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Abstract. The main purpose of this paper is to obtain an upper bound for the second Hankel determinant
for functions belonging to a subclass of bi-univalent functions in the open unit disk in the complex plane.
Furthermore, the presented results in this work improve or generalize the recent works of other authors.

1. Introduction

Let A be the class of analytic functions f defined on the unit disk
U={z:zeCand|z| <1}
of the form

f@)=z+ ianz”.
n=2

1)

Let S be the subclass of functions in A that are univalent in U. For two functions f and g, analytic in U,

we say that the function f is subordinate to g in U and we write it as f(z) < g(z) if there exists a Schwartz
function w, which is analytic in U with w(0) = 0, [w(z)| < 1 (z € U) such that

f@) =gw(), zecU.
Indeed, it is known that f(z) < g(z) = f(0) = g(0) and f(U) c g(U).
In particular, if the function g is univalent in U, then f(z) < g(z) & f(0) = g(0) and f(U) c g(U), [7].

The well-known Koebe One-Quarter Theorem established that the image of U under every univalent
function f € S contains a disk of radius ;. Thus every univalent function f has an inverse f~! satisfying

@)=z (zeU) and f(f@)=w (wl<r(f), ro(f)> =),
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where

gw) = f @) =w+ Y A"
n=2
=w - auw* + (2a§ - a3)w’ - (5a§ — Bayaz + ag)wt + - - . (2)

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U.

Let ~ denote the class of bi-univalent functions in U given by (1). For a brief history and interesting
examples of functions in the class S, see [24]. In 1967, Lewin [14] introduced the concept of bi-univalent
analytic functions and proved that the second coefficient satisfies |a;| < 1.51. In the following, various
subclasses of the bi-univalent functions were introduced and the first two coefficients |a;], |a3| in the Taylor-
Maclaurin series expansion [1, 4, 9, 16, 21-25] were estimated. But the coefficient problem for each of the
following Taylor-Maclaurin coefficients

la,l (neIN —{1,2}; N={1,2,3,---})

is still an open problem (see [15, 20]).
The ¢'" determinant for 4 > 1 and n > 0 is stated by Noonan and Thomas [18] as below.

an An+1 An+g+1
ap+1 Ape2 o An+q
Hy(n) = ) : . ) (a1 =1).
An+g-1  OQn+g  *° An+2g-2

This determinant has also been considered by several authors. For example, Ehrenborg [8] studied the
Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some
of its properties were discussed by Layman [13].

Note that

a as

Hy(2) = —

and H>(1) = Zl “

2 43

4

3

where the Hankel determinants H,(1) = a3 — a% and Hx(2) = axay — a;

second Hankel determinant functionals, respectively.

are well-known as Fekete-Szegd and

Recently, Caglar et al. [2, 3], Qadeem et al. [5], Deniz et al. [6], Kanas et al. [11] and Orhan et al. [19]
obtained the upper bound for the functional H»(2) = aya4 — ag for the subclasses of bi-univalent functions.

In this work, we assume that the function ¢ is an analytic function with positive real part in the unit
disk U, satisfying ¢(0) = 1,¢’(0) > 0, such that ¢(U) is symmetric with respect to the real axis. Such a
function has the power series expansion of the form

©(z) =1+ Biz+Byz? +B3z2® +---, (B; >0).

Recently, El-Qadeem and Mamon [5] defined the subclass Hx(7, A,8; @) of bi-univalent functions and
obtained upper bound of the second Hankel determinant for functions in this class.

In this paper, we improve the estimates of second Hankel determinant which obtained by El-Qadeem
and Mamon [5], Caglar et al. [2], Murugusundaramoorthy and Vijaya [17] and Khani et al. [12].

1.1. Preliminaries

Lemma 1.1. [11]Ifw(z) = ), w,z", z € U, is a Schwarz function, then
n=1

wo = h(1 - w%)
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and
w3 = (1 - wd)(1 - hP)s — wi (1 — wd)H?,
for some h, s, with |h| < 1and |s| < 1.

