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Abstract. In this paper, taking into account the recent contractive technique we present a new result of
Prešić type fixed point theorems. Then, we provide a comparative example to put forth the validity of our
theoretical result. Finally, considering a special case of the main theorem, we give some existence results
for the second order two point boundary value problems.

1. Introduction and preliminaries

There is absolutely no doubt that Banach contraction principal which was introduced in 1922 [3] is a
fundamental and powerful result to ensure the existence of solution in linear, non-linear, ordinary differ-
ential, partial differential, integral and difference equations. This principal has been extended by many
researchers in several different ways over last few decades.

In 1965, Prešić [8] generalized Banach contraction mapping principle as follows:

Theorem 1.1. Let (M, d) be a complete metric space, k be any positive integer, and let T : Mk
→ M be a mapping

satisfying the following contraction condition: for all ζ1, ζ2, · · · , ζk+1 ∈M,

d(T(ζ1, ζ2, · · · , ζk),T(ζ2, ζ3, · · · , ζk+1)) ≤ q1d(ζ1, ζ2) + q2d(ζ2, ζ3) + · · · + qkd(ζk, ζk+1), (1)

where q1, q2, · · · , qk are positive constants such that q1 + q2 + · · · + qk < 1. Then there exists a unique point ζ ∈ M
such that ζ = T(ζ, ζ, · · · , ζ). Moreover, if ζ1, ζ2, · · · , ζk are arbitrary points in M for n ∈N,

ζn+k = T(ζn, ζn+1, · · · , ζn+k−1),

then the sequence {ζn} is convergent and lim ζn = T(lim ζn, lim ζn, · · · , lim ζn).

Note that for k = 1, Theorem 1.1 reduces to Banach contraction principle.
Later on, in 2007, Ćirić and Prešić [4] further generalized Prešić type contraction for complete metric

space which is stated as follows:
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Theorem 1.2. Let (M, d) be a complete metric space, k be any positive integer, and let T : Mk
→ M be a mapping

satisfying the following contraction condition: for all ζ1, ζ2, · · · , ζk+1 ∈M,

d(T(ζ1, ζ2, ..., ζk),T(ζ2, ζ3, · · · , ζk+1)) ≤ λmax{d(ζi, ζi+1) : 1 ≤ i ≤ k}, (2)

where λ ∈ (0, 1). Then there exists a point ζ ∈M such that ζ = T(ζ, ζ, · · · , ζ). Moreover, if ζ1, ζ2, · · · , ζk are arbitrary
points in M for n ∈N,

ζn+k = T(ζn, ζn+1, · · · , ζn+k−1),

then the sequence {ζn} is convergent and lim ζn = T(lim ζn, lim ζn, · · · , lim ζn). In addition, if for all υ, ν ∈ M with
υ , ν, the condition

d(T(υ, υ, ..., υ),T(ν, ν, · · · , ν)) < d(υ, ν)

holds, then ζ is the unique point in M such that ζ = T(ζ, ζ, · · · , ζ).

Some important applications of above stated result such as studying asymptotic stability of the equilib-
rium for non-linear difference equation and global attractivity of matrix difference equations can be found
in [1, 5].

On the other hand, Jleli and Samet [7] introduced a new class of contraction named as θ-contraction
which generalizes the Banach contraction. Let θ : (0,∞) → (1,∞) be a function. We will consider the
following properties for θ:

(θ1) θ is nondecreasing;
(θ2) for each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 and limn→∞ tn = 0+ are equivalent;
(θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+

θ(t)−1
tr = l;

We denote by Θ the set of all function satisfying (θ1- θ3). Some examples of the functions belonging Θ

are θ1(t) = e
√

t and θ2(t) = e
√

tet .
Jleli and Samet [7] obtained the following result by considering the class Θ.

Theorem 1.3. Let (M, d) be a complete metric space and T : M→ M be a mapping. Suppose that there exist θ ∈ Θ
and λ ∈ (0, 1) such that for all ζ, η ∈M, d(Tζ,Tη) > 0 implies that

θ(d(Tζ,Tη)) ≤ [θ(d(ζ, η))]λ.

Then T has a unique fixed point in M.

The organization of this paper as follows: In section 2, we have put forth the conditions on θ to obtain
the θ version of the Ćirić-Prešić type contractive inequality given in (2). Hence, we introduced the concept
of Ćirić-Prešić type θ-contraction and then presented a generalization of Theorem 1.2. Also, we provided
a suitable example for our main result to show the validity and to compare with some previous results. In
Section 3, considering a special case of the main theorem, we gave some existence results for the second
order two point boundary value problems.

