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Abstract. We primarily make a general approach to the study of open covers and related selection
principles using the idea of statistical convergence in metric space. In the process we are able to extend
some results in (Caserta et al. 2012; Chandra et al. 2020) where bornological covers and related selection
principles in metric spaces have been investigated using the idea of strong uniform convergence (Beer
and Levi, 2009) on a bornology. We introduce the notion of statistical-yxs-cover, statistically-strong-8-
Hurewicz and statistically-strong-8-groupable cover and study some of its properties mainly related to
the selection principles and corresponding games. Also some properties like statistically-strictly Frechet
Urysohn, statistically-Reznichenko property and countable fan tightness have also been investigated in

C(X) with respect to the topology of strong uniform convergence Ty,.

1. Introduction

We start by recalling the definition of asymptotic density. If IN is the set of natural numbers and K € IN
then K(n) denotes the set {k € K : k < n} and |K(n)| is the cardinality of K(n). The asymptotic density

of K is defined by d(K) = lim @, provided the limit exists. Though this notion has long been used in

Number Theory, Ergodic Theory etc., one of its most interesting applications has been in Analysis where
the notion of asymptotic density was used to define the idea of statistical convergence by Fast [15] (see
also [21, 26-28]), generalizing the idea of usual convergence of real sequences. A sequence {x, : n € IN}
in a topological space is said to converge statistically (in short, s-converge) to x if for any neighbourhood
Uofx,d({n € N:x, ¢ U}) =0. In [12], the authors had studied selection principles, function spaces and
hyperspaces using the notion of statistical convergence in topological and uniform spaces. For more details
of the study of statistical convergence in topological and function spaces related to selection principles see
also [7, 11, 13] and references therein.

Recall that a bornology B on a metric space (X, p) is a family of subsets of X that is closed under taking
finite unions, is hereditary and forms a cover of X (see [16]). A base By for a bornology B is a subfamily
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of B that is cofinal in B with respect to inclusion i.e. for B € B there is a By € By such that B C By. A base
is called closed (compact) if all of its members are closed (compact). The family of all finite subsets # of
X forms a bornology which is the smallest bornology on X and the family of all non empty subsets of X
is the largest bornology on X. There are other important bornologies such as the family of all non empty
p-bounded subsets and the family K of non empty subsets of X with compact closure.

In [4], Beer and Levi had introduced the notion of strong uniform continuity on a bornology. Let (X, p)
and (Y, p’) be metric spaces. A mapping f : X — Y is strongly uniformly continuous on a subset B of X if
for each € > 0 there is a 0 > 0 such that p(x1,x2) < 6 and {x1, %2} N B # 0 imply p’(f(x1), f(x2)) < €. Also for
a bornology B on X, f is called strongly uniformly continuous on B if f is strongly uniformly continuous
on B for each B € B. They had also introduced a new topology on Y* the set of all function from X into Y,
called the topology of strong uniform convergence and studied various properties in function spaces. This
study has been further continued in [5].

In [6], the authors had studied open covers and related selection principles in function spaces with respect
to the topology of strong uniform convergence on a bornology. Very recently in [8], a further advancement
has been made in this direction (see also [3]). Motivated by [12], in this paper, we introduce statistical
analogue of certain types of open covers and investigate the behaviour of related selection principles using
the idea of strong uniform convergence on a bornology. Our main objective is to study some results of
[6, 8] in a more general setup using the idea of statistical convergence. In Section 3, we introduce statistical
version of certain types of bornological open covers and observe the behaviour of related selection principles
including the a;-properties. We also introduce the notions of statistically-strong-B-Hurewicz property and
statistically-strong-B-groupable cover and obtain some game theoretic results. In Section 4, we concentrate
on the function space C(X)(= C(X, IR)) associated with the topology of strong uniform convergence on 8B and
deal with some properties like statistically strictly Frechet Urysohn, statistically Reznichenko and countable
fan tightness.

2. Preliminaries

We follow the notations and terminologies of [2, 14, 16, 22]. Throughout the paper (X, p) stands for an
infinite metric space and IN stands for the set of positive integers. We first write down two classical selection
principles formulated in general form in [17, 24] (see also the survey papers [18, 25] for more details).

For two nonempty classes of sets A and B, we define

S1(A, B): For each sequence {A, : n € N} of elements of A, there is a sequence {b, : n € N} such that b, € A,
foreachn and {b,, : n € N} € B.

Stin(A, B): For each sequence {A, : n € IN} of elements of A, there is a sequence {B, : n € IN} of finite
(possibly empty) sets such that B,, C A, for each n and |, Bx € B.
There are infinitely long games corresponding to these selection principles.

G1(A, B) denotes the game for two players, ONE and TWO, who play a round for each positive integer n.
In the n-th round ONE chooses a set A, from A and TWO responds by choosing an element b,, € A,. TWO
wins the play {A1,b1,..., Ay, by, ... }if (b, : n € N} € B. Otherwise ONE wins.

G¢in(A, B) denotes the game where in the n-th round ONE chooses a set A, from A and TWO responds by
choosing a finite (possibly empty) set B, € A,. TWO wins the play {A1,B1,..., A4, By, ...} if U en B € B.
Otherwise ONE wins.

We also define
Usin(A, B): For each sequence {A, : n € N} of elements of A, there is a sequence {B, : n € N} of finite
(possibly empty) sets such that B, C A, for each n and either {UB,, : n € IN} € 8 or for some 1, UB, = X
(from [17, 24]).
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CDRgyp(A, B): For each sequence {A,, : n € IN} of elements of A there is a sequence {B,, : n € N} of pairwise
disjoint elements of B such that for each n, B, C A, [24].
The following selection principles are defined in [19]. The symbol a;(A, B) for i = 1,2, 3,4 denotes that
for each sequence {A, : n € N} of elements of A, there is a B € B such that
a1(A, B): for each n € IN, the set A, \ B is finite.
az(A, B): for each n € IN, the set A, N B is infinite.
as(A, B): for infinitely many n € IN, the set A, N B is infinite.
ay(A, B): for infinitely many n € IN, the set A, N B is non empty.