Lemma 1.2. [7] Let v be analytic function in the unit disk U, with v(0) = 0, and |v(z)| < 1 for all z € U, with the
power series expansion

(o8]
u(z) = Z cpz"
n=1

Then, |c,| < 1 for all n € IN. Furthermore, |c,| = 1 for some n € N if and only if v(z) = ¢9z", 0 € R.

2. Coefficient bounds

Definition 2.1. [5] A function f € X given by (1) is said to be in the class Hx(t, A, 5;9) (A 21,6 20,7 € C—{0}),
if the following conditions are satisfied:

f

((1 AN=— +Af'(2) +0zf"(z) - ) < @(z), (ze )

and

g()

((1 A)— + Ag'(w) + dwg” (w) — 1) < p(w), (w e U),

where the function g is the inverse of f given by (2).

Remark 2.2. For special choices of the parameters A, T, 0 and the function @, we can obtain the following classes as
below.

(I) By putting T =1,6 = 0 and ¢(z) = M

ﬁ)

(0 < B < 1), we have

Ho(1,0,0, L2 e,

1-

where the bi-univalent function class consists of functions f satisfying the following conditions:

f g(w)

R(A-ND==+Af@)>p and %((1—/\)7+Ag’(w))>ﬁ.

The bi-univalent function class Fx(B, A) was studied by Frasin and Aouf [10].

1+(1 2{3)2

(1I) By puttingt = A =1and @(z) = (0 £ B < 1), we have

1+(1- Zﬁ)z

Hx(1,1,0; =

) = H=(5,p),
where the bi-univalent function class consists of functions f satisfying the following conditions:

R(f'@)+0zf"(2)>p  and  R(g(w) + dwy" (w)) > B.

The bi-univalent function class Hx (0, B) was studied by Frasin [9].
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(III) By puttingt=A=1,6=0and ¢(z) = @ (0 < B < 1), we have
1+ (1-2p)z
He1,1,0, -2 ),

where the bi-univalent function class consists of functions f satisfying the following conditions:

R(f'@)>p and  R(g'w))>p.
The bi-univalent function class N(B) was studied by Srivastava et al. [24].

(IV) Byputtingt=A=1,6=0and ¢(z) = (ﬁ)a (0 < @ < 1), we have

1-z

1+2z\* o
7{2(1/ 1/0/(E) ) = No‘l

where the bi-univalent function class consists of functions f satisfying the following conditions:
, an , an
arg (f@)| < and  Jarg (g’ @)| =
The bi-univalent function class N was studied by Srivastava et al. [24].

Theorem 2.3. If f € X of the form (1) belongs to the class Hyx,(z, A, 6; @), then

Bi .
T T<0,S<-T
233
o204 — @3 < Byl (1+)\+26)?13+3/\+126) - (1+TA+§@)4 ; (T20,8>-3) or (T<0,52-T)
asU-T, T>0S<-1
where
- B, B TZB‘;’ B |T|B%
T+A+20)(1+3A+128) (1 +A+20)* 2(1+A+20)*(1+2A+60)
_ 2|B2| + B1 + Bl
(1+A+28)(1+3A+120)  (1+24 +60)2
~ |7|B2 . 2|By| + By ~ 2B,
T2(1+A+262(1+21460)  (1+A+20)(1+3A+128) (1 +2A + 66)?
and

B,
U= ————.
(1 + 21+ 60)?

