Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat # **Partial Isometry and Strongly EP Elements** Jiayi Caia, Zhichao Chena, Junchao Weia ^aSchool of Mathematical Science, Yangzhou University, Yangzhou, 225002, P. R. China **Abstract.** EP elements are important research objects in the ring theory. This paper mainly gives sufficient and necessary conditions for an element in a ring to be an EP element, partial isometry, and strongly EP element by using solutions of certain equations. ### 1. Introduction Let *R* be an associative ring with 1. An element $a \in R$ is said to be group invertible if there exists $a^\# \in R$ such that $$aa^{\#}a = a$$, $a^{\#}aa^{\#} = a^{\#}$, $aa^{\#} = a^{\#}a$. The element $a^{\#}$ is called the group inverse of a, which is uniquely determined by the above equations [3]. An involution $*: a \longmapsto a^*$ in a ring R is an anti-isomorphism of degree 2, that is, $$(a^*)^* = a$$, $(a+b)^* = a^* + b^*$, $(ab)^* = b^*a^*$. The element a in R is called normal if $aa^* = a^*a$. An element a^+ in R is called the Moore-Penrose inverse (MP-inverse) of a [5], when satisfying the following conditions $$aa^{+}a = a$$, $a^{+}aa^{+} = a^{+}$, $(aa^{+})^{*} = aa^{+}$, $(a^{+}a)^{*} = a^{+}a$. If such a^+ exists, then it is unique [5]. Denote by $R^\#$ and R^+ the set of group invertible elements of R and the set of all MP-invertible elements of R respectively. An element a is said to be EP if $a \in R^\# \cap R^+$ and satisfies $a^\# = a^+$ [4]. We denote by R^{EP} the set of all EP elements of R. According to [2], $a \in R$ is called normal EP, if a is normal and $a \in R^+$. Clearly, a is normal EP if and only if a is normal and EP. Denote by EP0 the set of all normal EP1 elements of EP2. An element EP3 is called partial isometry if EP3 is a partial isometry. We denote the set of all partial isometry elements and strongly EP3 elements of EP4 and EP5 is a partial isometry. In [9], D. Mosić and D. S. Djordjević presented some equivalent conditions for the element a in a ring with involution to be a partial isometry. Recently, some studies on partial isometries and EP elements have come to some meaningful conclusions in [2, 6, 10, 12]. Moreover, the description of EP elements by using solutions of equations has been explored in [10, 11]. 2010 Mathematics Subject Classification. 15A09, 16U99, 16W10 Keywords. EP element, partial isometry, strongly EP element, solutions of certain equation. Received: 25 May 2020; Revised: 09 February 2021; Accepted: 19 February 2021 Communicated by Dijana Mosić Research supported by the National Natural Science Foundation of China (No.11471282) Email addresses: 563672447@qq.com (Jiayi Cai), 351996442@qq.com (Zhichao Chen), jcweiyz@126.com (Junchao Wei) Inspired by the above articles, in this paper, we provide some sufficient and necessary conditions for an element in a ring to be an *EP* element, partial isometry, normal *EP* element and strongly *EP* element by using solutions of equations. It is an interesting and meaningful job. ## 2. Characterization of R^{EP} , R^{PI} and R^{SEP} In [6, Theorem 2.1(xxiv)], Mosić proves that if $a \in R^{\#} \cap R^{+}$, then $a \in R^{EP}$ if and only if $aa^{+}a^{*}a = a^{*}a^{2}a^{+}$. Hence, naturally, we can obtain the following equation. $$aa^+xa = xa^2a^+ \tag{1}$$ **Lemma 2.1.** Let $a \in R^{\#} \cap R^{+}$ and $x \in R$, then the following holds: - 1) If $(a^{\#})^*a^2a^+x = 0$, then $a^+x = 0$. - 2) If $(a^+)^*a^2a^+x = 0$, then $a^+x = 0$. - 3) If $a^*a^2a^+x = 0$, then $a^+x = 0$. *Proof.