2. Main result

We will denote the class of all functions belonging to Θ satisfying the following property by Θ∗:

(θ4) θ(t) ≤
[
θ
(

t
β

)]√β
for all β ∈ (0, 1) and t > 0.

For example, if we consider the function θ ∈ Θ defined by θ(t) = e
√

tet
, then for all β ∈ (0, 1) and t > 0 we

have [
θ

(
t
β

)]√β
=

e
√

t
β e

t
β


√
β

= e

√
te

t
β
≥ e

√

tet
= θ(t).

Therefore θ ∈ Θ∗. Similarly, we can see that the function θ defined by θ(t) = e
√

t belongs to Θ∗.
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Definition 2.1. Let (M, d) be a metric space, k be any positive integer and θ ∈ Θ. A mapping T : Mk
→

M is called Ćirić-Prešić type θ-contraction if there exists λ ∈ (0, 1) such that for all ζ1, ζ2, · · · , ζk, ζk+1 ∈ M,
d(T(ζ1, ζ2, · · · , ζk),T(ζ2, ζ3, · · · , ζk+1)) > 0 implies that

θ(d(T(ζ1, ζ2, · · · , ζk),T(ζ2, ζ3, · · · , ζk+1))) ≤ θ(max{d(ζi, ζi+1) : i ∈ {1, 2, · · · , k}})
√
λ. (3)

If we consider θ(t) = e
√

t, then the inequality (3) turns to (2).
Here, we present our main theorem.

Theorem 2.2. Let (M, d) be a complete metric space, k a positive integer and T : Mk
→ M be a mapping satisfying

Ćirić-Prešić type θ-contraction condition with θ ∈ Θ∗. Then there exists a point ζ ∈M such that ζ = T(ζ, ζ, · · · , ζ).
Moreover, if ζ1, ζ2, · · · , ζk are arbitrary points in M, for n ∈N

ζn+k = T(ζn, ζn+1, · · · , ζn+k−1),

then the sequence {ζn} converges to ζ. In addition, if for all υ, ν ∈M with υ , ν, the condition

d(T(υ, υ, ..., υ),T(ν, ν, · · · , ν)) < d(υ, ν) (4)

holds, then ζ is the unique point in M such that ζ = T(ζ, ζ, · · · , ζ).

Proof. Let ζ1, ζ2, · · · , ζk be arbitrary points in M. Define a sequence {ζn} by using these points as follows

ζn+k = T(ζn, ζn+1, · · · , ζn+k−1).

Let dn = d(ζn, ζn+1) for simplicity. We will prove

θ(dn) ≤ [θ(κ)]
2k√
λn

(5)

for all n ∈N, where

κ = max
{
diλ
−

i
k : i ∈ {1, 2, · · · , k}

}
.

First let i ∈ {1, 2, · · · , k} then by (θ4) we have

θ(di) ≤
[
θ
(
diλ
−

i
k

)] 2k√
λi

≤ [θ (κ)]
2k√
λi
.

Therefore the inequality (5) is satisfied for n = 1, 2, · · · , k. Let the inequalities

θ(dn+i−1) ≤ [θ(κ)]
2k√
λn+i−1

holds for i ∈ {1, 2, · · · , k} be the induction hypotheses. Then we have

θ(dn+k) = θ(d(ζn+k, ζn+k+1))
= θ(d(T(ζn, ζn+1, · · · , ζn+k−1),T(ζn+1, ζn+2, · · · , ζn+k)))

≤ θ(max{d(ζi, ζi+1) : i ∈ {n,n + 1, · · · ,n + k − 1}})
√
λ

= θ(max{di : i ∈ {n,n + 1, · · · ,n + k − 1}})
√
λ

= θ(max{dn+i−1 : i ∈ {1, 2, · · · , k}})
√
λ

= (max {θ(dn+i−1) : i ∈ {1, 2, · · · , k}})
√
λ

≤

(
max

{
[θ(κ)]

2k√
λn+i−1

: i ∈ {1, 2, · · · , k}
})√λ

≤

(
[θ(κ)]

2k√
λn

)√λ
= [θ(κ)]

2k√
λn+k

.
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Therefore, the inequality (5) is true for all n ∈N. Now, by our claim, for any k, we have

θ(dk+1) ≤ [θ(κ)]
2k√
λk+1

and

θ(dk+2) ≤ [θ(κ)]
2k√
λk+2

and so on. Hence, for all n ∈Nwe have

θ(dk+n) ≤ [θ(κ)]
2k√
λk+n

. (6)

By taking limit as n→∞, we get

lim
n→∞

θ(dk+n) = 1

which follows by (θ2)

lim
n→∞

dk+n = 0.