Also the statistical version of the above «; properties are introduced and studied in [12]. In particular,
the symbol s-a4(A, B) denotes that for each sequence {A, : n € N} of elements of A, thereisa B € Band a
set K € IN with d(K) = 1 such that for each k € K the set A N B is non empty.

For x € X, we denote Q, = {A € X : x € A\ A} [20]. Also X is said to have countable fan tightness at x
[1] if X satisfies Sgn(Qy, Qy).

Let O denote the collection of all open covers of X. An open cover U of X is called a y-cover [24] if U is
infinite and each point of X belongs to all but finitely many members of U. The collection of all y-covers of
X is denoted by I'. An open cover U of X is a large cover [24] if it is infinite and each point of X belongs to
infinitely many elements of U. The collection of all large covers of X is denoted by A. Now we recall some
terminologies in terms of the statistical convergence. A subset V of a cover U = {U,, : n € N} of X is called
statistically dense [12] in U if the set of indices of elements from V has asymptotic density 1. A countable
open cover U = {U, : n € N} is said to be a statistical y-cover (in short, s-y-cover) [12] if for each x € X,
d({n € N : x ¢ U,}) = 0. The collection of all s-y-covers is denoted by s-I'. For x € X, the symbol s-~, denotes
the set of all sequences s-converge to x [12]. A space X is said to be statistically strictly Fréchet-Urysohn
(in short, s-SFU) [12] if 51(€),,s-X) holds for each x € X. A cover U is said to be s-groupable [12] of X
if it can be represented as a countable union of finite pairwise disjoint subfamilies V,, of U such that for
x e X,d(fn € N:x ¢ UV,}) = 0. The collection of all s-groupable open covers is denoted by s-O%. X is
said to have the s-Reznichenko property at x € X [12] if each countable set A in (), can be represented as
a countable union of finite and pairwise disjoint subsets of A such that for each neighbourhood W of x,
d{{n e N: WnN A, =0}) = 0. The collection of all such countable sets is denoted by S—QZP .

Next we recall some classes of bornological covers of X. Let B be a bornology on metric space (X, p).
For B€ Band 6 > 0, let B® = (J,5 S(x,6), where S(x,8) = {y € X : p(x, y) < 6}. It can be easily observed that

B° C B? for every B € B and 6 > 0. A cover U is said to be a strong-B-cover (in short, B5-cover)[5] if for
B € B there exista U € U and a § > 0 such that B® C U. If the members of U are open then U is called
an open B°-cover. The collection of all open B°-covers is denoted by Ogp:. X is said to be B°-Lindelof [6] if
each B°-cover contains a countable B*-subcover. An open cover U = {U, : n € IN} is said to be a yu:-cover
[5] (see also [6]) of X, if it is infinite and for every B € B there exist a g € IN and a sequence {5, : 1 > 1y} of
positive real numbers satisfying B% C U, for all n > ny. The collection of all yg:-covers is denoted by T'y:.
An open cover U of X is said to be B°-groupable [§] if it can be expressed as a union of countably many
finite pairwise disjoint sets U, such that for each B € B there exist a 119 € IN and a sequence {5, : n > np}
of positive real numbers with B> C U for some U € U, for all n > ny. X is said to have the B°-Hurewicz
property [8] if for each sequence {U,, : n € IN} of open B°-covers of X, there is a sequence {V, : n € IN}
where V, is a finite subset of U, for each n € IN, such that for every B € B there exist a np € IN and a
sequence {0, : n > ny} of positive real numbers satisfying B% c U for some U € V, for all n > ny.

For two metric spaces X and Y, YX (C(X, Y)) stands for the set of all functions (continuous functions)
from X to Y. The commonly used topologies on C(X, Y) are the compact-open topology 7%, and the topology
of pointwise convergence 7,. The corresponding spaces are, in general, respectively denoted by (C(X, Y), 7¢)
(resp. Cx(X) when Y = R), and (C(X, Y), 7p) (resp. C,(X) when Y = R).

Let B be a bornology on X with closed base. Then the topology of strong uniform convergence 13, is
determined by a uniformity on Y* with a base consisting of all sets of the form

[B, el ={(f,g): 36 > 0 for every x € B, P’ (f(x), g(x)) < e},
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forBe B, > 0.

The topology of strong uniform convergence T3, is finer than the topology of pointwise convergence 7,
ifB=7F.

Throughout we use the convention that if B is a bornology on X, then X ¢ 8.

3. Statistical Variations of Certain Bornological Notions

3.1. The s-ygs-Cover and Related Selection Principles
First we introduce the following definition which plays a central role in our paper.

Definition 3.1. A countable open cover U is said to be a statistical-yg--cover (in short, s-ys-cover) if there
is an enumeration of U, say U = {U, : n € N} such that for B € B there is a sequence {6, : n € IN} of positive
real numbers such that d({n € N : B> ¢ U,}) = 0.

In contrast to the classical definition, this definition depends on the enumeration of pieces. A s-ygs-cover
may not still be a s-ygs-cover under a changed enumeration (see Example 3.2 below). Throughout we follow
the convention that whenever we consider a countable open cover U = {U,, : n € IN}, we always consider a
fixed enumeration.

The collection of all s-yys-covers of X is denoted by s-I'gs. It is clear from the context that every ygs-cover
is a s-ygs-cover i.e. I'gs C s-I'ys. The following example shows that the inclusion is proper.

Example 3.1. Consider X = R and a bornology B on X generated by {(—x,x) : x € R}. Now consider an
open B-cover U = {U, : n € N}, where U, = (0,n) when n = k* and U, = (-n,n) when n # k? for each
k € IN. We show that U is a s-ygs-cover. Let B € B. Say, B = (=x¢,%9). Now for a 6 > 0 there is a ny € N
such that B® € U, for all n > ny and n # k? for any k € IN. Define 6, = 0 for each n, then for this sequence
{6p :neN}wehave{n e N:B» ¢ U,} C{neN:n=k forke NJU{1,2,...,n0—1}. Clearly U is a
s-yss-cover, as d(fn € N : n = k? for k € IN}) = 0. It is also clear that for any 6 > 0, B® ¢ U, for infinitely
many #n. Thus U can not be a yg:-cover of X.