* 1) Since $(a^{\#})^*a^2a^+x=0$, pre-multiply the equality by $a^{\#}(a^+)^*a^*a^*$, one obtains $aa^+x=0$. Again premultiply the last equality by a^+ , we have $a^+x=0$. - 2) Pre-multiply the equality $(a^+)^*a^2a^+x = 0$ by $(a^\#)^*a^\#aa^*$, we have $(a^\#)^*a^2a^+x = 0$. Hence $a^+x = 0$ by 1). - 3) Pre-multiply the equality $a^*a^2a^+x=0$ by $((a^\#)^*)^2$, one obtains $(a^\#)^*a^2a^+x=0$, this infers $a^+x=0$ by 1). \Box **Theorem 2.2.** Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{EP}$ if and only if the equation (1) has at least one solution in $\chi_a = \{a, a^{\#}, a^{+}, a^{*}, (a^{\#})^{*}, (a^{+})^{*}\}$. *Proof.* (\Rightarrow) Since $a \in R^{EP}$, $a^{\#} = a^{+}$, this infers x = a is a solution. - (\Leftarrow) (1) If x = a, then $aa^+a^2 = a^3a^+$, that is $a^2 = a^3a^+$, this gives $a^\# = (a^\#)^3a^2 = (a^\#)^3a^3a^+ = a^\#aa^+$. By [6, Theorem 2.1(xix)], we have $a \in R^{EP}$. - (2) If $x = a^{\#}$, then $aa^{\#}a^{\#}a = a^{\#}a^{2}a^{\#}$, that is $a^{\#}a = aa^{\#}$. Hence, by [7, Theorem 1.2] (or [8]), we have $a \in R^{EP}$. - (3) If $x = a^+$, then $aa^+a^+a = a^+a^2a^+$. Pre-multiply the equality by $1 aa^+$, one has $(1 aa^+)a^+a^2a^+ = 0$. Then post-multiply it by $a^\#aa^+$ and we have $(1 aa^+)a^+ = 0$. Hence, we have $a \in R^{EP}$. - (4) If $x = a^*$, then $aa^+a^*a = a^*a^2a^+$. Hence, by [6, Theorem 2.1(xxiv)], we have $a \in R^{EP}$. - (5) If $x = (a^{\#})^*$, then $aa^+(a^{\#})^*a = (a^{\#})^*a^2a^+$. Post-multiply the equality by $1 a^+a$, we have $(a^{\#})^*a^2a^+(1 a^+a) = 0$. It follows from Lemma 2.1 that $a^+(1 a^+a) = 0$. Thus $a \in R^{EP}$. - (6) If $x = (a^+)^*$, then $aa^+(a^+)^*a = (a^+)^*a^2a^+$. Post-multiply it by $1 a^+a$, one has $(a^+)^*a^2a^+(1 a^+a) = 0$. It follows from Lemma 2.1 that $a \in R^{EP}$. \square **Remark:** In the following, we denote the set $\{a, a^{\#}, a^{+}, a^{*}, (a^{\#})^{*}, (a^{+})^{*}\}$ by χ_a as above. Now, we modify the equation (1) as follows: $$aa^*xa = xa^2a^+ \tag{2}$$ **Theorem 2.3.** Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if the equation (2) has at least one solution in χ_a . *Proof.* (\Rightarrow) Since $a \in R^{SEP}$, $a^{\#} = a^{+} = a^{*}$, this infers x = a is a solution. - (\Leftarrow) (1) If x = a is a solution, then $aa^*a^2 = a^3a^+$. Post-multiply it by $a^\#$, one has $aa^*a = a$, and this infers $a \in R^{PI}$. Now $a^3a^+ = aa^*a^2 = aa^+a^2 = a^2$. Hence by Theorem 2.2 (1) we get $a \in R^{EP}$ and then $a \in R^{SEP}$. - (2) If $x = a^{\#}$ is a solution, then $aa^*a^{\#}a = a^{\#}a^2a^{\#} = aa^{\#}$. Pre-multiply the equality by a^+ , one has $a^*a^{\#}a = a^+$, this gives $a^*a = a^*aa^{\#}a = a^+a$, so $a \in R^{PI}$. It follows that $a^+ = a^*a^{\#}a = a^+a^{\#}a$. By [6, Theorem 2.1(xxii)], we have $a \in R^{EP}$. Hence $a \in R^{SEP}$. - (3) If $x = a^+$ is a solution, then $aa^*a^+a = a^+a^2a^+$. Post-multiply the equality by a^* , we have $aa^*a^* = a^+a^2a^+a^*$. Apply the involution on the last equality, one obtains $a^2a^* = a^2a^+a^+a$. Pre-multiply the equality by $a^\#$, one has $aa^* = aa^+a^+a$. Again apply the involution, one obtains $aa^* = a^+a^2a^+$. Then pre-multiply the equality by a, and this gives $a^2a^*=a^2a^*$. Hence $a \in R^{PI}$ by [7, Theorem 2.1]. Now $aa^+=aa^*=a^+a^2a^+$. Hence $a \in R^{EP}$ and so we get $a \in R^{SEP}$. - (4) If $x = a^*$ is a solution, then $aa^*a^*a = a^*a^2a^+$. Pre-multiply the equality by $1-a^+a$, we have $a^*a^2a^+(1-a^+a) = 0$. By Lemma 2.1, we have $a^+(1-a^+a) = 0$, so $a \in R^{EP}$. Hence $a^*a = a^*a^2a^+ = aa^*a^*a$, this gives $a^* = aa^*a^*$ when multiplying the equality on the right by a^+ . It follows that $a = a^2a^*$. By [9, Theorem 2.3(xx)], $a \in R^{SEP}$. - (5) If $x = (a^{\#})^*$ is a solution, then $aa^*(a^{\#})^*a = (a^{\#})^*a^2a^+$. Post-multiply the equality