Proof. Since f € Hyx (1, A, 6; @), there exist two Schwartz functions u, v in U, of the form u(z) = Y, ¢,z" and
n=1

(z) = E d,w", with u(0) = 0, v(0) = 0 and |u(z)| < 1, |[o(w)| < 1 such that

n=1

f@@)

1+ % (1- /\)T + Af'(2) +6zf"(z) — 1] = p(u(z)) 3)
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and

Ha-nZ2 s g @)+ swg”@) -1) = o)),

where

@u(z)) =1+ Biciz+ (Bicy + Bzc%)z2 + (B1cs + 2Bycicp + B3cf)z3 +---
and

W) = 1+ Bidiw + (B1da + Bod])w® + (B1ds + 2Badidy + Bad))w® + -

Since f € T has the Taylor series expansion (1) and g = f~! the series (2), we have

((1 A)@ +Af (z)+6zf”(z)—1) -1 +i(1 +(”_1)(“”5))anz”

n=2 T
and
((1 /\)g(—)+)\9 (w) + dwyg” (w) — ) Z(1+("_ (/\+Tl5)) )
n=2
Now, from (3), (5) and (7), we get
1+ A+20)
————ay = Bicy,

1+2A+60
(T—)ﬂl3 = 31C2 + BzC%,

1+3A+126
(T—)ﬂ4 = Bicz + 2Bycic + BgC:ls.

Similarly, from (4), (6) and (8), we have

1+A+26
(4220, g,

1+2A+66
%(2&% —a3) = Bidy + Bzd%,

_(1 + 34 +126)
T

From (9) and (12), we have

(551; — Saas + a4) = Bydz + 2Bydd, + B3d‘i’.

1 = —d1

and
0 = Blclr
2T 144426

Now from (10) and (13), we get that
Bicit? G dz)
1+A+28)?2 2(1+21+60)

Also from (11) and (14), we get that

az =

53%011—2“2 - d2) B1T(C3 - d3) BSC?T BzClT(CZ + dz)

ag =

1T A+20)(1+20560) 2(1+311120)  1+3A+120 & 1438A+120°

2133

(10)

(11)

(12)
(13)

(14)

(15)

(16)

(17)

(18)
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Thus we can easily obtain that

) B1Bst? Bjt* 4
a4 —Ady = - C
STlA+A+20)1+31+128) (1+A+20)4) !
10(c2 — ) . B1Bycit?(c2 + da)
401+ A +202(1+24+60)  (1+ A +20)(1+3A +120)
B261 T2(C3 - d3) B%TZ(CZ - dz)z 19
2(1 +A+20)(1+3A+120) 4(1+24 +60)2° (19
According to Lemma 1.1, we have
o=hl-c¢) dy = j(1—-d5), (20)
3= (1=E)(1 = 1P)s — e1(1 = A2, (21)
ds = (1-d})(1 - |jP)yw - di(1 - d}) /%, (22)
for someh, j,s, wwith |h| <1,]j| <1,[s| < 1and |w| < 1.
Hence by (20), (21) and (22), we have
Q+d=1-D)h+j) o-dy=(1-c))(h-)), (23)
3 —ds = (1= (1= 1P)s = (1 = [jPw) - 11 = ) + ). (24)
By substituting the relations (23), (24) in (19), we obtain
4,4
tae — a2 = BiBst2 Bk 4
STlA+A+20)1+31+125) (1+A+20)4) !
B33 (1 - 3)(h - ) B1Boc2t3(1 = )i + )
41 + A 2021+ 20 +65) | (1+ A +20)(1 1 3A+120)
B2ei?(1 = c3)((1 = hP)s = (1 = |jPyw - ca (2 + 7))
2(1 + A +20)(1 + 31 + 120)
_BIP( =) ) 5)
4(1 + 24 + 60)
It follows that
|61 a —Ll2| _ BlBgTZ _ lel’L'4 4
PRI A+ A +20)1 430 +120) (1 + A +20)
3331 - A)h - j) B1Byt(1 = )t + j)
AT+ A+ 2021424 460)  (1+A+20)(1+3A+120)
B2ey?(1 - ¢2)((1 - [1P)s — (1 - |jPyw)
2(1+ A +20)(1 + 31 + 120)
Bicit*(1 = ) (h* + ) Bit*(1 - c})*(h - j)? »
_2(1+/\+26)(1+3A+126)_ 4(1 +2A + 60)2 (26)
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As |c1] £ 1, we may assume without restriction that ¢ = ¢; € [0,1], so

