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Abstract. We primarily make a general approach to the study of open covers and related selection
principles using the idea of statistical convergence in metric space. In the process we are able to extend
some results in (Caserta et al. 2012; Chandra et al. 2020) where bornological covers and related selection
principles in metric spaces have been investigated using the idea of strong uniform convergence (Beer
and Levi, 2009) on a bornology. We introduce the notion of statistical-γBs -cover, statistically-strong-B-
Hurewicz and statistically-strong-B-groupable cover and study some of its properties mainly related to
the selection principles and corresponding games. Also some properties like statistically-strictly Frèchet
Urysohn, statistically-Reznichenko property and countable fan tightness have also been investigated in
C(X) with respect to the topology of strong uniform convergence τs

B
.

1. Introduction

We start by recalling the definition of asymptotic density. IfN is the set of natural numbers and K ⊆N
then K(n) denotes the set {k ∈ K : k ≤ n} and |K(n)| is the cardinality of K(n). The asymptotic density
of K is defined by d(K) = lim

n→∞

|K(n)|
n , provided the limit exists. Though this notion has long been used in

Number Theory, Ergodic Theory etc., one of its most interesting applications has been in Analysis where
the notion of asymptotic density was used to define the idea of statistical convergence by Fast [15] (see
also [21, 26–28]), generalizing the idea of usual convergence of real sequences. A sequence {xn : n ∈ N}
in a topological space is said to converge statistically (in short, s-converge) to x if for any neighbourhood
U of x, d({n ∈ N : xn < U}) = 0. In [12], the authors had studied selection principles, function spaces and
hyperspaces using the notion of statistical convergence in topological and uniform spaces. For more details
of the study of statistical convergence in topological and function spaces related to selection principles see
also [7, 11, 13] and references therein.

Recall that a bornology B on a metric space (X, ρ) is a family of subsets of X that is closed under taking
finite unions, is hereditary and forms a cover of X (see [16]). A base B0 for a bornology B is a subfamily
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of B that is cofinal in B with respect to inclusion i.e. for B ∈ B there is a B0 ∈ B0 such that B ⊆ B0. A base
is called closed (compact) if all of its members are closed (compact). The family of all finite subsets F of
X forms a bornology which is the smallest bornology on X and the family of all non empty subsets of X
is the largest bornology on X. There are other important bornologies such as the family of all non empty
ρ-bounded subsets and the familyK of non empty subsets of X with compact closure.

In [4], Beer and Levi had introduced the notion of strong uniform continuity on a bornology. Let (X, ρ)
and (Y, ρ′) be metric spaces. A mapping f : X → Y is strongly uniformly continuous on a subset B of X if
for each ε > 0 there is a δ > 0 such that ρ(x1, x2) < δ and {x1, x2} ∩ B , ∅ imply ρ′( f (x1), f (x2)) < ε. Also for
a bornology B on X, f is called strongly uniformly continuous on B if f is strongly uniformly continuous
on B for each B ∈ B. They had also introduced a new topology on YX the set of all function from X into Y,
called the topology of strong uniform convergence and studied various properties in function spaces. This
study has been further continued in [5].

In [6], the authors had studied open covers and related selection principles in function spaces with respect
to the topology of strong uniform convergence on a bornology. Very recently in [8], a further advancement
has been made in this direction (see also [3]). Motivated by [12], in this paper, we introduce statistical
analogue of certain types of open covers and investigate the behaviour of related selection principles using
the idea of strong uniform convergence on a bornology. Our main objective is to study some results of
[6, 8] in a more general setup using the idea of statistical convergence. In Section 3, we introduce statistical
version of certain types of bornological open covers and observe the behaviour of related selection principles
including the αi-properties. We also introduce the notions of statistically-strong-B-Hurewicz property and
statistically-strong-B-groupable cover and obtain some game theoretic results. In Section 4, we concentrate
on the function space C(X)(= C(X,R)) associated with the topology of strong uniform convergence onB and
deal with some properties like statistically strictly Frèchet Urysohn, statistically Reznichenko and countable
fan tightness.

2. Preliminaries

We follow the notations and terminologies of [2, 14, 16, 22]. Throughout the paper (X, ρ) stands for an
infinite metric space andN stands for the set of positive integers. We first write down two classical selection
principles formulated in general form in [17, 24] (see also the survey papers [18, 25] for more details).

For two nonempty classes of setsA and B, we define

S1(A,B): For each sequence {An : n ∈N} of elements ofA, there is a sequence {bn : n ∈N} such that bn ∈ An
for each n and {bn : n ∈N} ∈ B.