Example 3.2. Under a changed enumeration the s-ygs-cover U = {U, : n € IN} of Example 3.1 may not
remain a s-ygs-cover of X.
First consider a partition {P; : j € N} of A = {12,2%,...}, where P; = {12,2%}and P; = {(* - j + 1)%, (j* —
i+2)%..., G+ ) forj> 1.
Let 0 : N — IN be the bijection given by
B k+i if n=k% and n € P; for some k,i € N
o(n) = (n—k? if K <n<(k+1? forsome k€ N

and consider the enumeration {U,(y : 7 € N} of U. Clearly Uy = (—a(n),0(n)) if n = k* for k € N and
Usy = (0,0(n)) if n # k*. Let B = (-1,1). It is clear that for any sequence {6, : n € IN} of positive real
numbers N\ A C {n € N : B> ¢ Uy} Alsod({n € N : B ¢ Uym)) # 0asd(IN\ A) = 1. Thus {Uy : n € N}
is not a s-ygs-cover of X.

It is also interesting to observe in Example 3.1 that {U : k € IN} is an infinite subset of U which is
not a s-yys-cover (not even a cover) of X. Generally an infinite subset of a s-yu:-cover is not necessarily a
s-yws-cover. However, on the positive side, the result holds if we consider any statistically dense subset of
this cover.

Lemma 3.1. A statistically dense subset of a s-yws-cover of X is again a s-ygs-cover of X.

Proof. Let U = {U, : n € IN} be a s-ygs-cover of X. Let {U,, : k € IN} be a statistically dense subset
of U. We aim to show that this is again a s-yys-cover. Assume on the contrary that there is a B € B
such that for any sequence {6, : n € IN} of positive real numbers, d({k € IN : B ¢ U,}) # 0. Since
d({k : B ¢ U,}) <d({n € N : B> ¢ U,)}), it follows that d({n € IN : B> ¢ U,}) # 0. Which in turn
contradicts that U is a s-ygs-cover of X. [
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The next two observations about the s-yus-cover will be useful in what follows.

Lemma 3.2. Let B be a bornology on X with closed base and {U,, : n € IN} be a sequence of s-yw:-covers of X, where
U, = {uy k € IN}. Then for each n the collection V, = {U,l ol Ui L.nUy U e U;,1 <i<n keN}isalsoa
s-ygs-cover of X.

Proof. Let B € ®B and fix a positive integer n. For eachi = 1,2,...,n choose a sequence {5} : k € IN} of positive
real numbers such that d(T;) = 0, where T; = {k € N : B% ¢ Ui}). Choose V' = U} N U?...N U} and take
& =min{d} :1=1,2,...,n}. We show that d(S) = 0, where S = {k € N : B* ¢ V}. If k € S, then B* ¢ V! i.e.
B o U,i forsomei€{1,2,...,n}. Clearly S C U! | T; and d(S) = 0. Hence V,, is a s-yg:-cover of X. [

Since every ygs-cover is a s-ygs-cover, the next result follows from [8, Lemma 3.4].

Lemma 3.3. Let B be a bornology on X with closed base and U = {U, : n € N} be an open B°-cover of X. If
V ={V, :n € N} where V,, = UL U, then V is a s-ygs-cover of X.

In the next result we show that s-a4 property lies between S; and Sgn-type selection properties for some
suitable classes of covers. We will further investigate these types of statistical selection properties in the
final section.

Proposition 3.1. Let B be a bornology on X with closed base. Consider the following statements:
(1) X satisfies Sy(s-I's, 5-T'ws);
(2) X satisfies s-ata(s-T's, s-T's);
(3) X satisfies Sgin(s-I's, s-T's).

Then (1) = (2) = (3) holds.

Proof. We only give proof of (2) = (3). Let {U, : n € N} be a sequence of s-ygs-covers of X and let
U, = {U}, : m € N}. By Lemma 3.1 and using (2), there is a subset K = {n; < ny < ---} of N with d(K) =1
and a s-y@s cover {Ufn’i : 1 € IN} such that Ufn", € U,, foreachie N (see [12, Theorem 6.1]). If n = n;, choose
W, = {Ufn"l} and choose W, = 0 otherwise. Clearly U,enW,, is a s-yus-cover of X and ‘W, is a finite subset
of U, for each n. Hence (3) holds. O

We now present certain implications among the selection principles in the next few results.

Theorem 3.1. Let B be a bornology on X with closed base. The following statements hold:
(1) S1(s-Tw, T'w) = Sgin(s-T'pe, I'we);
(2) S1(s-T'ps, ') = Sin(s-T'gs, ),
(3) S1(s-T, T'ws) = Sgin(s-T, T'e).

Proof. We only give proof of (1) as the other proofs are analogous. Suppose that X satisfies Sgn(s-T'ss, ')
and {U, : n € IN} be a sequence of s-ygs-covers of X. Let U, = {U,’j : k € IN} for each n € IN. For each
n, consider the collection V, = {V} : k € N}, where V}! = uinuzn...nU and Ll,i eU,i=1,2,...,n
By Lemma 3.2, V,,’s are s-ygs-covers of X. Now applying Sgn(s-I'ss, I'ss) to {V,, : n € IN} to choose a finite
subset ‘W, € V,, for each n such that U,enW,, is a yg:-cover of X. Choose a sequence of positive integers
ny <mny <--- such that W, \ Uic;W,, # 0 for j € N.

