(R+ X R4))” — BC(R4 X R4) (n € IN) are defined by

) )
Fa(() 2@ y) = ful®, y, w16, ), - a6, )46, Y, 11 (5, ), -, (X, ) j; f: an(x, Y, 1,8, (uj(r,$)) 32, )drds,
(6)

and

Gul() 20 1) = Ful, 1106, ), -t Y+, Y1005, Y), - (3, ) fo fo K, y, 7,5V, (11, 5)) 2 s,
)

In view of imposed assumptions, we infer that the operators F, ((u j)]?’il) and G,((u j)]?’il) are continuous for
arbitrarily (uj)jf'il € (BC(R+ x Ry))¥. Also, from our assumptions we have

En((u) 2 < (X, v, 0 (6 Y), - a6, Y]+ 1gn(x, v, ua (3, ), - - (X, )
n(Y) aty (x)
[ [ aw s sy
0 0

< |fn(x; yrul(x/ y)/ . 'Iun(xl y)) _fn(x/ Y, O/~ . /O)l + |fn(xr er/' . /O)I
+ (19200, y, 1, 9), - (X, ) = Gu(®, 3,0, ., O)] + 1gu(x, 3,0, ..., O)1)

w(y) a, (X)
[ [ s s sy
0 0
< (P({glg [ui(x, y)I) + N + D((P({g% [ui(x, y)I) + N)

< (1+ D){p(max|ui(x, y)) + N).

Therefore,
IFa ()20l < (1 + D)(p(max [} + N), (®)
and with similar argument

G2l < (1+ P bu(sup 1) @(max ) +N), 9)

1<j<oo sisn
where, Fn((u]-)]‘?":l) and Gn((u]-)]‘?il) € BC(R+ x R,) for any (u]-);?":1 € (BC(R; X R,))” with SUP; o [l < oo.
Due to Inequalities (8), (9) and using (D;), the operators F, and G, maps (B,,)” into B,,. Now we prove

that G, is a continuous function on (BC(R, X IR;))“. Letus fix0 < ¢ < zl" and take arbitrary u = (u j);il and

V= (vj)]f“’:1 € (BC(R+ x R;))” such that d(u, v) = sup {21 min{1, |ju; —vi||} : i € ]N} < ¢. Then, for x, y,1,s € Ry,

i
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we have

Gul(u)) 2, y) = Gul(©)12,)(%, )

fa(, y, w1 (x,y), ..., (X, ) + gu(x, v, ua(x, y), ..., un(x, 1)) f) j(; ka(x, y,1,8) hu(r,s, (uj(r, s));?il)drds

- fn(x/ Y, '01(.7(', ]/) ///// vn(x, ]/)) + gn(x/ Y, vl(x/ ]/) //// Un(x/ ]/)) L ‘f()‘ kn(x/ y,r S) I’ln(i’, S, (U]‘(i’, S));L)d”ds'

<

File 9,105 ) ) = Fullt 0,1, 0, )|

+

g5,y 105, ), 1006, ) = a1, 015, ), o, )| f f K, ,7,9) 5, 01, )2, s
0 0

+

o vy ]| [ [ ) s 92 s
0 0
- f f kn(x, y,1,5) hn(r,s,(vj(r,S))}?il)dde'
0 0
S@(grngIui(x,y)—vi(x,y)l)+<p({ggxmi(x,y)—vi(x,y)l)bn(ro) f f ay (1, 8)lka(x, y, 1, 5)|drds
<i<n <i<n 0 0

+ (ptmax (e, ) + N)| fo fo Koy, a5, (7 %) = I, o1, ) e

So, as a result of condition (C3), we can infer there exists T > 0 such that for max{x, y} > T, we have

G065 = Go(0)7 ), 0] < plama ) = 5, (1L +0s) [ [ a0, i)

 (ptmax e )+ N)2b0) [ [ e,y
1<i<n 0 0

< @(e)(1 + bu(ro)P) + 2((ro) + N)bu(ro)e.