by $aa^{\#}a^+$, we have $aa^*(a^{\#})^* = (a^{\#})^*$. Apply the involution on the last equality, and this gives $a^{\#} = a^{\#}aa^*$. Post-multiply it by a, one has $aa^{\#} = aa^*$. Hence $a \in R^{SEP}$ by [9, Theorem 2.3(v)]. - (6) If $x = (a^+)^*$ is a solution, then $aa^*(a^+)^*a = (a^+)^*a^2a^+$, that is $a^2 = (a^+)^*a^2a^+$. Post-multiply the equality by $a^\#$, then we have $a = (a^+)^*aa^\#$. Pre-multiply it by a^* , one obtains $a^*a = a^+a$, and this infers $a \in R^{PI}$ by [9, Theorem 2.1]. Now $a^2 = (a^+)^*a^2a^+ = (a^*)^*a^2a^+ = a^3a^+$, this infers $a \in R^{EP}$. Therefore $a \in R^{SEP}$. \square Now, we modify the equation (2) as follows: $$aa^*xa = a^2a^+x \tag{3}$$ **Lemma 2.4.** Let $a \in R^{\#} \cap R^{+}$ and $x \in R$. If $a^{+}a^{*}x = 0$, then $a^{*}x = 0$. *Proof.* Since $aa^+a^+aa^*x = aa^+a^*x = 0$, we get $a^*a^+aa^*x = a^*aa^+a^+aa^*x = 0$, that is $a^*a^*x = 0$ and then $a^*x = (a^\#)^*a^*a^*x = 0$. **Lemma 2.5.** *Let* $a \in R^{\#} \cap R^{+}$. - 1) If $a^+a^* = a^+a^+$, then $a \in R^{PI}$. - 2) If $a^*a^+ = a^+a^+$, then $a \in R^{PI}$. *Proof.* 1) Pre-multiply the equality $a^+a^* = a^+a^+$ by a^*a , we have $a^*a^* = a^*a^+$. Post-multiply the last equality by a and then apply the involution, one obtains $a^*a^2 = a^+a^2$, which implies that $a \in R^{PI}$. 2) The proof is similar to 1). \Box **Lemma 2.6.** Let $a \in R^{\#} \cap R^{+}$. If $a^{+}a^{*}a^{+} = a^{+}a^{+}a^{+}$, then $a \in R^{PI}$. *Proof.* Since $a^+a^*a^+ = a^+a^+a^+$, $a^+a^*a^+a = a^+a^+a^+a$. Apply the involution on the equality, we have $a^+a^2(a^+)^* = a^+a(a^+)^*(a^+)^*$, and then $a^+a^2(a^+)^* = a^+a^2a^+(a^+)^*(a^+)^*$. Pre-multiply it by $a^\#a$, gives $a(a^+)^* = aa^+(a^+)^*(a^+)^* = (a^+)^*(a^+)^*$. Again apply the involution on the last equality, we have $a^+a^* = a^+a^+$. Thus $a \in R^{PI}$ by Lemma 2.5. \square **Lemma 2.7.** Let $a \in R^{\#} \cap R^{+}$ and $x \in R$. If $a^{+}a^{*}a^{\#}x = 0$, then ax = 0. *Proof.* Pre-multiply the equality $a^+a^*a^\#x = 0$ by $(aa^\#a^+)^*a$, we have $a^\#x = 0$. Hence $ax = a^2a^\#x = 0$. **Lemma 2.8.** Let $a \in R^{\#} \cap R^{+}$ and $x \in R$. - 1) If $xa^+a^+ = 0$, then $xa^+ = 0$. - 2) If $a^+a^+x = 0$, then $a^+x = 0$. *Proof.* 1) Post-multiply the equality $xa^+a^+ = 0$ by $aa^*(a^\#)^*$, we have $xa^+(a^\#a)^* = 0$. Noting that $a^+(a^\#a)^* = a^+(aa^+)^*(a^\#a)^* = a^+$. Then $xa^+ = 0$. 2) The proof is similar to 1). \Box **Lemma 2.9.** Let $a \in R^{\#} \cap R^{+}$ and $x \in R$. - 1) If $a^*a^\#x = 0$, then ax = 0. - 2) If $xa^{\#}a^{*} = 0$, then xa = 0. *Proof.* 1) Since $a^*a^\#x = 0$, $a^+a^*a^\#x = 0$. Hence ax = 0 by Lemma 2.7. 2) The proof is similar to 1). \Box **Lemma 2.10.** *Let* $a \in R^{\#} \cap R^{+}$. - 1) If $a^*a^* = a^*a^+$, then $a \in R^{PI}$. - 2) If $a^*a^* = a^+a^*$, then $a \in R^{PI}$. *Proof.* 1) Pre-multiply the equality $a^*a^* = a^*a^+$ by $a^+(a^+)^*$, one gets $a^+a^* = a^+a^+$. Hence $a \in R^{PI}$ by Lemma 2.5. 2) The proof is similar to 1). \Box **Theorem 2.11.** Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (3) has at least one solution in χ_a . *Proof.* (\Rightarrow) Since $a \in R^{PI}$, $a^* = a^+$. Hence x = a is a solution. - (\Leftarrow) (1) If x = a is a solution, then $aa^*a^2 = a^2a^+a = a^2$. Post-multiply the equality by $a^\#a^+$, we have $aa^* = aa^+$. Hence $a \in R^{PI}$ by [9, Theorem 2.1]. - (2) If $x = a^{\#}$ is a solution, then $aa^*a^{\#}a = a^2a^+a^{\#} = aa^{\#}$. Post-multiply the equality by a, we have $aa^*a = a$. Hence $a \in R^{PI}$. - (3) If $x = a^+$ is a solution, then $aa^*a^+a = a^2a^+a^+$. Post-multiply the equality by $1 aa^+$, one obtains $aa^*a^+a(1-aa^+) = 0$, it follows