Now for each j, choose a VZ; € "VV,,]. \ U,'<j"M/,,,.. As an infinite subset of a ygs-cover of X is a ygs-cover,
{V:j’ : j € N}is a yg--cover of X. For 1 < n < ny, define U, = U}, where V}':ll = U;l N ll,f1 Nn---N UZ; and for
eachn € (nj,nj,1], define U, = UZM, where VZ;:; = U;M N U]%M N---N UZ,]:E' We show that {U,, : n € IN} € T'ys.
Let B € B. Since {V:]’ : j € N} is a ygs-cover of X, there exist a jo € N and a sequence {6; : j > jo} of positive
real numbers such that B%+ C V:,-/:f forall j > joi.e. B C ul%fﬂ n U,fm N---N UZ/’:; For each n € (1, 141],

define 6, = 6j41. Thus we have B c U, foralln >n jo- Consequently {U, : n € N} is a ygs-cover of X and
hence X satisfies S;(s-I'ss, I'ns). The other direction is straightforward. O
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Theorem 3.2. Let B be a bornology on X with closed base. If X is B*-Lindeldf, then the following statements hold:
(1) Sgin(s-T'ws, A) = Ugin(Ow:, A);
(2) Sfin(Ow:, A) = Sgin(s-T'g:, A);
(3) Stin(Ow:, A) = Usin(s-T'ss, A).

Proof. We prove only (3). Let X satisfy Sgin(Ow:, A). Let {U,, : n € IN} be a sequence of s-yg:-covers of X.
Apply Siin(Ow:, A) to {U,, : n € N} to choose a finite subset V,, of U,, for each n such that U,enV, is a large
cover of X. Choose a sequence 1 = k; <k, <... of positive integers and enumerate U,enV,, as {V; :i € N},
where V,, = {V; : k, <i < ky+1}. Since each x belongs to infinitely many V’s, it follows that each x belongs
to UV, for infinitely many n. Clearly {U7V, : n € N} is a large cover of X and also X satisfies Ugn(s-T's, A).
In the other direction, assume that X satisfies Ugn(s-T'ns, A). Let {U, : n € IN} be a sequence of open
B°-covers of X. Enumerate each U, bijectively as { up : k € IN} and for each n consider the collection
V. ={V} : k € N} where V! = Uj U---U U!. By Lemma 3.3, each V, is a s-yg:-cover of X. Apply
Usin(s-T'gs, A) to {V,, : n € IN} to choose a finite subset ‘W, of V, for each n such that {UW, : n € N} is a
large cover of X. By deconstructing the members of ‘W,,, we can find a finite subset Z,, of U, for each n.
The proof will be complete if we show that U,enZ, is a large cover of X. Let x € X. Now x € UW), for
infinitely many 7 i.e. for infinitely many n there is a V}' € W), such thatx € Vi! = Uy U --- U U}. Thus there
isaly e Zysuchthatx € u; for infinitely many n and consequently U,enZ, is a large cover of X. [

Theorem 3.3. Let B be a bornology on X with closed base. If X is B°-Lindeldf, then the following statements hold:
(1) Ugin(Ows, Ow:) = Ugin(s-T'we, Ow:);
(2) Ugin(Ows, 5-T's:) = Upin(s-T'ws, s-T'we);
(3) Usin(Ogs, O) = Ugin(s-T'y:, 0);
(4) Ugin(Os:, 5-T) = Ugin(s-T'ss, s-T);
(5) Ufin(O/ S—FBS) = Ufin(S_r/ S—F%S),

Proof. We prove only (2). Suppose that X satisfies Ugn(s-I'ss, s-T'ns). Let {U, : n € N} be a sequence of
open B-covers of X where U, = {U} : k € N} for each n. Now for each n € IN consider the collection
YV, = {Vl’: : k € N}, where Vi=UjU---UU.. By Lemma3.3, V,'s are s-ygs-covers of X. Apply Ugn(s-T'ss, s-
I'ys) to {V,, : n € IN} to find a finite subset ‘W, of V,, for each n such that {UW, : n € N} is a s-ygs-cover of
X. By deconstructing members of ‘W,,, we find a finite subset Z,, of U, for each n. Clearly UW, = UZ, for
each n. We show that {UZ,, : n € IN} € s-I'ys. Let B € B. Since {UW,, : n € IN} € s-I'g, there is a sequence
{6, : n € N} of positive real numbers such that d({n € N : B> ¢ UW,}) = 0i.e. d(fn € N : B> ¢ UZ,}) = 0.
Consequently {UZ, : n € IN} is a s-ygs-cover of X and hence X satisfies Ufin(Ows, s-I'ss). The other direction
is straightforward. O

Extending [8, Theorem 3.5], we obtain the following game theoretic characterization of S;(s-I'ss, I'ss).

Theorem 3.4. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies S1(s-I'ss, I'ws);
(2) ONE has no wining strategy in the game Gi(s-I'ss, I's).

Proof. It is enough to prove (1) = (2). Let F be a strategy for ONE in the game Gq(s-I'ss, ['ns). Let the first
move of ONE be F(X), a s-ygs-cover of X enumerated bijectively as {Uy) : n € IN}. Let for each finite sequence
7 of natural numbers of length at most m, U; have been already defined. Now define {U,, u,m) : m € N}
tobe F(Ugy), - -, Upn,..n) \ AU, - - -, Uy, 1, Wwhere the enumeration {U,,,. n,m) : m € IN} is bijective. It is
clear that for each finite sequence 7 of natural numbers, {U;~(y) : m € IN} is a s-ygs-cover of X. Now using
(1) and proceeding as in [8, Theorem 3.5], we can conclude that F is not a wining strategy for ONE. [

Likewise the following characterization can be obtained.

Theorem 3.5. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies Sy(s-I'ss, I');
(2) ONE has no wining strategy in the game G1(s-I's, I').
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Combining with Theorem 3.4, we obtain the following characterization related to the a;-properties.

Theorem 3.6. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies ap(s-T'ys, I's);
(2) X satisfies az(s-T'ws, I'ss);
(3) X satisfies ag(s-I'gs, I's);
(4) X satisfies S1(s-I'ss, I'ws);
(5) ONE does not have a wining strateqy in G1(s-T'ys, T'ws).

Proof. We give only proof of the following implications. The other implications follow from the standard
argument.

(3) = (4) Let {U,, : n € N} be a sequence of s-yus-covers of X and U,, = {U}}, : m € N}, n € N.