Now by (θ3), there exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→0+

θ(dn+k) − 1
[dn+k]r = l.

Suppose l < ∞, and B = l
2 > 0. By definition of limit, there exists n0 ∈N such that∣∣∣∣∣θ(dk+n) − 1

[dk+n]r − l
∣∣∣∣∣ ≤ B,∀n ≥ n0.

This implies that, for all n ≥ n0,

θ(dk+n) − 1
[dk+n]r ≥ l − B = B.

Then, for all n ≥ n0,

Bn [dk+n]r
≤ n [θ(dk+n) − 1] .

Now, let l = ∞ and B be any arbitrary positive number. By definition of limit, there exists n0 ∈N such that,
for all n > n0

θ(dk+n) − 1
[dk+n]r ≥ B.

It follows that for all n ≥ n0,

Bn [dk+n]r
≤ n [θ(dk+n) − 1] .

Considering these two cases and inequality (6), we get

n [dk+n]r
≤

n
B

[θ(dk+n) − 1] ≤
n
B

[[
[θ(κ)]

k
2k
] n

2k
− 1

]
(7)

for some B > 0. Letting n→∞ in (7), we get

lim
n→∞

n[dk+n]r = 0. (8)
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Thus from (8), there exists n0 ∈N such that n[dk+n]r
≤ 1 for all n ≥ n0 and consequently, we get

dk+n ≤
1

n1/r for all n ≥ n0. (9)

In order to show that {ζn} is a Cauchy sequence, consider m ≥ n ≥ n0, we have

d(ζk+n, ζk+m) = d(T(ζn, ζn+1, · · · , ζn+k−1),T(ζm, ζm+1, · · · , ζm+k−1))
≤ d(T(ζn, · · · , ζn+k−1),T(ζn+1, · · · , ζn+k))

+d(T(ζn+1, · · · , ζn+k),T(ζn+2, · · · , ζn+k+1))
+ · · · + d(T(ζm−1, · · · , ζm+k−2),T(ζm, · · · , ζm+k−1))

= d(ζn+k, ζn+k+1) + d(ζn+k+1, ζn+k+2) + · · · + d(ζm+k−1, ζm+k)
= dn+k + dn+k+1 + · · · + dm+k−1

≤

∞∑
i=n

di+k ≤

∞∑
i=n

1
i1/r
→ 0 as n→∞.

Therefore {ζn} is a Cauchy sequence in (M, d). Since (M, d) is a complete metric space, there exists υ ∈ M
such that

lim
m,n→∞

d(ζn, ζm) = lim
n→∞

d(ζn, υ) = 0.

On other hand, by (θ1) and inequality (3), we get

d(T(ζ1, ζ2, · · · , ζk),T(ζ2, ζ3, · · · , ζk+1)) ≤ max{d(ζi, ζi+1) : i ∈ {1, 2, · · · , k}}

for all ζ, η ∈M. Therefore, we have

d(υ,T(υ, υ, · · · , υ)) ≤ d(υ, ζn+k) + d(T(υ, υ, · · · , υ), ζn+k)
≤ d(υ, ζn+k) + d(T(υ, υ, · · · , υ),T(ζn, ζn+1, · · · , ζn+k−1))
≤ d(υ, ζn+k) + d(T(υ, υ, · · · , υ),T(υ, υ, · · · , υ, ζn))

+d(T(υ, υ, · · · , υ, ζn),T(υ, υ, · · · , ζn, ζn+1)) + · · ·

+d(T(υ, ζn, · · · , ζn+k−2),T(ζn, ζn+1, · · · , ζn+k−1))
≤ d(υ, ζn+k) + d(υ, ζn) + max{d(υ, ζn), d(ζn, ζn+1)} + · · ·

+ max{d(υ, ζn), d(ζn, ζn+1), · · · , d(ζn+k−2, ζn+k−1)}.

Taking limit as n→∞, we have d(υ,T(υ, υ, · · · , υ)) = 0 and hence υ = T(υ, υ, · · · , υ). The uniqueness follows
by the condition (4).