that $a^*a^+a(1-aa^+) = 0$. Pre-multiply it by $a(a^\#)^*$, we have $a(1-aa^+) = 0$. Hence $a \in R^{EP}$, this infers $aa^+ = a^2a^+a^+ = aa^*a^+a = aa^*$. Thus $a \in R^{PI}$. - (4) If $x = a^*$ is a solution, then $aa^*a^*a = a^2a^+a^*$, this gives $a^2a^+a^* = aa^*a^*a = (aa^*a^*a)a^+a = a^2a^+a^*a^+a$. Premultiply the equality by $a^+a^\#$, one has $a^+a^* = a^+a^*a^+a$. By Lemma 2.4, we have $a^* = a^*a^+a$, this gives $a \in R^{EP}$. It follows that $aa^* = a^2a^+a^* = aa^*a^*a$, so $a^* = a^*a^*a$, and then $a \in R^{SEP}$ by [9, Theorem 2.3(xix)]. - (5) If $x = (a^{\#})^*$ is a solution, then $aa^*(a^{\#})^*a = a^2a^+(a^{\#})^*$. Pre-multiply the equality by $1 a^+a$, we have $a^2a^+(a^{\#})^*(1 a^+a) = 0$. Once again pre-multiply the last equality by $a^*a^*a^{\#}$, we have $a^*(1 a^+a) = 0$ and then $a \in R^{EP}$. Hence $a(a^+)^* = a(a^{\#})^* = a^2a^+(a^{\#})^* = aa^*(a^+)^*a = aa^+a^2 = a^2$. Hence $a^*a^* = a^+a^*$, this infers $a \in R^{PI}$ by Lemma 2.10. - (6) If $x = (a^+)^*$ is a solution, then $aa^*(a^+)^*a = a^2a^+(a^+)^*$, that is $a^2 = a(a^+)^*$. Hence $a^*a^* = a^+a^*$, this infers $a \in R^{PI}$ by Lemma 2.10. \square Now, we modify the equation (3) as follows: $$axa^*a = a^2a^+x. (4)$$ **Theorem 2.12.** Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (4) has at least one solution in χ_a . *Proof.* \Rightarrow Since $a \in R^{PI}$, x = a is a solution. - \Leftarrow (1) If x = a is a solution, then $a^2a^*a = a^2a^+a = a^2$. Similar to the proof of Theorem 2.11, we have $a \in R^{PI}$. - (2) If $x = a^{\#}$ is a solution, then $aa^{\#}a^{*}a = a^{2}a^{+}a^{\#} = aa^{\#}$. Pre-multiply it by a^{2} , we have x = a is a solution. By (1), we claim $a \in R^{PI}$. - (3) If $x = a^+$ is a solution, then $aa^+a^*a = a^2a^+a^+$. Post-multiply the equality by aa^+ , one has $aa^+a^*a = aa^+a^*a^2a^+$. Pre-multiply the last equality by $(aa^\#a^+)^*$, one obtains $a = a^2a^+$. Hence $a \in R^{EP}$. Now $a^+a = aa^+ = a^2a^+a^+ = aa^+a^*a = a^*a$, this infers $a \in R^{PI}$ by [9, Theorem 2.1]. - (4) If $x = a^*$ is a solution, then $aa^*a^*a = a^2a^+a^*$. Post-multiply it by aa^+ , one has $aa^*a^*a = aa^*a^*a^2a^+$. Premultiply the last equality by $(a^+a^\#)^*a^+$, one obtains $a = a^2a^+$. Hence $a \in R^{EP}$, this gives $aa^* = a^2a^+a^* = aa^*a^*a$, so $a^* = a^*a^*a$. Hence we get $a \in R^{SEP}$ by [9, Theorem 2.3(xix)]. - (5) If $x = (a^{\#})^*$ is a solution, then $a(a^{\#})^*a^*a = a^2a^+(a^{\#})^*$, this gives $aa^+(a^{\#})^* = a^{\#}a^2a^+(a^{\#})^* = a^{\#}a(a^{\#})^*a^*a = a^{\#}(a(a^{\#})^*a^*a)(a^+a) = a^{\#}a^2a^+(a^{\#})^*a^+a = aa^+(a^{\#})^*a^+a$. Apply the involution on the last equality and we have $a^{\#}aa^+ = a^+$. By [6, Theorem 2.1(xxii)], $a \in R^{EP}$. It follows that $a^2 = a^2a^+a = a(a^+)^*a^*a = a(a^{\#})^*a^*a = a^2a^+(a^{\#})^* = a(a^{\#})^* = a(a^{\#})^*$. Hence $a^*a^* = a^+a^*$, this infers $a \in R^{PI}$ by Lemma 2.10. - (6) If $x = (a^+)^*$ is a solution, then $a(a^+)^*a^*a = a^2a^+(a^+)^*$, that is $a^2 = a(a^+)^*$. Hence $a^*a^* = a^+a^*$, this infers $a \in R^{PI}$ by Lemma 2.10. \square Now, we modify the equation (4) as follows: $$axa^*y = yaa^+x \tag{5}$$ **Theorem 2.13.** Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equality (5) has at least one solution in $\rho_a^2 = \{(x,y)|x,y \in \rho_a = \{a,a^{\#},a^{+},(a^{\#})^*,(a^{+})^*\}\}.$ *Proof.