By Lemma 3.2, V,, = {V" : m € N} € s-Ty for each n where V", = U} N U2, N...N UL Apply (3) to
obtain a sequence 1 = 1y < n; < np < --- of positive integers such that V = {V:{,- i € N} is a ygs-cover,
where V. € V,, for each i. Now for each i > 0, each j with n; < j < n;,1, consider V," = U}HH N Ut
and let U; = llf,,m. Clearly {U; : j € N} is a ygs-cover of X.

(5) = (1) Let {U, : n € IN} be a sequence of s-ygs-covers of X. Let U, = {U}, : m € N}. We define a
strategy o for ONE in the game Gi(s-I's:, I's:) as follows. Let the first move of ONE be ¢(0) = U;. TWO
chooses U%ﬂ,l € U;. Now by Lemma 3.2, {ul, N U2, : m > m}is a s-ygs-cover of X. Let the second move of
ONE be O‘(U,lnil) = {U,, N U;, : m > m;}. TWO chooses U, NUj, and soon.

Since the play o(0), LI,%%, a(u}m1 ), U}nl_z N Uiiz ... in Gi(s-T'y:, Ts) is lost by ONE, the collection
{ U}ni] , ll}nl,z, Ufmz ...} is a ygs-cover, which contains infinitely many elements of U, for each n. Hence X

satisfies ap(s-T'gs, I'ys). O
Quite similarly the following characterization can be obtained.

Theorem 3.7. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies ap(s-T'ys, I);
(2) X satisfies az(s-I'gs, I);
(3) X satisfies ay(s-I'gs, I);
(4) X satisfies S1(s-I'ss, I');
(5) ONE does not have a wining strateqy in G1(s-T'ys, T').

3.2. The s-B°-Hurewicz Property

We now define the statistically-strong-B-Hurewicz property and the corresponding game.

Definition 3.2. Let B be a bornology on X with closed base. X is said to have the statistically-strong-8-
Hurewicz property (in short, s-8B°-Hurewicz property) if for each sequence {U,, : n € IN} of open B°-covers
of X, there is a sequence {7V, : n € N} where YV, is a finite subset of U, for each n € IN such that for every
B € B there exists a sequence {6, : n € IN} of positive real numbers satisfying d({n € N : B> ¢ U for any
Ue (Vn}) =0.

Definition 3.3. The statistically-strong-B-Hurewicz game (in short, s-8°-Hurewicz game) on X is defined
as follows. Two players named ONE and TWO play an infinite long game. In the n-th inning ONE selects
an open B°-cover U, of X, TWO responds by choosing a finite set V,, € U,. TWO wins the play: U,
Vi, Uy, Vo, ..., Uy, Vy, ... if for each B € B there exists a sequence {0, : n € IN} of positive real numbers
satisfying d({n € N : B> ¢ U for any U € V,}) = 0. Otherwise ONE wins.

We now present an example of a space having the s-B°-Hurewicz property.
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Example 3.3. The space X = R? together with the Euclidean metric d and the bornology B generated by
{5(0,7) : ¥ > 0}, where S(0, 7) is an open ball centred at 0 with radius 7, has the s-B°-Hurewicz property. To
see this, let {U,, : n € IN} be a sequence of open B°-covers of X. Then clearly for each k € IN, there is a
U € U, such that S(0, k) € U, where S(0,k) € B.

Consider a sequence of positive integers k; < k; < ---. For each n € IN, choose a U, € U, such that
5(0,k,) € U, and define W,, = {U,,}. We show that {W, : n € N} witnesses the s-8°-Hurewicz property. Let
B € 8. Since U = {S(0,n) : n € N} is a s-ygs-cover, for B € B there is a sequence {0, : n € IN} of positive real
numbers satisfying d({n € IN : B> ¢ S(0,n)}) = 0. We show that d({n € N : B> ¢ U for any U € ‘W,}) = 0.
Observe that if for n € N, B> ¢ U for any U € ‘W, then B> ¢ S(0,k,) i.e. B> ¢ S(0,n) as n < k. Clearly
(neIN:B*» ¢ Uforany U e W,} C{neN:B*" ¢ S5(0,n)and d({n € N: B> ¢ U for any U € W,}) = 0.
The conclusion now follows.

We now give an example of a space without the s-B°-Hurewicz property (see [8, Example 4.2]).

Example 3.4. Let X be the Baire space with the bornology B = #. Choose a sequence {U,, : n € IN} of open
B-covers of X, where U, = {U};, : m € N} and U}, = {f € X : f(n) < m}. In order to show that the sequence
{U, : n € IN} fails to witness the s-B°-Hurewicz property, let {V,, : n € IN} be any sequence, where V), is a
finite subset of U, for each n. Let h € X be such that h(n) > 2 - max{m : U}, € V,}. Choose f,g € X in such
a way that h = f + g. Clearly max{f(n), g(n)} > 1h(n) and hence {f, g} ¢ U", for each U, € V, and each n.
Let B = {f, g} € B. Thus for any sequence {5, : n € N} of positive real numbers {n € N : B> ¢ U, for any
Uy, € V,} = IN. Since d(IN) = 1, it follows that X does not have the s-8°-Hurewicz property.

Next we introduce the notion of statistically-strong-B-groupable cover.

Definition 3.4. Let B be a bornology on X with closed base. An open cover U of X is said to be statistically-
strong-B-groupable (in short, s-B°-groupable) if it can be expressed as a union of countably many finite
pairwise disjoint sets U, such that for each B € B there exists a sequence {5, : n € IN} of positive real
numbers satisfying d({n € N : B> ¢ U for any U € U,}) = 0.

The collection of all s-B°-groupable covers is denoted by s—()gl. Clearly every B°-groupable cover is
s-B-groupable.

Using the techniques of [9, Note 2.2] and [12, Theorem 3.5], we show that under certain condition the
s-B°-Hurewicz property is equivalent to the selection hypothesis Sgin(O:, s—Ogi) (see also [10]).

Theorem 3.8. Let B be a bornology on X with closed base and CDRgy,(Ops, Ows) hold. The following statements
are equivalent:

(1) X has the s-B°-Hurewicz property;

(2) X satisfies Sfin(Ows, 5—0%’1).