Now, we suppose that x, y € [0, T]. By using the assumptions, we have

Gal(1),)(5, ) = Gal(@) ), y)| < plmax|ui(x, y) = vix, y))(1 + bu(ro)P)
+ (ptmaxlus(x, )+ N) fo fo K, 1, 15, 1, 50)2) = P, 5, 0,0, ), M
00 T
< @(e)(1 + bu(ro)P) + (p(ro) + N fo { fo a1, 7, ), 5, (11, 8))52) = a5, (017, )2l
+ fT Ik, y, 7, )M, 5, (0, )2 )+ Va5, (00, 9)) Il
T T
< @(e)(1+ bu(ro)P) + (¢(ro) + N) fo fo (%, y, 1, 9)a(r, s, 11, 8)2,) = hu(r, s, (017, 9) 2 ldrds
T )
+ fo fT ey, 1, M5, 0,0 )2 )1+ U5, (o5, )2, s
v fT fo e, 7, U5, (0, )1+ U, (o3, )l
T )
S(p(s)(l+b,,(r0)P)+((p(ro)+N)(K¥wfo(hn,e))+2bn(ro)f0 j; lkn(x, y, 7, 5)an(r, s)drds

+ 2bn (7’0) f f |ki’l (x/ y/ 7’, 5)|un (7’, S)di’ds,
T 0
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where

K} = suplk,(x,y,1,5) : x,y,7,5 € [0, T]}

wz;(hnr 8) = Sup{lhn(r/ 5, (u]);ozl) - hn(r/ S, (v]);ozl)| HR S [0/ T]/ Ui, v; € [_1’0/ 7’0], |ui - 0i| < E},
By applying the continuity of &, on the compact set [0, T] X [0, T] X [-r0, r0]* ( Tychonoff’s theorem implies
that [-7g, 9] is a compact space), we get a),TO(hn, €) — 0 as ¢ — 0. Moreover, in view of assumption (Cy)
we can choose T in such a way that last term of the above estimate is sufficiently small. Therefore, G, is a
continuous function on (BC(R, x R;))”. Also, with similar argument and using conditions (B1) — (Bz) we

have F is a continuous function on (BC(R; X R,))”. Now we show that F,, and G, satisfy all the conditions of
Corollary 3.3. Let Uj and V; be nonempty and bounded subsets of By, for all j € IN such that sup(a(L;)) < co
i

and sup(a(V;)) < co. Suppose that T > 0 and ¢ > 0 are arbitrary constants. Also, we take x1,x2, y1, 2 € [0, T],

1
with [x; —x1| < ¢, ly2 —y1l < eand u; € U;and v; € V| for all j € IN. Then, we have

Fu((u))2) (2, y2) = Fu(())2) (1, y1)| =

W(y2)  pan(x2)
fu(x2, y2, u1(x2, Y2), - - - un(x2, Y2)) + gn(x2, Y2, u1(x2, Y2), - - - un(x2, Y2)) fo fo An(x2, Y2, 1,5, (u(r, 9)) ;2 )drds

Vl(yl) rz(xl)
= falxr, yr, (X1, y1), - - (X1, Y1) + Gu(xr, ya, ur(x, y1), - .. un(x1,y1))f0 fo Gn(x1, Y1, 1,8, (uj(r, S))}?il)drd5|

<Ifu(x2, y2, u1(x2, y2), - - un(x2, ¥2)) = fu(x1, y1, w1 (X2, y2), - - - un(x2, Y2))l
+ |fn(x1/ Y1, (x2/ yZ)r o un('XZI yZ)) - fn(xll Y1, xl(xlr ]/1)/ o ”n(xl/ yl))|

n(]/l) vy (x1)
+1gn(x2, Y2, u1(x2, Y2), - - un(X2, Y2)) = Gun(x1, Y1, U1 (X2, Y2), - - - un(x2, yz))l| f f Gn(x2, Y2, 1,8, (uj(r, S))}";l)drdS‘
0 0
n(yZ) ay(x2)
+1gn(x1, Y1, u1(x2, y2), - (X2, Y2)) = gu(xr, y1, ua (X1, ya), - - - (1, yﬂ)l‘ f f Gn(x2, Y2, 1,5, (uj(r, S))}’Zl)drdS‘
0 0
rz(yz) a (X2)
+ |gn(x1/ yllul(xl/ yl)/' . 'ui’l(xll ]/1))|| f f Qn(xZ/ y2/ 7’, S/ (uj(rls))]o'il)drds
0 0
(Y1) a (x1)
- f f n(x2, Y2, 1,5, (u(r, S))}?il)drd5|
0 0

n(y1)  pan(xn)
+1gn(x1, y1, ur(x1, y1), - - w1, ]/1))" f f n(x2, Y2, 1,8, (uj(r, 5)) ;2 )drds
0 0

(1) a (x1)
[ [ s sz
0 0

<@y, (fu, €) + (max |ui(x1, 1) = i(x2, Y2)I) + Dy, (9, €)
n(Y2)  an(x2)