* \Rightarrow Since $a \in R^{PI}$, $a^+ = a^*$, we have (x, y) = (a, a) is a solution. - \Leftarrow (1) If y = a, then we have the equation (4). Then by Theorem 2.12, $a \in \mathbb{R}^{PI}$. - (2) If $y = a^{\#}$, then we have the equation $$axa^*a^\# = a^\#aa^+x. ag{6}$$ - (i) If x = a, then $a^2 a^* a^\# = a^\# a a^+ a = a a^\#$, this gives $a a^* a = a^\# a^2 a^* a^\# a^2 = a^\# a a^\# a^2 = a$. Hence $a \in \mathbb{R}^{PI}$. - (ii) If $x = a^{\#}$, then $aa^{\#}a^{*}a^{\#} = a^{\#}aa^{+}a^{\#} = a^{\#}a^{\#}$. Pre-multiply the equality by a^{2} , we have $a^{2}a^{*}a^{\#} = aa^{\#}$. It follows that x = a is a solution of the equation (2.6). Hence $a \in R^{PI}$ by (i). - (iii) If $x = a^+$, then $aa^+a^*a^\# = a^\#aa^+a^+$, it follows that $aa^+a^*a^\# = aa^+a^*a^\#aa^+$. Pre-multiply the equality by a^+ , we have $a^+a^*a^\# = a^+a^*a^\#aa^+$. By Lemma 2.7, $a = a^2a^+$. Hence $a \in R^{EP}$, this infers $a^*a^+ = a^*a^\# = aa^+a^*a^\# = a^\#aa^+a^+ = a^+a^+$. Hence $a \in R^{PI}$ by Lemma 2.5. - (iv) If $x = (a^{\#})^*$, then $a(a^{\#})^*a^*a^{\#} = a^{\#}aa^+(a^{\#})^*$. Noting that $(a^{\#})^*aa^+ = (a^{\#})^*$. Then $a(a^{\#})^*a^*a^{\#} = a(a^{\#})^*a^*a^{\#}aa^+$. Pre-multiply the equality by a^*a^+ , we have $a^*a^{\#} = a^*a^{\#}aa^+$. By Lemma 2.7, we get $a = a^2a^+$, this infers $a \in R^{EP}$. So $a^+a = aa^+ = a(a^+)^*a^*a^{\#} = a(a^{\#})^*a^*a^{\#} = a^{\#}aa^+(a^+)^* = a^+(a^+)^*$. Thus $a \in R^{PI}$. - (v) If $x = (a^+)^*$, then $a(a^+)^*a^*a^\# = a^\#aa^+(a^+)^*$, that is $a^\#a = a^\#(a^+)^*$. Thus $a \in \mathbb{R}^{PI}$. - (3) If $y = a^+$, then we have the equation $$axa^*a^+ = a^+x. (7)$$ - (a) If x = a, then $a^2a^*a^+ = a^+a$. Pre-multiply it by $a^\#$, we get $aa^*a^+ = a^\#$. Thus $a \in R^{PI}$ by [9, Theorem 2.3(xvi)]. - (b) If $x = a^{\#}$, then $aa^{\#}a^*a^+ = a^+a^{\#}$. Pre-multiply it by a, we get $aa^*a^+ = a^{\#}$. Thus $a \in R^{PI}$. - (c) If $x = a^+$, then $aa^+a^*a^+ = a^+a^+$. Pre-multiply it by a^+ , we get $a^+a^*a^+ = a^+a^+a^+$. Hence $a \in \mathbb{R}^{PI}$ by Lemma 2.6. - (d) If $x = (a^{\#})^*$, then $a(a^{\#})^*a^*a^+ = a^+(a^{\#})^*$. Pre-multiply the equality by aa^+a^+ , one has $aa^+a^+ = aa^+a^+a^+(a^{\#})^*$. By Lemma 2.8, $a^+ = a^+a^+(a^{\#})^*$. Post-multiply the last equality by a^*a^+a , one has $a^+a^*a^+a = a^+a^+a^+a$, it follows that $a^+a^*a^+ = a^+a^+a^+$. Hence $a \in R^{PI}$ by Lemma 2.6. - (e) If $x = (a^+)^*$, then $a(a^+)^*a^*a^+ = a^+(a^+)^*$, that is $a^2a^+a^+ = a^+(a^+)^*$. Pre-multiply the last equality by $1 a^+a$, one has $(1 a^+a)a^2a^+a^+ = 0$. By Lemma 2.8, we have $(1 a^+a)a^2a^+ = 0$, it follows that $(1 a^+a)a = 0$. Hence $a \in R^{EP}$. Then we have $x = (a^\#)^*$ is a solution to equation (7). By (d), we get $a \in R^{PI}$. - (4) If $y = (a^{\#})^*$, then we have the equation $$axa^*(a^{\#})^* = (a^{\#})^*x.$$ (8) - (I) If x = a, then $a^2a^*(a^\#)^* = (a^\#)^*a$. Post-multiply the equality by a^+a , we get $a^2 = (a^\#)^*a$. Again post-multiply the last equality by a^+ , and then apply the involution, we have $a^\# = aa^+a^*$. By [9, Theorem 2.3(xxi)], $a \in R^{PI}$. - (II) If $x = a^{\#}$, then $aa^{\#}a^{*}(a^{\#})^{*} = (a^{\#})^{*}a^{\#}$. Post-multiply the equality by a^{*} , we get $aa^{\#}a^{*} = (a^{\#})^{*}a^{\#}a^{*}$. By Lemma 2.9, one gets $a^{2} = (a^{\#})^{*}a$. By the proof of (I), we have $a \in R^{PI}$. - (III) If $x = a^+$, then $aa^+a^*(a^\#)^* = (a^\#)^*a^+$. Pre-multiply the equality by a^*a^* , we get $a^*a^* = a^*a^+$. Hence $a \in R^{PI}$ by Lemma 2.10. - (IV) If $x = (a^{\#})^*$, then $a(a^{\#})^*a^*(a^{\#})^* = (a^{\#})^*(a^{\#})^*$. Take the involution of both sides and we get $a^{\#}a^* = a^{\#}a^{\#}$, it follows that $a = a^2a^*$. Hence $a \in R^{PI}$. - (V) If $x = (a^+)^*$, then $a(a^+)^*a^*(a^\#)^* = (a^\#)^*(a^+)^*$. Apply the involution on the equality, we get $a^\#aa^+a^* = a^+a^\#$. Pre-multiply it by a, we get $aa^+a^* = a^\#$. Hence $a \in R^{PI}$ by [9, Theorem 2.3(xxi)]. (5) If $y = (a^+)^*$, then we have the equation $$axa^{+}a = (a^{+})^{*}aa^{+}x.