Remark 2.3. Note that for k = 1, Theorem 2.2 reduces to Theorem 1.3. Also, considering θ(t) = e
√

t, we can see that
Theorem 1.2 is a special case of Theorem 2.2.

Further, we obtain the following Corollaries from Theorem 2.2.

Corollary 2.4. Let (M, d) be a complete metric space and T : M2
→ M be a mapping satisfying Ćirić-Prešić type

θ-contraction condition with θ ∈ Θ∗. Then there exists a point ζ ∈ M such that ζ = T(ζ, ζ). Moreover, if ζ1, ζ2, ζ3
are arbitrary points in M, for n ∈N

ζn+2 = T(ζn, ζn+1),

then the sequence {ζn} converges to ζ. In addition, if for all υ, ν ∈M with υ , ν, the condition

d(T(υ, υ),T(ν, ν)) < d(υ, ν)

holds, then ζ is the unique point in M such that ζ = T(ζ, ζ).
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Corollary 2.5. Let (M, d) be a complete metric space and T : M2
→M be a mapping. Suppose there exists λ ∈ (0, 1)

such that

d(T(ζ, η),T(η, ξ))
max{d(ζ, η), d(η, ξ)}

exp
{
d(T(ζ, η),T(η, ξ)) −max{d(ζ, η), d(η, ξ)}

}
≤ λ

for all ζ, η, ξ ∈ M with d(T(ζ, η),T(η, ξ)) > 0. Then there exists a point ζ ∈ M such that ζ = T(ζ, ζ). Moreover, if
ζ1, ζ2, ζ3 are arbitrary points in M, for n ∈N

ζn+2 = T(ζn, ζn+1),

then the sequence {ζn} converges to ζ. In addition, if for all υ, ν ∈M with υ , ν, the condition

d(T(υ, υ),T(ν, ν)) < d(υ, ν)

holds, then ζ is the unique point in M such that ζ = T(ζ, ζ).

Proof. It is enough to take k = 2 and θ(t) = e
√

tet in Theorem 2.2.

Corollary 2.6. Let (M, d) be a complete metric space and T : M2
→M be a mapping. Suppose there exists λ ∈ (0, 1)

such that

d(T(ζ, η),T(η, ξ)) ≤ λmax{d(ζ, η), d(η, ξ)}

for all ζ, η, ξ ∈ M. Then there exists a point ζ ∈ M such that ζ = T(ζ, ζ). Moreover, if ζ1, ζ2, ζ3 are arbitrary points
in M, for n ∈N

ζn+2 = T(ζn, ζn+1),

then the sequence {ζn} converges to ζ. In addition, if for all υ, ν ∈M with υ , ν, the condition

d(T(υ, υ),T(ν, ν)) < d(υ, ν)

holds, then ζ is the unique point in M such that ζ = T(ζ, ζ).

Now, we provide an easy but effective example to show the validity of our results.

Example 2.7. Let M = N be endowed with the metric d defined by d(ζ, ζ) = 0 and d(ζ, η) = ζ + η for ζ , η. It is
easy to see that (M, d) is a complete metric space. Define T : M2

→M by

T(ζ, η) =

0, ζ = η

max{ζ, η} − 1, ζ , η
.

Then, for ξ > 1, we have

d(T(0, 1),T(1, ξ)) = d(0, ξ − 1) = ξ − 1

and

max{d(0, 1), d(1, ξ)} = ξ + 1.

Therefore, since supξ∈M
ξ−1
ξ+1 = 1, then there isn’t any λ ∈ (0, 1) such that

d(T(ζ, η),T(η, ξ)) ≤ λmax{d(ζ, η), d(η, ξ)}

for all ζ, η, ξ ∈ M. Thus, T is not a Prešić type contraction. So neither Theorem 1.1 nor Theorem 1.2 can be applied
to this example.
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Now we claim that T is Ćirić-Prešić type θ-contraction with θ(t) = e
√

tet and λ = exp(−1). To see the inequality
(3), we have to show that

d(T(ζ, η),T(η, ξ))
max{d(ζ, η), d(η, ξ)}

exp{d(T(ζ, η),T(η, ξ)) −max{d(ζ, η), d(η, ξ)}} ≤ exp(−1) (10)

for all ζ, η, ξ ∈ M with d(T(ζ, η),T(η, ξ)) > 0. For the simplicity, we will denote the left side of inequality (10) by
E(ζ, η, ξ). By taking into account d(T(ζ, η),T(η, ξ)) > 0, we have the following cases and without loss of generality
we will assume ζ ≤ η ≤ ξ in these cases:

Case 1. If T(ζ, η) = 0 and T(η, ξ) > 0, then ζ = η < ξ or ζ = 0, η = 1 < ξ and so we have

E(ζ, η, ξ) =
ξ − 1
ξ + η

exp(−1 − η) ≤ exp(−1),

Case 2. If T(ζ, η) > 0 and T(η, ξ) = 0, then ζ < η = ξ and so we have

E(ζ, η, ξ) =
η − 1
η + ζ

exp(−1 − ζ) ≤ exp(−1),

Case 3. If T(ζ, η) > 0 and T(η, ξ) > 0, then ζ < η < ξ and so

E(ζ, η, ξ) =
η + ξ − 2
ζ + 2η + ξ

exp(−2 − ζ − η) ≤ exp(−1).

Hence, by Corollary 2.5 or Theorem 2.2, there exists ζ ∈M such that ζ = T(ζ, ζ). Moreover, for all υ, ν ∈M with
υ , ν, we have

d(T(υ, υ),T(ν, ν)) = 0 < υ + ν = d(υ, ν)

and so the point satisfying ζ = T(ζ, ζ) is unique.

3. Application to second order boundary value problem

Now, by considering Corollary 2.6, we present two results about the existence of solution of the second
order two point boundary value problem as follows:{

−
d2υ
dt2 = f (t, υ(t)), t ∈ [0, 1]

υ(0) = υ(1) = 0
, (11)

where f : [0, 1] ×R→ R is continuous function. By considering some certain conditions on the function f ,
many existence results provided for problem (11) in the literature (see [2, 6, 9, 10]). Here, we will consider
some different conditions on f , we provide two new theorems. By considering the Green’s function defined
as

G(t, s) =


t(1 − s) , 0 ≤ t ≤ s ≤ 1

s(1 − t) , 0 ≤ s ≤ t ≤ 1

we can see that the problem (11) is equivalent to the integral equation

υ(t) =

∫ 1

0
G(t, s) f (s, υ(s))ds, t ∈ [0, 1]. (12)

Therefore, υ ∈ C2[0, 1] is a solution of (11) if and only if it is a solution of (12). It is clear that∫ 1

0
G(t, s)ds =

t(1 − t)
2
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and thus

sup
t∈[0,1]

∫ 1

0
G(t, s)ds =

1
8
.

Consider M = C[0, 1], which is the space of all continuous real valued functions defined on [0, 1], with
uniform metric d∞, that is,

d∞(υ, ν) = ‖υ − ν‖∞ = sup{|υ(t) − ν(t)| : t ∈ [0, 1]}.

It is well known that the space (M, d∞) is complete.

Theorem 3.1. The second order two point boundary value problem given by (11) has a solution under the following
assumptions:

(i) there exist two continuous functions 1, h : [0, 1] ×R→ R such that f (t, υ) = 1(t, υ) + h(t, υ) and there exists
a continuous function p : [0, 1]→ [0,∞) satisfying, for all υ, ν, ω ∈ R∣∣∣1(t, υ) + h(t, ν) − 1(t, ν) − h(t, ω)

∣∣∣ ≤ p(t) max {|υ − ν| , |ν − ω|} ,

(ii) there exists k < 1 such that
∫ 1

0 G(t, s)p(s)ds ≤ k.

Remark 3.2. Note that if maxs∈[0,1] p(s) ≤ 8k for k < 1 we have
∫ 1

0 G(t, s)p(s)ds ≤ k.

Proof. [Proof of Theorem 3.1] Consider the operator T : C[0, 1] × C[0, 1]→ C[0, 1] defined by

T(υ(t), ν(t)) =

∫ 1

0
G(t, s){1(s, υ(s)) + h(s, ν(s))}ds.

Then for any υ, ν, ω ∈ C[0, 1] and t ∈ [0, 1] we have

|T(υ(t), ν(t)) − T(ν(t), ω(t))| =

∣∣∣∣∣∣
∫ 1

0
G(t, s){1(s, υ(s)) + h(s, ν(s)) − 1(s, ν(s)) − h(s, ω(s))}ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s)

∣∣∣1(s, υ(s)) + h(s, ν(s)) − 1(s, ν(s)) − h(s, ω(s))
∣∣∣ ds

≤

∫ 1

0
G(t, s)p(s) max{|υ(s) − ν(s)| , |ν(s) − ω(s)|}ds

≤ max{‖υ − ν‖∞ , ‖ν − ω‖∞}
∫ 1

0
G(t, s)p(s)ds

≤ k max{‖υ − ν‖∞ , ‖ν − ω‖∞}.