Sfin(A,B): For each sequence {An : n ∈ N} of elements of A, there is a sequence {Bn : n ∈ N} of finite
(possibly empty) sets such that Bn ⊆ An for each n and

⋃
n∈N Bn ∈ B.

There are infinitely long games corresponding to these selection principles.

G1(A,B) denotes the game for two players, ONE and TWO, who play a round for each positive integer n.
In the n-th round ONE chooses a set An fromA and TWO responds by choosing an element bn ∈ An. TWO
wins the play {A1, b1, . . . ,An, bn, . . . } if {bn : n ∈N} ∈ B. Otherwise ONE wins.

Gfin(A,B) denotes the game where in the n-th round ONE chooses a set An fromA and TWO responds by
choosing a finite (possibly empty) set Bn ⊆ An. TWO wins the play {A1,B1, . . . ,An,Bn, . . . } if

⋃
n∈N Bn ∈ B.

Otherwise ONE wins.

We also define
Ufin(A,B): For each sequence {An : n ∈ N} of elements of A, there is a sequence {Bn : n ∈ N} of finite
(possibly empty) sets such that Bn ⊆ An for each n and either {∪Bn : n ∈ N} ∈ B or for some n, ∪Bn = X
(from [17, 24]).
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CDRSub(A,B): For each sequence {An : n ∈N} of elements ofA there is a sequence {Bn : n ∈N} of pairwise
disjoint elements of B such that for each n, Bn ⊆ An [24].

The following selection principles are defined in [19]. The symbol αi(A,B) for i = 1, 2, 3, 4 denotes that
for each sequence {An : n ∈N} of elements ofA, there is a B ∈ B such that
α1(A,B): for each n ∈N, the set An \ B is finite.
α2(A,B): for each n ∈N, the set An ∩ B is infinite.
α3(A,B): for infinitely many n ∈N, the set An ∩ B is infinite.
α4(A,B): for infinitely many n ∈N, the set An ∩ B is non empty.

Also the statistical version of the above αi properties are introduced and studied in [12]. In particular,
the symbol s-α4(A,B) denotes that for each sequence {An : n ∈ N} of elements ofA, there is a B ∈ B and a
set K ⊆Nwith d(K) = 1 such that for each k ∈ K the set Ak ∩ B is non empty.

For x ∈ X, we denote Ωx = {A ⊆ X : x ∈ A \ A} [20]. Also X is said to have countable fan tightness at x
[1] if X satisfies Sfin(Ωx,Ωx).

Let O denote the collection of all open covers of X. An open coverU of X is called a γ-cover [24] ifU is
infinite and each point of X belongs to all but finitely many members ofU. The collection of all γ-covers of
X is denoted by Γ. An open coverU of X is a large cover [24] if it is infinite and each point of X belongs to
infinitely many elements ofU. The collection of all large covers of X is denoted by Λ. Now we recall some
terminologies in terms of the statistical convergence. A subsetV of a coverU = {Un : n ∈N} of X is called
statistically dense [12] inU if the set of indices of elements fromV has asymptotic density 1. A countable
open cover U = {Un : n ∈ N} is said to be a statistical γ-cover (in short, s-γ-cover) [12] if for each x ∈ X,
d({n ∈N : x < Un}) = 0. The collection of all s-γ-covers is denoted by s-Γ. For x ∈ X, the symbol s-Σx denotes
the set of all sequences s-converge to x [12]. A space X is said to be statistically strictly Fréchet-Urysohn
(in short, s-SFU) [12] if S1(Ωx, s-Σx) holds for each x ∈ X. A cover U is said to be s-groupable [12] of X
if it can be represented as a countable union of finite pairwise disjoint subfamilies Vn of U such that for
x ∈ X, d({n ∈ N : x < ∪Vn}) = 0. The collection of all s-groupable open covers is denoted by s-O1p. X is
said to have the s-Reznichenko property at x ∈ X [12] if each countable set A in Ωx can be represented as
a countable union of finite and pairwise disjoint subsets of A such that for each neighbourhood W of x,
d({n ∈N : W ∩ An = ∅}) = 0. The collection of all such countable sets is denoted by s-Ω1px .