+ D(P({nax |ui(xlr yl) - ui(XZ/ y2)|) + |gn(xlr yh ul(xlr yl)/ .. uﬂ(xlr ]/1))” f qn(x2/ yZ/ s, (M]'(T’, S));‘)il)drds|
<i<n ﬁn

(y1) Jau(n)
) a (x1)
+ |gn(x1/ yllul(xll ]/1)/- . 'un(xlr ]/1))|’ f f [qn(xZ/ ]/2, 7’, S/ (uj(r/ S));il)drds - Qn(xlr _1/1,7', S/ (uj(r/ S));’il)]drds'
0 0
<} (fur€) + Dy (g2, ) + (1+ Dip(max’ (u, €)) + arprPLo] (4 €) + P UL (@, )" (B, ).
Thus, we deduce

Ful()}21) (62, 12) = Ful(4)52,)651, )| < @ (s €) + Dol (92, ) + (1 + D)plamax ” u, ) W

+ aTﬁTPZ;a)Z;(qn, &)+ pr UrTDa)T(a, s)wT(ﬁ, e).,

o
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and with similar argument, we get
Gul(v)32)(x2, y2) = Gu((©)) 21, y1)| < @y (fur €) + Do, (g, €) + (1 + Pb(ro))p(max w' (u;, €))
+ TZPVT0 VrTOerT(kn,s) + PrTObn(rO) fOT me[lkn(xz, Yo, 1, 8)| + lkn(x1, y1, 1, 5)]an(r, s)drds (11)
+ PrTobn(T’O) j:" jo‘ooﬂkn(xz, Y2, 1,9 + kn(x1, y1, 7, 5)|Jan(r, s)drds

where

ar = supia(f) : t € [0, T]},

Br = sup{p(t) : t € [0, T},

wZ;(fn, €) = sup{lfulxr, y1, U1, ..., Un) = fulxo, Yo, u1, .., un)l 2 X1, %2, Y1, Y2, € [0, T], X2 — x1] < &, [y — 1l < €, [l < 1o},

Wy (g, €) = sup{|ga(xr, Y1, 11, ..., tn) = Gu(X2, Y2, U1, . . ) X1, %2, Y1, Y2, € [0, T Ix2 = x1] < €, ly2 — yal < &, luil < o),

@r," (Gn, €) = sup{iga(xr, y1, 7,8, (U)321) = Gu(x2, Y2, 7,8, )2 X1, %2, 1, 42, € [0, T] o = w1l S &, ly2 — yal < e,
r€[0,ar],s € [0,Br], [u;l < ro},

a)T(a, €) =suplla(x) —a)l:x,y €[0,T],Ix —yl < &},

@' (B, €) = sup{lp(x) = B(y)l : x,y € [0, T, lx — yl < ¢},

UrTU = sup{lgu(x, y, 7,5, (uj);?‘;l)l :x,y €[0,T], r€[0,ar],s € [0,Br], u; € [-7o, 10},

PrT0 = suplilgn(x, y,u1, ..., ux)l : x,y € [0, T], u; € [-ro, 10l},

wy (ku, €) = sup{lku(x1, y1,7,5) = ku(x2, y2,1,9)| : X1, %2, Y1, Y2,1,5 € [0, T], 2 = 11| < &, ly2 — 1| < €,

VZ; = sup”hn(r/ S, (v])ﬁl)l 11,8 € [0/ T]/ Uj € [_T(), 7’0]}-

Since u; is an arbitrary element of U; and v; was an arbitrary element of V; for all i € IN in (10) and (11), we
obtain

a)T(Fn(H U < a)rTU(fn, &)+ Da),TO (gn, &)+ (1 + D)(p({r}ix ol (U, €)) + aTﬁTPrTOa)% (Gn, €) + pT U,Toa)T(oc, E)a)T(‘[g, €),

ro
i=1

" Gul[ [ V) < 0f (for &) + D] (g, €) + (1 + Pbu(ro))p(max (U, ) + TPL V] @] (k)
i=1 o