Proof. (1) = (2) Let {U,, : n € N} be a sequence of open B°-covers of X. Since X satisfies CDRgy,(Op:, Ogs),
we can assume that U,,’s are pairwise disjoint. Since X has the s-B°-Hurewicz property, there is a sequence
{V, : n € N} of finite sets with V,, € U, for each n such that for B € B there exists a sequence {0, : € IN}
of positive real numbers with d({n € N : B ¢ U for any U € V,}) = 0. Since V,’s are pairwise disjoint,
{V, : n € N} witnesses the s-B°-groupability of U,enV,. Hence X satisfies Sgn(Ogs, S-OZZ).

(2) = (1) Let {U), : n € N} be a sequence of open B°-covers of X and U, = {U}' : | € N} for each n.
Consider V,, = {Ull1 N LIIZ2 n...N UZ, tn <l <---<l,}foreachn. By [8, Lemma 3.1] and [8, Proposition 3.1],

YV, is an open B*-cover of X for each n. Now we apply Sﬁn(Ogs,s—O%’i) to the sequence {V,, : n € N} and

obtain a sequence {¥, : n € IN} of pairwise disjoint finite sets such that ¥, C V,, for each n and U,enF, is a
s-B°-groupable cover of X. So there is a sequence {H : k € IN} of pairwise disjoint finite subsets of U,en
such that for B € B there exists a sequence {0 : k € IN} of positive real numbers for which d({k € N : B* ¢ H
for any H € H;}) = 0.

Define A; = {k € IN : Hj C U;5;F;} for each i € IN. Since each ¥’s are finite and ;s are pairwise disjoint
sets, each A; is cofinite and so d(A;) = 1. Also A1 2 Ay 2 A3 2 ---. Choose a m; € Ay such that m; > 1.



S. Das, D. Chandra / Filomat 35:7 (2021), 2303-2315 2311

A1 (m)]
n
1Ai()|

Choose a m, € Ay with my > my in such a way that for all n > my, > % and so on. Thus we obtain a

sequence my < mp < ... of positive integers such that m; € A; and > % for every n > m;. We now
define a subset K of positive integers as follows. k € Kif k € (1,m1] N A;. Also fori > 1, k € K if and only
if k € (m;, miz1] N A;. We write K = {k; < ky < ---}. Itis easy to verify that d(K) = 1. For the finite number
of elements k of K coming from A;, we take the set of all U}, the first components in the representation of
elements of H and denote that collection by G1. Again for the next finite numbers of element k of K coming
from A,, we take the set of all Ulz, the second component in the representation of the elements of Hj as
Hi € Uj»2F;. We denote that collection by G,. Continuing in this way we obtain a sequence {G, : n € IN}
where G, is a finite subset of U,, for each n.

We observe that d({k, € K : B% ¢ H for any H € H,}) = 0 and hence d({k, € K : B% C H for some H €
Hi,}) = 1 as d(K) = 1. Also it follows that d({k, € K : B% C H forsome H € Hy,}) < d({n € N : B% C
H for some H € H;,}),ie. d({n € N: B% C H for some H € H }) = 1.

We now choose o, = O, for each n. Clearly d({n € IN : B> € G for some G € G,}) = 1 and hence
d{{ne N : B £ G for any G € G,}) = 0. Consequently {G, : n € IN} witnesses the s-B°-Hurewicz property
of X for {U,, : n € N}. Thus (1) holds. O

Remark 3.1. We do not require the assumption CDRg,(Og:, O:) to prove the implication (2) = (1). We do
not know whether the other direction can be obtained without this assumption.

The intent of the next result is to show that under certain condition, a countable open B°-cover becomes
s-B°-groupable. In the following result we use the fact that if U = {U, : n € IN} is an open B°-cover, then
for each B € B there are positive real numbers 6, > 0 and U, € U such that B> C U, for infinitely many n
and conversely (see [8, Proposition 3.1]). Thus for any finite subset V of U, U \ V is also an open B*-cover
of X.

Proposition 3.2. Let B be a bornology on X with closed base. If ONE has no wining strategy in the s-B°-Hurwicz
game on X, then every countable open B*-cover of X is s-B°-groupable.

Proof. Let U be a countable open B°-cover of X. Consider the following strategy ¢ for ONE in the s-B°-
Hurewicz game on X. Let the first move of ONE be ¢(0) = U. TWO responds with a finite set V; C U. The
second move of ONE is a(V1) = U \ V1. TWO responds with a finite set V, € (V1) and so on.
By our assumption, there is a play o(0), V1,0(V1), V2, ... which is lost by ONE. So for each B € B there
exists a sequence {0, : n € IN} of positive real numbers such that d({n € N : B> ¢ U for any U € V,}) = 0.
By construction, V,’s are pairwise disjoint finite sets and hence {V, : n € IN} witnesses the s-B°-
groupability of U,enV,. Since U is countable, we can show that U is a s-B°-groupable cover of X. O

We end this section with the following game-theoretic implication.

Proposition 3.3. Let B be a bornology on X with closed base. If ONE has no wining strategy in the s-B°-Hurewicz
game, then ONE has no wining strategy in the game Ggin(Ogs, s—ngs).

Proof. Let 1 be a strategy for ONE in Ggin(Ows, S-Og;s). We define a strategy o for ONE in the s-B°-Hurewicz
game. Let the first move of ONE in the s-B°*-Hurewicz game be o(0) = 7(0). TWO responds with a finite set
V1 C 0(0). Let the second move of ONE be o(V1) = (V1) \ V1. TWO responds with a finite set V, C o(V1)
and so on.

By our assumption, there is a play o(0), V1,0(V1), Vs, ... which is lost by ONE. Thus for each B € B8
there is a sequence {0, : n € IN} of positive real numbers such that d({n € IN : B% ¢ U for any U e V,})=0.