Hence we have

‖T(υ, ν) − T(ν, ω)‖∞ ≤ k max{‖υ − ν‖∞ , ‖ν − ω‖∞}.

Therefore the contractive condition of Corollary 2.6 is satisfied and so there exist υ ∈ C[0, 1] such that

υ(t) = T(υ(t), υ(t))

or equivalently

υ(t) =

∫ 1

0
G(t, s){1(s, υ(s)) + h(s, υ(s))}ds

=

∫ 1

0
G(t, s) f (s, υ(s))ds.
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Example 3.3. Consider the boundary value problem{
−

d2υ
dt2 = q(t) + r(t) arctan

(
2υ(t)

1−υ2(t)

)
, t ∈ [0, 1]

υ(0) = υ(1) = 0
, (13)

where q and r are continuous functions on [0, 1] such that 0 ≤ r(t) ≤ 4k < 4 for all t ∈ [0, 1]. Define 1, h : [0, 1]×R→
R by 1(t, υ) = q(t) + r(t) arctan υ and h(t, υ) = r(t) arctan υ, then

1(t, υ(t)) + h(t, υ(t)) = q(t) + r(t) arctan
(

2υ(t)
1 − υ2(t)

)
and for all υ, ν, ω ∈ R we have∣∣∣1(t, υ) + h(t, ν) − 1(t, ν) − h(t, ω)

∣∣∣ = r(t) |arctan υ + arctan ν − arctan ν − arctanω|
≤ r(t) (|arctan υ − arctan ν| + |arctan ν − arctanω|)
≤ r(t) (|υ − ν| + |ν − ω|)
≤ 2r(t) max {|υ − ν| , |ν − ω|} .

Also we have∫ 1

0
G(t, s)2r(s)ds ≤ k < 1.

Therefore by Theorem 3.1 the boundary value problem (13) has a solution.

Theorem 3.4. The second order two point boundary value problem given by (11) has a solution under the following
assumptions:

(i) there exist two continuous functions 1, h : [0, 1] ×R → R such that f (t, υ) = 1(t, υ)h(t, υ) and there exists a
continuous function p : [0, 1]→ [0,∞) satisfying, for all υ, ν, ω ∈ R∣∣∣1(t, υ)h(t, ν) − 1(t, ν)h(t, ω)

∣∣∣ ≤ p(t) max {|υ − ν| , |ν − ω|} ,

(ii) there exists k < 1 such that
∫ 1

0 G(t, s)p(s)ds ≤ k.

Proof. Consider the operator T : C[0, 1] × C[0, 1]→ C[0, 1] defined by

T(υ(t), ν(t)) =

∫ 1

0
G(t, s)1(s, υ(s))h(s, ν(s))ds.

Then for any υ, ν, ω ∈ C[0, 1] and t ∈ [0, 1] we have

|T(υ(t), ν(t)) − T(ν(t), ω(t))| =

∣∣∣∣∣∣
∫ 1

0
G(t, s){1(s, υ(s))h(s, ν(s)) − 1(s, ν(s))h(s, ω(s))}ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s)

∣∣∣1(s, υ(s))h(s, ν(s)) − 1(s, ν(s))h(s, ω(s))
∣∣∣ ds

≤

∫ 1

0
G(t, s)p(s) max{|υ(s) − ν(s)| , |ν(s) − ω(s)|}ds

≤ max{‖υ − ν‖∞ , ‖ν − ω‖∞}
∫ 1

0
G(t, s)p(s)ds

≤ k max{‖υ − ν‖∞ , ‖ν − ω‖∞}.

Hence we have

‖T(υ, ν) − T(ν, ω)‖∞ ≤ k max{‖υ − ν‖∞ , ‖ν − ω‖∞}.
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Therefore the contractive condition of Corollary 2.6 is satisfied and so there exist υ ∈ C[0, 1] such that

υ(t) = T(υ(t), υ(t))

or equivalently

υ(t) =

∫ 1

0
G(t, s)1(s, υ(s))h(s, υ(s))ds

=

∫ 1

0
G(t, s) f (s, υ(s))ds.

References

[1] M. Abbas, M. Berzig, T. Nazir and E. Karapınar, Iterative approximation of fixed points for Prešić type F-contraction operations,
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