\a2as — a2| <Bq|t]? Bs __ b7 ¢t
M OISO T+ A +20) 1+ 34+ 120)  (1+ A +20)
|7|BIc*(1 = ) (Il + ) B2l (1 = c*)(|h] + )

" 41+ A +25)2(1 + 21 + 65) - 1+ A+20)(1 +3A+12H)
Bie(1 = ) ((1 = [1P)lsl + (1 - i)
2(1+ A +20)(1 +3A+120)

Bic2(1 = c)(IhI* + |j1%) N B1(1 - c2)*(1h| + |)? 27)
2(1+ A +26)(1 + 3A + 126) 4(1 + 2A + 66)2
Since |s| < 1 and |[w| <1, we get
B B37?
_ 2 < 2 3 _ 1 4
2204 = as] <Bfl { A+ A120)1+31+120)  (1+A+207 ¢
. 7|33 (1 = c*)(Ihl + 1) . |Blc*(1 — c*)(Il + 1)
41+ A+25)2(1+24+65) (1+A+20)(1+3A+120)
Bi(c* = o)(1 = )(hP* +|j1%) Bic(1—c?)
20+ A +20)(1+3A+120) (1+A+20)(1+3A+1206)
B1(1 = c¢?)(|n| + |1)?
T a0+ 204602 [ (28)
Now, for p =/ <landy =|j| <1, we get
\a2a4 — a3) < Byltf? [Tl +(u+ T+ W+ )T+ (u+ V)2T4] = Bi[tPF(u, y), (29)
where
B37? —2
Ty = Ta(c) = Bs - 1 A+ Biel = ) >0
T+A+20)(1+31+128) (1+A+26)* 1+ A+20)(1 +3A+120)
(1 -c?) |7|B} |Ba|
=10 = 137772 A1+ A+20)1+24 460  (1+3A+120) =0
_ _ Bi(c¢* - o)1 -¢?)
L=TO = s s a1 a0+ 120) ~
_2\2
Ty = Ty(e) = 20— C)

=— > 0.
4(1 + 24 + 606)2 ~

Now, we need to maximize F(y, y) in the closed square S = [0,1] X [0, 1] for c € [0, 1]. We must investigate
the maximum of F(u, y) according toc = 0,c = 1,and ¢ € (0, 1) taking into account the sign of F,,,F,,, — (F W)Z.

First, for ¢ = 0, we have

_ Bi(p+ y)?
Fu)) = 305214 607 (30)

Thus, we have

B,

max {F(u,y): (u, ) €[0,1]x[0,1]} = F(1,1) = Ar21 7607

(31)
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Second, for ¢ = 1, we have

B; B7®
Fuy = lasismassisim)  Gsar200| (32)
Thus, we get
Bs Bl
max{F(u,y): () €[0,1]x[0,1]} = ‘ (33)

(T+A+20)(1+31+120) (1+A+20)4
Attheend, let c € (0,1). Since T3 < 0 and T3 + 2T, > 0, we conclude that
FuuFyy = (Fip)* <0.

Thus, the function F(y, y) can’t have a local maximum in the interior of the square S. So, we investigate the
maximum of F(u,y) on the boundary of the square S.

For p=0and 0 <y <1 (similarly y = 0and 0 < u < 1), we obtain
F(0,y) = H(y) = T1 + yT2 + (T3 + Ta). (34)

In order to find the maximum of H(y), we consider the situation of the function H(y) as increasing or
decreasing as follows:

H/()/) =T, + 2')/(T3 + T4)

(i) Suppose that T3 + Ty > 0. In this case H'(y) > 0; that is, H(y) is an increasing function. Hence the
maximum of H(y) occurs at y = 1 and

max{H(y): y€[0,1]} =HQ) =T1 + T2 + T3 + T4.