Clearly UyenVy is a s-B°-groupable open cover of X. Now for the strategy 7, consider the play
©(0), V1,0(V1), Vs, ... in Gﬁn(O%S,S'Og%Z). As UuenV, is a s-B°-groupable open cover of X, 7 is not a
wining strategy for ONE in G (Ows, s—()g . O
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4. Results in Function Spaces

Let B be a bornology on (X, p) with closed base and (Y, p’) be another metric space. For f € C(X,Y), the
neighbourhood of f with respect to the topology 75, of strong uniform convergence on a bornology ¥ is
denoted by

[B,el(f) ={ge C(X,Y): 35> 0,p'(f(x),9(x)) < &, ¥Vx € B%},

for Be B, ¢ >0 (4, 5]).

The symbol 0 denotes the zero function in (C(X), 73;) (Where C(X) = C(X, R)). Since the function space
(C(X), %) is homogeneous, it suffices to focus at the point 0 when we deal with local properties of this
space.

Recall that a sequence {f, : n € N} of functions in (C(X), 75,) s-converges to 0 with respect to 7%, if for any
neighbourhood [B, €]°(0), (B € B, ¢ > 0), d({n € N : f, ¢ [B, ¢[°(0)}) = 0.

The following lemmas are very useful in our subsequent results.

Lemma 4.1. ([12, Lemma 2.3]) Let B be a bornology on X with closed base. A sequence of functions in (C(X), T)
is s-convergent if and only if any of its statistically dense subsequence is s-convergent.

Lemma 4.2. ([6, Lemma 2.2]) Let B be a bornology on the metric space (X, p). Consider the following statements:
(a) Let U be an open Bs-cover of X. If A = {f € C(X) : AU € U, f(x) =1 forall x € X\ U}. Then 0 € A\ A in
(CX), ),
(b) Let A € (C(X), %) and let U = {f1(=1,1): f € A}, wheren € N. If0 € A and X ¢ U, then U is an open
B-cover of X.

Lemma 4.3. Let B be a bornology on X with closed base. Let {f, : n € IN} be a sequence in (C(X), T5,) that s-converge
to 0. If for each n there is an open set U, in X such that f,(X \ U,) = {1}, then {U, : n € N} is a s-yxs-cover of X.

Proof. For the neighbourhood [B, 1]°(0), we have d(T) = 0, where T = {n € N : f, ¢ [B,1]°(0)}. We need to
show that for B € B, there is a sequence {0, : n € IN} of positive real numbers for which d(S) = 0, where
S ={neIN:B> ¢ U,}. First note that f,(-1,1) C U, for each n.

If n ¢ T, then f, € [B,1]°(0) i.e. thereis a1, > 0 with B C £, 1(-1,1) C U,,. Fixa 6 > 0. Define 6, = 6 if
n € T and 0, = 1, otherwise. Then n ¢ T implies n ¢ S. Thus we obtain a sequence {6, : n € IN} for which
S=Tand d(S) = 0. Hence {U, : n € N} is a s-ygs-cover of X. [

Lemma 4.4. Let B be a bornology on X with closed base. Let {f, : n € IN} be a sequence of functions in (C(X), T%).
If{f; (=1, 1) : n € N} is a s-yws-cover of X, then {f, : n € N} s-converges to Q with respect to T

Proof. For B € B there is a sequence {5, : n € IN} of positive real numbers for which d(S) = 0, where
S={nelN: B‘S" ¢_ fn(—% %) We now show that for any neighbourhood [B, €]°(0), d(T) = 0, where
T={nelN: f, ¢[B, cl(0)}. Fore > 0, choose a n; such that l <e. NowifneT\({1,2,. — 1}, then
fu ¢ [B, €]°(0) i.e. foranyC>0 Bcgt_f —¢,€)ie. BC ¢ f1(— % 1), Choose ¢ = 6n,thenB°"¢_fn1(—%,%).
Clearly n € S and hence T \ {1,2,...,n; — 1} € S. It is now ev1dent that d(T) = 0. Hence {f, : n € N}
s-converges to 0 with respect to Ts%. E]

Under certain assumption on a subset of C(X), in the following result we show that every open B°-cover
of X has a s-ygs-subcover.

Proposition 4.1. Let B be a bornology on X with closed base. For A C (C(X), T3) with 0 € A, if there is a sequence
in A which s-converges to 0, then every open B*-cover of X contains a s-yys-cover of X.

Proof. Let U be an open B°-cover of X For B € B there exist a U € U and a 6 > 0 such that B? C Usg.
Choose a fz € C(X) such that f3(B°) = {0} and f5(X \ Up) = {1}. Consider the set A = {f : B € B}. Clearly
0 € A. By our assumption, there is a sequence {fs, : n € N} s-converging to 0. Clearly {Up, : # € N}is a
s-ygs-cover by Lemma 4.3. [
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The statistically strictly Frechet-Urysohn property of C(X) can be characterized by a S;-type selective
property of X.

Theorem 4.1. Let B be a bornology on X with closed base. The following statements are equivalent:
(1) (C(X), T%) is s-SFU;
(2) X satisfies S1(Ows, s-T'ss).

Proof. (1) = (2) Let {U, : n € IN} be a sequence of open B°-covers of X. For B € B and each n € N,
there are Up,, € U, and 6 > 0 such that B® C Ug,. Consider the collection Uz, = {U € U, : B® C U}.
For each U € Up, choose a fz € C(X) such that fz;;(B®) = {0} and fzu(X \ U) = {1}. Now define

An={fpu:BeB,Uec Up,} foreachn € IN. Clearly 0 € A, \ An. Apply (1) to the sequence {A, :n €N} to
find a fp, u, € A, for each n such that {fg, u, : n € N} s-converges to 0 with respect to 73,, where U, € U, for
each n. Clearly {U, : n € N} is a s-y@s-cover by Lemma 4.3. Hence X satisfies S1(Ogs, s-T':).

(2) = (1) Let {An : n € IN} be a sequence of subsets of C(X) such that 0 € A, \ A, for each n € N.
By Lemma 4.2, U, = {f1(-1,1) : f € A,} is an open B-cover of X for each n € N. Apply (2) to the
sequence {U, : n € N} to obtam a U, € U, for each n such that {U, : n € IN} is a s-ygs-cover of X. Now
U, = f;'(-1,1). By Lemma 4.4, it follows that the sequence {f, : n € N} s-converges to 0 with respect to 75,
and hence (C(X) Ty) is s-SFU. [

Similar to Proposition 3.1, we can compare the following selective properties in C(X).