Next we recall some classes of bornological covers of X. Let B be a bornology on metric space (X, ρ).
For B ∈ B and δ > 0, let Bδ =

⋃
x∈B S(x, δ), where S(x, δ) = {y ∈ X : ρ(x, y) < δ}. It can be easily observed that

Bδ ⊆ B2δ for every B ∈ B and δ > 0. A cover U is said to be a strong-B-cover (in short, Bs-cover)[5] if for
B ∈ B there exist a U ∈ U and a δ > 0 such that Bδ ⊆ U. If the members of U are open then U is called
an open Bs-cover. The collection of all open Bs-covers is denoted by OBs . X is said to be Bs-Lindelöf [6] if
each Bs-cover contains a countable Bs-subcover. An open coverU = {Un : n ∈ N} is said to be a γBs -cover
[5] (see also [6]) of X, if it is infinite and for every B ∈ B there exist a n0 ∈N and a sequence {δn : n ≥ n0} of
positive real numbers satisfying Bδn ⊆ Un for all n ≥ n0. The collection of all γBs -covers is denoted by ΓBs .
An open cover U of X is said to be Bs-groupable [8] if it can be expressed as a union of countably many
finite pairwise disjoint sets Un such that for each B ∈ B there exist a n0 ∈ N and a sequence {δn : n ≥ n0}

of positive real numbers with Bδn ⊆ U for some U ∈ Un for all n ≥ n0. X is said to have the Bs-Hurewicz
property [8] if for each sequence {Un : n ∈ N} of open Bs-covers of X, there is a sequence {Vn : n ∈ N}
where Vn is a finite subset of Un for each n ∈ N, such that for every B ∈ B there exist a n0 ∈ N and a
sequence {δn : n ≥ n0} of positive real numbers satisfying Bδn ⊆ U for some U ∈ Vn for all n ≥ n0.

For two metric spaces X and Y, YX (C(X,Y)) stands for the set of all functions (continuous functions)
from X to Y. The commonly used topologies on C(X,Y) are the compact-open topology τk, and the topology
of pointwise convergence τp. The corresponding spaces are, in general, respectively denoted by (C(X,Y), τk)
(resp. Ck(X) when Y = R), and (C(X,Y), τp) (resp. Cp(X) when Y = R).

Let B be a bornology on X with closed base. Then the topology of strong uniform convergence τs
B

is
determined by a uniformity on YX with a base consisting of all sets of the form

[B, ε]s = {( f , 1) : ∃δ > 0 for every x ∈ Bδ, ρ′( f (x), 1(x)) < ε},
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for B ∈ B, ε > 0.
The topology of strong uniform convergence τs

B
is finer than the topology of pointwise convergence τp

if B = F .
Throughout we use the convention that if B is a bornology on X, then X < B.

3. Statistical Variations of Certain Bornological Notions

3.1. The s-γBs -Cover and Related Selection Principles
First we introduce the following definition which plays a central role in our paper.

Definition 3.1. A countable open coverU is said to be a statistical-γBs -cover (in short, s-γBs -cover) if there
is an enumeration ofU, sayU = {Un : n ∈N} such that for B ∈ B there is a sequence {δn : n ∈N} of positive
real numbers such that d({n ∈N : Bδn * Un}) = 0.

In contrast to the classical definition, this definition depends on the enumeration of pieces. A s-γBs -cover
may not still be a s-γBs -cover under a changed enumeration (see Example 3.2 below). Throughout we follow
the convention that whenever we consider a countable open coverU = {Un : n ∈N}, we always consider a
fixed enumeration.

The collection of all s-γBs -covers of X is denoted by s-ΓBs . It is clear from the context that every γBs -cover
is a s-γBs -cover i.e. ΓBs ⊂ s-ΓBs . The following example shows that the inclusion is proper.

Example 3.1. Consider X = R and a bornology B on X generated by {(−x, x) : x ∈ R}. Now consider an
open Bs-cover U = {Un : n ∈ N}, where Un = (0,n) when n = k2 and Un = (−n,n) when n , k2 for each
k ∈ N. We show that U is a s-γBs -cover. Let B ∈ B. Say, B = (−x0, x0). Now for a δ > 0 there is a n0 ∈ N
such that Bδ ⊆ Un for all n ≥ n0 and n , k2 for any k ∈ N. Define δn = δ for each n, then for this sequence
{δn : n ∈ N} we have {n ∈ N : Bδn * Un} ⊆ {n ∈ N : n = k2 for k ∈ N} ∪ {1, 2, . . . ,n0 − 1}. Clearly U is a
s-γBs -cover, as d({n ∈ N : n = k2 for k ∈ N}) = 0. It is also clear that for any δ > 0, Bδ * Un for infinitely
many n. ThusU can not be a γBs -cover of X.