(i) Suppose that T3 + T4 < 0. Then we consider for critical pointy = ﬁ where 0=—(Tz+Ty) >
0, the following two cases:

Case 2.4. Lety = TZ >1.Then0 <2 < T, and T, + T3 + Ty > 0. Therefore

HQO) =Ty < Ty +Ta+ T3+ Ty = H(Q1).
Case 2.5. Let y = ZTé <1 Sznce > 0, we get —g < % < T,. Also,wehave H1) =Ty + To + Ts + T4 < Ty + To.
Therefore,
HO) =T, <T i LN
< — = )< .
() 1 1+49 (28)_ 1+ 1o

Thus, we observe that the maximum of H(y) occurs when T3 + T4 > 0, it means

max{H(y): y €[0,1} =HQ) =T1 + To + (T3 + T4) (35)
~—_———
>0

for any fixed c € (0, 1).
Forpy=1and 0 <y <1 (similarly y =1 and 0 < u < 1), we obtain

F(1,y) = G(y) = Ty + Ta + T3 + Ty + P(To + 2T4) + y*(T3 + Ty). (36)
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In order to obtain the maximum of G(y), we consider the situation of the function G(y) as increasing or
decreasing as follows:
G'()/) =T, +2T4 + 2(T3 + T4)’)/
(iif) Suppose that T3 + T4 > 0. In this case G’(y) > 0; that is, G(y) is an increasing function. Hence the
maximum of G(y) occurs at y = 1 and
max{G(y): y €[0,1]} = G(1) = T1 + 2T, + 2T + 4T,.

(iv) Suppose that T3 + Ty < 0. Then we consider for critical point y = _;(2;3 234) = nggn where 0 =

—(T3 + Ty) > 0, the following two cases:

Case 2.6. Lety = 22214 > 1. Then 0 < 221 < T, + 2Ty, and T + Ts + 3Ty > 0. Therefore
GO)=T1+To+T3+Ts <T1+Ty+ T35+ T4+ (Ty + T3+ 3Ty)
= G(]) =T+ 2T, + 215 + 47T},.
Case 2.7. Lety = ng—gn < 1. Since % > 0, we get that
(T, + 2T4)2 < Ty + 2T,
40 - 2
Therefore,

< T, +2Ty.

(Ty + 2Ty)?
40

)ST1+T2+T3+T4+T2+2T4:T1+2T2+T3+3T4

G(O):T1+T2+T3+T4ST1+T2+T3+T4+

_ Ty + 2T,
‘G( 20

=T, +2T, + (T3 + T4) +2T,.
—_———
<0

Thus, the function G(y) gets its maximum when T3 + T4 > 0, it means

max{G(y): y €[0,1]} = G(1) = T1 + 2T» + 2 (T3 + T4) +2T4
[ —
>0

for any fixed c € (0, 1).
Since H(1) < G(1) for c € [0, 1], then

max {F(u,y) : (1, ) €[0,1] x[0,1]} = F(1,1) = Ty + 2T» + 2T5 + 4T4.
LetK:[0,1] - R,
K(c) = Bylt* max {F(y,y) : (u,y) € [0,1] x [0,1]} = By|7[*F(1,1)
= Bi|t*(T1 + 2T, + 2T + 4Ty). (37)

Now puting T1, T>, T3 and T; in the function K, we have

K(© = ByleP > B il
! (1T+A+20)(1+3A+120) (1+A+20)% 2(1+A +20)2(1 + 21 + 60)
B 2|By| + By . By A
(IT+A+20)(1+3A+120) (1+2A+606)2
|7|B3 2|B,| + By 2B,
+ + — c?
21+ A+202(1+ 21+ 60)  (1+A+20)(1+3A+120)  (1+2A +60)2

By
T T+ 270160 } )
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By putting ¢? = t in equation (38), it may have the form

K(t) = Bi|t(S#* + Tt+ U), te[0,1]

where
o B; ~ B} ~ |t|B2
1+A+20)(1+3A+120) (1+A+20)% 2(1+A+202(1+ 24 +60)
_ 2|Ba| + By N By
1+ A+28)(1+3A+126) (1 +2A+60)2
- |7|B2 .\ 2|B,| + By _ 2B,
20+ A+ 202(1+ 21+ 60)  (1+A+20)(1+3A+120)  (1+24 +60)2

By
U= —————.
(1+2A +60)?