Proposition 4.2. Let B be a bornology on X with closed base. Consider the following statements:
(1) (C(X), T5) satisfies S1(s-Lo, s-Xo);
(2) (C(X), T5) satisfies s-as(s-Lo, s-Xo);
(3) (C(X), T%) satisfies Sgin(s-Xo, 5-Lo)-

Then (1) = (2) = (3) holds.

Proof. The proof of (1) = (2) is trivial.

(2) = (3) Let {S,, : n € IN} be a sequence of elements in s-Yy. For each n take S,, = {f,» : m € IN}. By (2),
thereis a T € s-Xy and a (statistically dense) subset K = {n; < ny < ---} of IN with d(K) = 1 such that the set
Sy, N T is non empty for each n; € K. Let f,,, m, € Sy, N T for each n; € K. By Lemma 4.1, the subsequence
fn, m; : 1 € N} is s-convergent to 0. Define F,, = {fy, m,} if n = n; and F,, = 0 otherwise. The conclusion now
follows from the fact that U,enF, is s-convergent to 0 and each F,, is a finite subset of 5,,. O

We now give another sufficient condition for a countable open B°-cover of X to be s-B°-groupable
(compare with Proposition 3.2) with the help of s-Reznichenko property of C(X). In the following result we
use the fact that a collection U of open subsets of X is an open B°-cover if and only if for each U € U there
is a closed set (may be empty) C(U) € U such that {C(U) : U € U} is a B*-cover of X (see [8, Theorem 5.1]).

Proposition 4.3. Let B be a bornology on X with closed base. If (C(X), T%) has the s-Reznichenko property, then
every countable open B°-cover of X is s-B°-groupable.

Proof. Let U be a countable open B°-cover of X. For each U € U there is a closed set C(U) with C(U) € U
such that {C(U) : U € U} is a B*-cover of X. Define a continuous function f; on X such that f;;(C(U)) = {0}
and fi(X\ U) = {1}. Clearly {f;*({0}) : U € U} is a B*-cover of X. We can assume that fi; and f}, are distinct

whenever U and U’ are distinct. Consider the set A = {fy; : U € U}. Evidently 0 € A\ A. By our assumption,
there is a sequence {A, : n € IN} of pairwise disjoint finite subsets of A such that for the neighbourhood
[B,11°(0), d(T) = 0, where T = {n € N : [B,1]*(0) N A,, = 0}. Let U,, = {U : fu € Ay} for each n. Clearly U,’s
are pairwise disjoint and finite. Using the fact that d(T) = 0, we can show that {Uf, : n € IN} witnesses the
s-B°-groupability of U. This completes the proof. O

Theorem 4.2. Let B be a bornology on X with closed base. The following statements are equivalent:
(1) TWO has a wmmg strategy in the game G1(C, s-Xo) on (C(X), T
(2) TWO has a wining strategy in the game G1(Ogs,s-I's:) on X.

»)
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Proof. (1) = (2) Let i be a wining strategy for TWO in G1(Qp, s-Xo). We define a strategy o for ONE in
the game G1(Ogs,s-T'ys). In the n-th inning, the move of ONE in G1(Ogs,s-I'ys) is o(Uy, ..., Uy-1) = U,.
For each B € B, there exist a 6 > 0 and a U € U, such that B® C U. Choose a fzy € C(X) such
that fz(B%) = {0} and fzu(X \ U) = {1}. Then the collection A, = {fgy : B € B,U € U,} € Q. The
corresponding move of ONE in G1(Qy,s-Xo) is ¢(fi,..., fa-1) = An. TWO responds with fp u, € A,
in G1(Qp,s-Xo). Correspondingly in G;(Ox:,s-T's:), TWO’s response is U,. The play in G1(Ogp:,s-I's:) is

0(0)1 ul/ O(U1), uZ/ ey o(ull Ry u‘rl—l)/ un ...and theplaylncl(QQ/ S_Z‘Q) 1517[}(0)1 fl/ w(fl)le/ ey lP(flr v rfn—l)rfn oo

where f, = fp, u,. Since ¢ is a wining strategy for TWO in the play in G1(CQp, 5-Xo), {f, : n € IN} € 5-Xg. Now
by Lemma 4.3, 0 a wining strategy for TWO in the game G1(Ogys, s-I's:).
(2) = (1) Let 0 be a wining strategy for TWO in the game G;(Og:, s-T's). For each n let I, = (-1, 1).

n’n

Now define a strategy 1) for ONE in G;(Q,s-Xo). In the n-th inning ONE’s move in G1({,s-Xy) is
Y(fi,--., fao1) = Ay € Qp. Then n-th move of ONE in Gy (O, s-T'y:) is U(A,) = {f UL, : f € Ay}, by Lemma
4.2. TWO responds with U, € U(A,). TWO’s move in G;(Qy, s-Xo) is f,, where U, = f,71(L).

Similarly, by using Lemma 4.4, we can show that ¢ is a wining strategy for TWO in G1(Qg, s-X¢). [

Translating [8, Theorem 5.6] into the language of statistical convergence, we obtain the following result.

Proposition 4.4. Let B be a bornology on X with closed base.
(1) If ONE has no wining strategy in the game Gl(Oq;s,s—Og;s) on X, then (C(X), T3, satisfies S1(Co, s—Qgp);

(2) If ONE has no wining strategy in the game Gﬁn(OSBS,S'O%Z) on X, then (C(X), TfB) satisfies Sgin (Qo, s—Qgp ).
With the help of Propositions 3.3 and 4.4, we mention our final result without proof.

Proposition 4.5. Let B be a bornology on X with closed base. If ONE has no wining strategy in the s-B°-Hurewicz
game on X, then (C(X), T5,) satisfies Sgin(Co, s—Qgp ) i.e. countable fan tightness and the s-Reznichenko property.
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