Example 3.2. Under a changed enumeration the s-γBs -cover U = {Un : n ∈ N} of Example 3.1 may not
remain a s-γBs -cover of X.

First consider a partition {P j : j ∈ N} of A = {12, 22, . . . }, where P1 = {12, 22
} and P j = {( j2 − j + 1)2, ( j2 −

j + 2)2, . . . , ( j2 + j)2
} for j > 1.

Let σ :N→N be the bijection given by

σ(n) =

k + i if n = k2 and n ∈ Pi for some k, i ∈N
(n − k)2 if k2 < n < (k + 1)2 for some k ∈N

and consider the enumeration {Uσ(n) : n ∈ N} of U. Clearly Uσ(n) = (−σ(n), σ(n)) if n = k2 for k ∈ N and
Uσ(n) = (0, σ(n)) if n , k2. Let B = (−1, 1). It is clear that for any sequence {δn : n ∈ N} of positive real
numbersN\A ⊆ {n ∈N : Bδn * Uσ(n)}. Also d({n ∈N : Bδn * Uσ(n)}) , 0 as d(N\A) = 1. Thus {Uσ(n) : n ∈N}
is not a s-γBs -cover of X.

It is also interesting to observe in Example 3.1 that {Uk2 : k ∈ N} is an infinite subset of U which is
not a s-γBs -cover (not even a cover) of X. Generally an infinite subset of a s-γBs -cover is not necessarily a
s-γBs -cover. However, on the positive side, the result holds if we consider any statistically dense subset of
this cover.

Lemma 3.1. A statistically dense subset of a s-γBs -cover of X is again a s-γBs -cover of X.

Proof. Let U = {Un : n ∈ N} be a s-γBs -cover of X. Let {Unk : k ∈ N} be a statistically dense subset
of U. We aim to show that this is again a s-γBs -cover. Assume on the contrary that there is a B ∈ B
such that for any sequence {δn : n ∈ N} of positive real numbers, d({k ∈ N : Bδnk * Unk }) , 0. Since
d({k : Bδnk * Unk }) ≤ d({n ∈ N : Bδn * Un}), it follows that d({n ∈ N : Bδn * Un}) , 0. Which in turn
contradicts thatU is a s-γBs -cover of X.
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The next two observations about the s-γBs -cover will be useful in what follows.

Lemma 3.2. LetB be a bornology on X with closed base and {Un : n ∈N} be a sequence of s-γBs -covers of X, where
Un = {Un

k : k ∈ N}. Then for each n the collectionVn = {U1
k ∩ U2

k . . . ∩ Un
k : Ui

k ∈ Ui, 1 ≤ i ≤ n, k ∈ N} is also a
s-γBs -cover of X.

Proof. Let B ∈ B and fix a positive integer n. For each i = 1, 2, . . . ,n choose a sequence {δi
k : k ∈N} of positive

real numbers such that d(Ti) = 0, where Ti = {k ∈ N : Bδ
i
k * Ui

k}). Choose Vn
k = U1

k ∩ U2
k . . . ∩ Un

k and take
δk = min{δi

k : i = 1, 2, . . . ,n}. We show that d(S) = 0, where S = {k ∈N : Bδk * Vn
k }. If k ∈ S, then Bδk * Vn

k i.e.
Bδ

i
k * Ui

k for some i ∈ {1, 2, . . . ,n}. Clearly S ⊆ ∪n
i=1Ti and d(S) = 0. HenceVn is a s-γBs -cover of X.

Since every γBs -cover is a s-γBs -cover, the next result follows from [8, Lemma 3.4].

Lemma 3.3. Let B be a bornology on X with closed base and U = {Un : n ∈ N} be an open Bs-cover of X. If
V = {Vn : n ∈N} where Vn = ∪n

i=1Ui, thenV is a s-γBs -cover of X.

In the next result we show that s-α4 property lies between S1 and Sfin-type selection properties for some
suitable classes of covers. We will further investigate these types of statistical selection properties in the
final section.

Proposition 3.1. Let B be a bornology on X with closed base. Consider the following statements:
(1) X satisfies S1(s-ΓBs , s-ΓBs );
(2) X satisfies s-α4(s-ΓBs , s-ΓBs );
(3) X satisfies Sfin(s-ΓBs , s-ΓBs ).

Then (1)⇒ (2)⇒ (3) holds.