T 00
2L [ [ e v 9+ o, vl s
0 T

+ PTby(r0) f f a2, Yo, 1,5)| + enCer, 11, 7, )T, ),
T 0

by the uniform continuity of f,, g,, 4., @ and f on the compact sets [0, T] x [0, T] X [0, r0]", [0, T] X [0, T] X
[=70,70]", [0, T]1 X [0, T] X [0, ar] X [0, 7] X [=70,70]¢, [0, T] and [0, T] respectively, we have a),OT(fn, ) — 0,
Wro [ (gn, €) — 0, @y, ' (gn, €) — 0, wT(a, €) — 0 and w!(B, &) — 0 as ¢ —> 0. Therefore, we obtain

on<Fn<£[ Up) < (1 + D)p(max wg (L),
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Wb Gl [ Vi) < @+ Phutro)pmax " (U, ) + TP VS, ki, €)

0
i=1

T 00
+ PThy(r0) f f [ (2, Yo, 1,9)| + enCer, 1, 7, )T, S)drds
0 T

+ Pz;bn(ro) f f [lkn(x2/ er r, S)l + |kn(xlr y1/ 7, S)Hﬂn(r, S)d?’ds.
T 0

Now taking T — oo and by using of assumption (Cy), we get

CUo(Fn(L[ Uy) < (1 + D)p(maxwo(U), (12)
and
oG] [ Vi) = (1 + Pou(ro))p(maxan(V:)). (13)

i=1

On the other hand, for all u;, u} € U;, v;,v; € V; (i € N) and x, y € R, X R, we get
Ful(0)20)6, ) =Fa((@)72,)x, )| < (1 + D)p(max (¥, y) - G, )
1 (Y) ay (x)
w0+ N1 [ [ o5 G 0 = 0,5, ) s,
0 0
and with similar argument
Gal(@))}20) 9)=Ga(@)20)x, )| < (1 + Phy(ro))p(max oi(x, y) = o/, )
0+ N [ [ 005, 002 = 5 2 ) s
0o Jo
< (1 + Pby(ro))p(max|oi(x, y) — vj(x, y))
1<i<n

+ (¢(ro) + N)2bu(ro) fo fo lkn(x, y, 1, )lan(r, s)drds.
Thus, we get
diam(F,(] | U(x, ) < (1 + D)p(maxdiam(Ui(x, )
i=1 St (14)
n(Y)  ran(x) . ) .
)+ [T [ 5, 0,070 = 00 G D M,

and

diam(Go (| | Vi), 1) < (14 Pby ro)pmax diam(Vix, )+ (p(ro)+N)2by () fo fo 5, y, 7, lanr, )drds.

i=1

(15)

If take ||(x, y)ll — oo in the inequalities (14) and (15), then using (B;) and (Cs3), we get

lim sup diaan(H U)(x,y) < (1 + D)p(max limsup diam(U;(x, y))), (16)

ll(x, )ll—>o0 i1 SIS y)ll—soo
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and

lim sup diamG,, H Vi)x,y) < (1 +Pb (ro))(p(max lim sup diam(V;(x, v))). 17)
i=1

Il y)ll—00 SIS yll—o0

Further, combining (12) and (16), we get

limsup diamF, H U)(x, y) + wo(Fy (H u)y) <1+ D)[(p(max wo(Uy)) + (p(max lim sup diam(U;(x, v)))], (18)

G ll—e0 i=1 i=1 SISl y)ll—oo

and

lim sup diamG,, H Vi (x, v) + wo(Gy (H ) <(1+Pb (ro))[(p(max wo(V7)) + p(max limsup diam(Vi(x, y)))]. (19)
Ieyll—eo i=1 i=1 LSS yll—o0
Since ¢ is concave, (18) and (19) imply

—a(F Hu>)+ (G, (HV))<(p ZsupaU) + lsqpa(V,')), (20)

where ¢’(t) = (max{l + D, supi{l + an(ro)}})(p(t). Taking o’ = }Ia and y(t) = t. Then, we get

nelN
o Ful[ JUn + & Gu([ [ Vi) < ¢/ (suple’ (W) + ' (Vi)}). (21)
i=1 i=1 !

Now by using Corollary 3.3, there exist (1;):2; and (v;):2; € (BC(R+ X IR;))® such that

n(y) Xy (X
(X, v) = fu(, vy, u1(x, y), ..., un(x, )+ gux, y, u1(x, y), . .., un(x, v)) f f gn(x, y,1,5, (uj(r, s))}’il)drds,
0 0
and
On(%,Y) = ful, ¥, 0106 Y), - a6, Y)Fu(X, Y, 01(x, Y), -, On(X, ) f f kn(x, y,1,8) b (1,5, (vj(1,5)) 2, )drds,
o Jo

and this completes the proof. [

Example 4.2. Consider the following infinite system of functional integral equations

cosy sinx

un(x,y) = - arctan Z lui(x, y)l) + f f rcos(un(r ))d ds, (22)

and

(X, y) = —arctan( Zlvi(x )+ f f y(e e~ P Jvi(r, s)drds. (23)