Since
u; T<0S5<-T

max (S +Tt+U)={ S+T+U; (T>0,S>-1)or(T<0,S>-T)
0<t<1

4SU-T2 . T
T 45 7 T > OIS < Y
it gives,
u; T<0S<-T
apay — a2 < Byt S+T+U; (T20,S=-3)or(T<0,52>-T)

4SU-T2 _T
VT T>0S5<-3.

This completes the proof. [J

3. Corollaries and Consequences
By taking

1+(1-2)z
T1-z

t=16=0and p(z) = 0<p<1)

in Theorem 2.3, we conclude the following corollary.

Corollary 3.1. Let f given by (1) be in the class Fx(B, A). Then

_a-pr (4 1 é)

p— 2 — —_—
naas =3l < o A @E e ¢

where
E=[M+20)A+3A) (1= p)+ (1 +A)(1+44 + 6)\2)]2,
C= 142121 +24)° -4Q+31)1 -+ A+ /\)2[(1 +20)(1 + 31)B

- (9)\3 +2312 + 151 + 3) ]

2138
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Remark 3.2. The bound on |ayas — a3| given in Corollary 3.1 is better than that given in [17, Concluding Remarks].
Because

A-pP (,__1 &) 91+ AP(1 - ) _
A+2A2\" 7 (1+31)C) T 21 +3A) [(1 + AP —2(1 — p)2(1 + 3A)]’
17> L+ AP 91 +212(1 +A)? 3

T 2(1+34) 16(1+34)  \9+[1+51+8A2+323)
where
9 = (1+3A) 1+ A)%(1 + 51 +9A% +513).

By taking
1+(1-2B)z

1-
in Theorem 2.3, we conclude the following corollary.
Corollary 3.3. Let f given by (1) be in the class Hx(5, B). Then

1-p7 (4 1 p
(1+26)2\9 721 +38)v)’

t=A=1and p(z) = 0<p<1

laray — a§| <

where
p= [6(1 +20)(1+308)(1 — B) + (1 + 6)(11 + 446 + 6062)]2,
v=9(1+20)%|(1+06)* —2(1 +35)(1 - p)?| + (1 + 6)2[6(1 +20)(1 + 30)B
— (25+1255 + 1966 + 845°) .

By taking 6 = 0 in Corollary 3.3, we conclude the following corollary.
Corollary 3.4. Let f given by (1) be in the class N(B). Then

4 (17 - 6p)*
2 1_ 21 = .
0 =l < (1= f) [9 362 [|%—<1—ﬁ)2|+§——%2]]

Remark 3.5. The bound on |azay — a3| given in Corollary 3.4 is better than that given in [2, Theorem 1]. Because

5 17 =6y (- py \/ﬁ
1-82|= = L S -3
4P [9 362[|%_(1_ﬁ)2|+§_%J< 5 (( B+ ) B< 510

By taking

T=A:1,6:0and(p(z):(g) O<a<l)

in Theorem 2.3, we conclude the following corollary.

Corollary 3.6. Let f given by (1) be in the class N&. Then

4a? A
-, O<a<y

Ol

2
612614—013| < ) (2“_1)2 ,
SNk 7 B [ A RS

Ta-Srio-g])
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Remark 3.7. The bound on |azay — a3| given in Corollary 3.6 is better than that given in [2, Theorem 2] and [12,
Corollary 2.6]. Because

2
2[4 (%a—%) @@’ +1) >\/406
“9 z[i_a_z_za_i] - 6 © =T
12 3 3 36

Remark 3.8. The bound on |ayay — agl given in Theorem 2.3 is better than that given in [5, Theorem 2.1].
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