$$ (9) - 1) If x = a, then $a^2 = (a^+)^*a$. Hence $a \in \mathbb{R}^{PI}$. - 2) If $x = a^{\#}$, then $aa^{\#}a^{+}a = (a^{+})^{*}aa^{+}a^{\#}$, that is $aa^{\#} = (a^{+})^{*}a^{\#}$. Hence $a \in R^{PI}$. - 3) If $x = a^+$, then $aa^+a^+a^- = (a^+)^*aa^+a^+$, this infers $aa^+a^+a(1 aa^+) = 0$, so $a^+a^+a(1 aa^+) = 0$. By Lemma 2.8, we get $a^+a(1 aa^+) = 0$. Thus $a \in R^{EP}$, this implies $x = a^\#$ is a solution to the equation (9). Then by 2), we get $a \in R^{PI}$. - 4) If $x = (a^{\#})^*$, then $a(a^{\#})^*a^+a = (a^+)^*aa^+(a^{\#})^*$. Take the involution of both sides, we get $a^+aa^{\#}a^* = a^{\#}aa^+a^+$. So $(1 aa^+)a^+aa^{\#}a^* = 0$. Post-multiply it by $(a^+)^*$, we get $(1 aa^+)a^+aa^{\#} = 0$. Then post-multiply it by aa^+ , we get $(1 aa^+)a^+ = 0$. Hence $a \in R^{EP}$, it follows that $a^{\#}a^{\#} = a^{\#}aa^+a^+ = a^+aa^{\#}a^* = a^{\#}a^*$. Thus we get $a \in R^{PI}$. - 5) If $x = (a^+)^*$, then $a(a^+)^*a^+a = (a^+)^*aa^+(a^+)^*$, that is $a(a^+)^* = (a^+)^*(a^+)^*$. Take the involution of the equality, we get $a^+a^* = a^+a^+$. Hence $a \in R^{PI}$ by Lemma 2.5. \square Now, we modify the equation (5) as follows: $$yaxa^* = xaa^+y. ag{10}$$ **Lemma 2.14.** *Let* $a \in R^{\#} \cap R^{+}$ *and* $x \in R$. - 1) If $x(a^+)^*a = 0$, then $x(a^+)^* = 0$. - 2) If $a(a^+)^*x = 0$, then $(a^+)^*x = 0$. *Proof.* 1) Noting that $(a^+)^* = (a^+)^*a^+a$. Then we have $x(a^+)^* = x(a^+)^*a^+a^2a^\# = x(a^+)^*aa^\# = 0$. 2) The proof is similar to 1). \Box **Theorem 2.15.** Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (10) has at least one solution in $\tau_{a}^{2} = \{(x,y)|x,y \in \tau_{a} = \{a^{\#},a^{+},a^{*},(a^{\#})^{*},(a^{+})^{*}\}\}.$ *Proof.* \Rightarrow If $a \in R^{PI}$, then $(x, y) = (a^+, a^*)$ is a solution. \Leftarrow (1) If $y = a^{\#}$, then we have the equation $$a^{\dagger}axa^{*} = xa^{\dagger}. \tag{11}$$ - (i) If $x = a^{\#}$, then $a^{\#}aa^{\#}a^{*} = a^{\#}a^{\#}$. Pre-multiply it by a^{2} , we have $aa^{*} = aa^{\#}$. Hence $a \in R^{SEP}$ by [9, Theorem 2.3(v)]. - (ii) If $x = a^+$, then $a^{\#}aa^{+}a^{*} = a^{+}a^{\#}$. Pre-multiply it by a and we get $aa^{+}a^{*} = a^{\#}$. Hence $a \in R^{SEP}$ by [9, Theorem 2.3(xxi)]. - (iii) If $x = a^*$, then $a^{\#}aa^*a^* = a^*a^{\#}$. Post-multiply the equality by $1 aa^+$, we get $a^*a^{\#}(1 aa^+) = 0$. It follows from Lemma 2.9 that $a(1 aa^+) = 0$, this infers $a \in R^{EP}$. Hence $a^*a^* = a^+aa^*a^* = a^\#aa^*a^* = a^*a^\#$, we pre-multiply it by $a(a^+)^*$ and get $a^2a^+a^* = a^2a^+a^\#$, this gives $aa^* = aa^\#$. Thus $a \in R^{SEP}$ by [9, Theorem 2.3(v)]. - (iv) If $x = (a^{\#})^*$, then $a^{\#}a(a^{\#})^*a^* = (a^{\#})^*a^{\#}$. Post-multiply the equality by aa^+ , we get $(a^{\#})^*a^{\#} = (a^{\#})^*a^{\#}aa^+$. Pre-multiply it by aa^+a^* , one has $a^{\#} = a^{\#}aa^+$. Hence $a \in R^{EP}$, it follows that $(a^{\#})^*a^{\#} = a^{\#}a(a^{\#})^*a^* = a^{\#}a(a^{\#})^*a^* = a^{\#}a^2a^+ = aa^{\#} = aa^{\#}$. Furthermore, we have $(a^{\#})^*a^{\#}a^2 = aa^{\#}a^2 = a^2$. Thus $a \in R^{SEP}$. - (v) If $x = (a^+)^*$, then $a^\# a (a^+)^* a^* = (a^+)^* a^\#$, that is $aa^+ = (a^+)^* a^\#$. Then $a^2 = aa^+ a^2 = (a^+)^* a^\# a^2 = (a^+)^* a$. Hence $a \in \mathbb{R}^{PI}$. - (2) If $y = a^+$, then we have the following equation $$a^+axa^* = xaa^+a^+. (12)$$ (a) If $x = a^{\#}$, then $a^{+}aa^{\#}a^{*} = a^{\#}aa^{+}a^{+}$. Hence $(1 - aa^{+})a^{+}aa^{\#}a^{*} = (1 - aa^{+})a^{\#}aa^{+}a^{+} = 0$. Post-multiply it by $(a^{+})^{*}$ and we have $(1 - aa^{+})a^{+}aa^{\#} = 0$. Again post-multiply it by aa^{*} and we have $(1 - aa^{+})a^{*} = 0$. Hence $a \in R^{EP}$. So we can get $a^{+}a^{*} = a^{\#}a^{*} = a^{+}aa^{\#}a^{*} = a^{\#}aa^{+}a^{+} = a^{\#}a^{+}$. Hence we get $a \in R^{PI}$ by Lemma 2.5. - (b) If $x = a^+$, then $a^+aa^+a^* = a^+aa^+a^+$, that is $a^+a^* = a^+a^+$. Hence, $a \in R^{PI}$ by Lemma 2.5. - (c) If $x = a^*$, then $a^+aa^*a^* = a^*aa^+a^+$. Hence, we have $a^*a^* = a^*a^+$. Then $a \in R^{PI}$ by Lemma 2.10. - (d) If $x = (a^{\#})^*$, then $a^+a(a^{\#})^*a^* = (a^{\#})^*aa^+a^+ = (a^{\#})^*a^+$, that is $(a^{\#})^*a^* = (a^{\#})^*a^+$. Then take the involution of both sides, we have $aa^{\#} = (a^+)^*a^{\#}$. Hence, $a \in R^{PI}$. - (e) If $x = (a^+)^*$, then $a^+a(a^+)^*a^* = (a^+)^*aa^+a^+$, that is $a^+a^2a^+ = (a^+)^*aa^+a^+$. Then we have $(1-a^+a)(a^+)^*aa^+a^+ = (1-a^+a)a^+a^2a^+ = 0$. By Lemma 2.8 we have $(1-a^+a)(a^+)^*aa^+ = 0$, this infers $(1-a^+a)(a^+)^*a = 0$. By Lemma 2.14, one gets $(1-a^+a)(a^+)^* = 0$. Post-multiply it by a^*a , then we have $(1-a^+a)a = 0$. Hence, $a \in R^{EP}$ and so $(a^+)^* = (a^+)^*a^+a = (a^+)^*(aa^+a^+)a = ((a^+)^*aa^+a^+)a = a^+a(a^+)^*a^*a = aa^+(a^+)^*a^*a = aa^+a = a$. Hence, $a \in R^{PI}$. - (3) If $y = a^*$, then we have the following equation $$a^*axa^* = xaa^+a^*. (13)$$ - 1) If $x = a^{\#}$, then $a^*aa^{\#}a^* = a^{\#}aa^+a^*$. Post-multiply it by $(a^+)^*$ and we have $a^*a^{\#}a = aa^{\#}a^+a^+a$. Then $(1 aa^+)a^*aa^{\#} = (1 aa^+)aa^{\#}a^+a^+a = 0$. Post-multiply it by $aa^+(a^+)^*$ and we have $(1 aa^+)a^+a = 0$. Thus, $a^+a = aa^+a^+a$, this gives $a^*a^{\#}a = aa^{\#}a^+a^+a = a^{\#}$. Hence $a \in R^{PI}$. - 2) If $x = a^+$, then $a^*aa^+a^* = a^+aa^+a^*$, that is $a^*a^* = a^+a^*$. Thus $a \in R^{PI}$ by Lemma 2.10. - 3) If $x = a^*$, then $a^*aa^*a^* = a^*aa^+a^* = a^*a^*$. So we can get $a^2 = a^2a^*a$. Hence, $a \in R^{PI}$. - 4) If $x = (a^{\#})^*$, then $a^*a(a^{\#})^*a^* = (a^{\#})^*aa^*a^* = (a^{\#})^*a^*$. Then, we have $aa^{\#} = aa^{\#}a^*a$. Hence, $a \in R^{PI}$. - 5) If $x = (a^+)^*$, then $a^*a(a^+)^*a^* = (a^+)^*aa^+a^*$. Thus, we can get $aa^+a^*a = a^2a^+a^+$. Then we have $a^2a^+a^+(1-a^+a) = aa^+a^*a(1-a^+a) = 0$. Pre-multiply it by $a^*a^\#$, then we have $a^*a^+(1-a^+a) = 0$. Pre-multiply it by $a^+(a^+)^*$, then we have $a^+a^+(1-a^+a) = 0$. By Lemma 2.8, $a^+(1-a^+a) = 0$, this infers $a \in R^{EP}$. Then $aa^+ = a^2a^+a^+ = aa^+a^*a = a^*a$. Hence, $a \in R^{PI}$ by [9, Theorem 2.3(iv)]. - (4) If $y = (a^{\#})^*$, then we have the following equation $$(a^{\#})^* a x a^* = x a a^+ (a^{\#})^*. \tag{14}$$ - (I) If $x = a^{\#}$, then $(a^{\#})^*aa^{\#}a^* = a^{\#}aa^*(a^{\#})^*$. Hence $(1 a^+a)a^{\#}aa^+(a^{\#})^* = (1 a^+a)(a^{\#})^*a^2a^* = 0$. Post-multiply it by a^*a , we have $(1 a^+a)a = 0$. Thus, $a \in R^{EP}$. So we can get $a^+(a^+)^* = (a^{\#}aa^+)(a^{\#})^* = (a^{\#})^*aa^{\#}a^* = (a^{\#})^*a^* = (a^{\#})^*a^* = a^{\#}a$. Hence, $a \in R^{PI}$. - (II) If $x = a^+$, then $(a^\#)^*aa^+a^* = a^+aa^+(a^\#)^*$, that is $(a^\#)^*a^* = a^+(a^\#)^*$. Apply the involution on the equality, we get $aa^\# = a^\#(a^+)^*$. Hence $a \in R^{PI}$. - (III) If $x = a^*$, then $(a^{\#})^*aa^*a^* = a^*aa^+(a^{\#})^* = a^*(a^{\#})^*$. Apply the involution on the equality, we have $a^{\#}a = a^2a^*a^{\#}$. So we can get $a^{\#} = a^{\#}a^*a = a^*a^*a^*$. Hence, $a \in \mathbb{R}^{PI}$. - (IV) If $x = (a^{\#})^*$, then $(a^{\#})^*a(a^{\#})^*a^* = (a^{\#})^*aa^*(a^{\#})^* = (a^{\#})^*(a^{\#})^*$. Thus, we have $aa^{\#}a^*a^{\#} = a^{\#}a^{\#}$. Then pre-multiply it by a and post-multiply it by a^2 , we have $aa^*a = a$. Hence, $a \in R^{PI}$. - (V) If $x = (a^+)^*$, then $(a^\#)^*a(a^+)^*a^* = (a^+)^*aa^+(a^\#)^*$, that is $(a^\#)^*a^2a^+ = (a^+)^*aa^+(a^\#)^*$. Take the involution of both sides, and we can get $aa^+a^*a^\# = a^\#aa^+a^+$. Post-multiply the equality by $1 aa^+$, we have $aa^+a^*a^\#(1 aa^+) = 0$. Pre-multiply it by $(a^\#a)^*$, and we can get $a^*a^\#(1 aa^+) = 0$. By Lemma 2.9, we get $a(1 aa^+) = 0$, so $a \in R^{EP}$. It follows that $a^*a^+ = a^*a^\# = a^+aa^*a^\# = aa^+a^*a^\# = a^\#aa^+a^+ = a^+a^+$. Hence, we get $a \in R^{PI}$ by Lemma 2.5. - (5) If $y = (a^+)^*$, then we have the following equation $$(a^+)^* a x a^* = x (a^+)^*. (15)$$ - (A) If $x = a^{\#}$, then $(a^{+})^{*}aa^{\#}a^{*} = a^{\#}(a^{+})^{*}$. Then $a^{\#}(a^{+})^{*}(1 aa^{+}) = (a^{+})^{*}aa^{\#}a^{*}(1 aa^{+}) = 0$. Noting that $aa^{\#}(a^{+})^{*} = aa^{\#}(a^{+}aa^{+})^{*} = aa^{\#}(a^{+})^{*} = aa^{\#}(a^{+})^{*} = (a^{+})^{*}$. Then pre-multiply it by $a^{*}a$, we have $a^{+}a(1 aa^{+}) = 0$. Thus, $a \in R^{EP}$. So we can get $a^{\#}(a^{+})^{*} = (a^{+})^{*}aa^{\#}a^{*} = (a^{+})^{*}a^{*} = aa^{+} = a^{\#}a$. Hence, $a \in R^{PI}$. - (B) If $x = a^+$, then $(a^+)^*aa^+a^* = a^+(a^+)^*$. Then, we can get $a^+(a^+)^*(1 aa^+) = (a^+)^*aa^+a^*(1 aa^+) = 0$. Pre-multiply it by a and we have $(a^+)^*(1 aa^+) = 0$. Thus, $a \in R^{EP}$. Then, we can get $x = a^+ = a^\#$. Hence, $a \in R^{PI}$ by (A). - (C) If $x = a^*$, then $(a^+)^*aa^*a^* = a^*(a^+)^* = a^+a$. Apply the involution on the equality, we have $a^+a = a^2a^*a^+$. Pre-multiply it by $a^\#$, one gets $a^\# = aa^*a^+$. Hence $a \in R^{PI}$ by [9, Theorem 2.3(xvi)]. - (D) If $x = (a^{\#})^*$, then $(a^{\#})^*a(a^{\#})^*a^* = (a^{\#})^*(a^{\#})^*$. Thus, we have $a^{\#}a^{\#} = aa^{\#}a^*a^{\#}$. Pre-multiply it by a, we get $a^{\#} = aa^*a^{\#}$. Hence, $a \in R^{PI}$. - (E) If $x = (a^+)^*$, then $(a^+)^*a(a^+)^*a^* = (a^+)^*(a^+)^*$. Then, we can get $aa^+a^*a^+ = a^+a^+$. Pre-multiply the last equality by a^+ , one gets $a^+a^*a^+ = a^+a^+a^+$. Hence $a \in R^{PI}$ by Lemma 2.6. \square **Remark:** If $(x, y) = (a^*, a)$ is a solution of the equation (10), does $a \in \mathbb{R}^{PI}$? We won't discuss it here but it is an interesting and meaningful question and it deserves consideration. ### Acknowledgment The project is supported by the Foundation of Natural Science of China (Grant No.11471282). In addition, the authors thank the anonymous referee for his/her valuable comments. ### References - [1] Y. C. Qu, J. C. Wei, H. Yao. Characterizations of normal elements in ring with involution, Acta. Math. Hungar, 2018, 156(2): 459-464. - [2] R. J. Zhao, H. Yao, J. C. Wei. Characterizations of partial isometries and two special kinds of EP elements, Czechoslovak Math. J., 70(145)(2020): 539-551. - [3] A.Ben-Israel and T.N.E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer (New York, 2003). - [4] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61(1976), 197-251. - [5] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413. - [6] D. Mosić, D. S. Djordjević, J. J. Koliha. EP elements in rings, Linear Algebra Appl., 431(2009), 527-535. - [7] D. Mosić, D. S. Djordjević. Further results on partial isometries and EP elements in rings with involution. Math. Comput. Model. 54(2011), 460-465. - [8] J. J. Koliha, P. Patrício, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (1) (2002), 137-152. - [9] D. Mosić, D. S. Djordjević. Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra, 18(2009), 761-772. - [10] Y. C. Qu, H. Yao, J. C. Wei, Some characterizations of partial isometry elements in rings with involutions, Filomat 33(19)(2019), 6395-6399. - [11] R. J. Zhao, H. Yao, J. C. Wei, EP elements and the solutions of equation in rings with involution, Filomat 32(13)(2018), 4537-4542. - [12] D. Mosić, Generalized inverses, Faculty of Sciences and Mathematics, University of Niš, Niš, 2018.