(y? +1)n
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Eq. (22) is a special case of Eq. (1) and Eq. (23) is a special case of Eq. (2) where
fa(x,y,u Uy) = 1arct.am(l Zn: [u4i])
n /]// 17/ Un _4 ni:l )

gn(xr yrulr”-/u‘rl) = 1

G, v, 1,5, () 2,) =~
e
— L —nr
kn(x/y/rls) - (y2+1) ( 1)

(r,s, (v,);'zl) =Y e 3w,
i=1
cos y

an(1,5) = , bu(r) = "R, an(x) = ——, Bu(y) =

1
Suppose that x, y € R, and |u;| > |vi|. Now, by taking ¢(t) = 1 arctan(t) we have
0 1, 40) = oo, g, 0)] <5l anctan( Z i) - arctan(-- Z [oi)
<1 arctan( Z [t; — vi])
sgarctant Lo 24)
4 arctan(max [t; — vi])
=p(max fu; - vi).
The case |v;| > |u;| can be treated in the same way. Moreover,
N := sup{max{lf,,(x,y,O,...,O)I, |gn(x,1,0,...,0)l} :x,y e Ry, n € ]N} =1< 0.

Thus, from (24) we infer that condition (A1) holds. The condition (By) is obvious. Also, g, is continuous and

() (X
D =sup{|f f gn(x,y,1,5, (u]-(r,s))]f’il)drds| :x,y€Ry, uj € BC(Ry XRy),1 <1 < oo}
0 0
cosy  sinx

2
=sup |f f r cos( un(r ))drds| x,y € Ry, uj € BC(Ry XRy),1<n < oo} = %,

cosy  sinx

fim ‘f f rcos(un(rZ)) rcos(i)n(rz))d ds|

I yll—00 e

uniformly respect to uj,v; € BC(Ry X ]R+), which implies that condition (By) is satisfied. The condition (Cy) clearly
is evident. In order to show that condition (Cy) is satisfied, let us suppose that sup |vi| < oo, so we have

1<i<eo
e 2| sup v
1<i<oo
2n-1 Sup |UI|
1<i<eco

=a,(r,s)by( sup [vi]).

1<i<eco

o)

a(r,s, @21 = ) e o5 <

i=1 i

'[\’18

H&




Sh. Banaei / Filomat 35:6 (2021), 2055-2069 2068

On the other hand, the function (r,s) — a,(t, S)ka(r, s, x, y) is integrable over Ry X R, for any fixed x,y € R, and
n € IN. Thus, condition (Cy) is valid. Further, we get

P :sup{f f an(1,s) lkn(x, y,7,9)ldrds : x,y € Ry, n € N} (25)
0 Jo
_ Y b © omhr _q '
_sup{—(y2 D j(; [) ] drds : x,y € Ry,n € N}
== <0,

and

) 00 00 ) y 00 00 e — 1 ) y
lim ay(r,s) |kq(x,y,7,98)|drds = lim ——— drds = lim =0
||<x,y)||—>oofo fo (7:) leu, y, 1. 5) leyli—e (Y2 + 1)n fo fo er—1 llyli—eo y? +1

This imply that the condition (C3) holds. Moreover, for arbitrarily fixed T > 0 we get,

(oe) 00 1
f f ay(r, ) |k (x, y, 1, 8)|drds S%[e’” 4o DT L om=2T e T
o Jr

and

00 T
1
f f an(r,s) lkn(x, y,1,5)\drds Sﬁ[ne‘”T — e (T _ o2 _ o= (@mT]
T Jo

From the above estimate, we infer that condition (C4) holds. It is easy to see that each number r > 4 satisfies the
inequality in condition (Dy), i.e.,

(1+ D)(p(r) + N) =(1+ %)(411 arctan(r) + 1) <r

and

(1+ Pby(M)(@() + N) = (1 + % ‘/;)(411 arctan(r) + 1) <,

for all n € IN such that

(max{l +D, ilelﬂg{l + an(ro)}})(p(t) = (max{l + %'igﬁ{l + % an}})i arctan(f) < f.

Thus, we can take ro = 4. Therefore, all of the conditions of Theorem 4.1 are satisfied. Consequently, the infinite
system (22) and (23) have at least one solution which belongs to the space (BC(IRy X R4))? .
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