Proof. We only give proof of (2) ⇒ (3). Let {Un : n ∈ N} be a sequence of s-γBs -covers of X and let
Un = {Un

m : m ∈ N}. By Lemma 3.1 and using (2), there is a subset K = {n1 < n2 < · · · } ofN with d(K) = 1
and a s-γBs cover {Uni

mi
: i ∈ N} such that Uni

mi
∈ Uni , for each i ∈ N (see [12, Theorem 6.1]). If n = ni, choose

Wn = {Uni
mi
} and chooseWn = ∅ otherwise. Clearly ∪n∈NWn is a s-γBs -cover of X andWn is a finite subset

ofUn for each n. Hence (3) holds.

We now present certain implications among the selection principles in the next few results.

Theorem 3.1. Let B be a bornology on X with closed base. The following statements hold:
(1) S1(s-ΓBs ,ΓBs ) = Sfin(s-ΓBs ,ΓBs );
(2) S1(s-ΓBs ,Γ) = Sfin(s-ΓBs ,Γ);
(3) S1(s-Γ,ΓBs ) = Sfin(s-Γ,ΓBs ).

Proof. We only give proof of (1) as the other proofs are analogous. Suppose that X satisfies Sfin(s-ΓBs ,ΓBs )
and {Un : n ∈ N} be a sequence of s-γBs -covers of X. Let Un = {Un

k : k ∈ N} for each n ∈ N. For each
n, consider the collection Vn = {Vn

k : k ∈ N}, where Vn
k = U1

k ∩ U2
k ∩ . . . ∩ Un

k and Ui
k ∈ Ui, i = 1, 2, . . . ,n.

By Lemma 3.2, Vn’s are s-γBs -covers of X. Now applying Sfin(s-ΓBs ,ΓBs ) to {Vn : n ∈ N} to choose a finite
subsetWn ⊆ Vn for each n such that ∪n∈NWn is a γBs -cover of X. Choose a sequence of positive integers
n1 < n2 < · · · such thatWn j \ ∪i< jWni , ∅ for j ∈N.

Now for each j, choose a Vn j

k j
∈ Wn j \ ∪i< jWni . As an infinite subset of a γBs -cover of X is a γBs -cover,

{Vn j

k j
: j ∈ N} is a γBs -cover of X. For 1 6 n 6 n1, define Un = Un

k1
, where Vn1

k1
= U1

k1
∩U2

k1
∩ · · · ∩Un1

k1
and for

each n ∈ (n j,n j+1], define Un = Un
k j+1

, where Vn j+1

k j+1
= U1

k j+1
∩U2

k j+1
∩· · ·∩Un j+1

k j+1
. We show that {Un : n ∈N} ∈ ΓBs .

Let B ∈ B. Since {Vn j

k j
: j ∈N} is a γBs -cover of X, there exist a j0 ∈N and a sequence {δ j : j ≥ j0} of positive

real numbers such that Bδ j+1 ⊆ Vn j+1

k j+1
for all j ≥ j0 i.e. Bδ j+1 ⊆ U1

k j+1
∩U2

k j+1
∩ · · · ∩Un j+1

k j+1
. For each n ∈ (n j,n j+1],

define δn = δ j+1. Thus we have Bδn ⊆ Un for all n ≥ n j0 . Consequently {Un : n ∈ N} is a γBs -cover of X and
hence X satisfies S1(s-ΓBs ,ΓBs ). The other direction is straightforward.
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Theorem 3.2. Let B be a bornology on X with closed base. If X is Bs-Lindelöf, then the following statements hold:
(1) Sfin(s-ΓBs ,Λ) = Ufin(OBs ,Λ);
(2) Sfin(OBs ,Λ) = Sfin(s-ΓBs ,Λ);
(3) Sfin(OBs ,Λ) = Ufin(s-ΓBs ,Λ).

Proof. We prove only (3). Let X satisfy Sfin(OBs ,Λ). Let {Un : n ∈ N} be a sequence of s-γBs -covers of X.
Apply Sfin(OBs ,Λ) to {Un : n ∈N} to choose a finite subsetVn ofUn for each n such that ∪n∈NVn is a large
cover of X. Choose a sequence 1 = k1 < k2 < . . . of positive integers and enumerate ∪n∈NVn as {Vi : i ∈N},
whereVn = {Vi : kn 6 i < kn+1}. Since each x belongs to infinitely many Vi’s, it follows that each x belongs
to ∪Vn for infinitely many n. Clearly {∪Vn : n ∈N} is a large cover of X and also X satisfies Ufin(s-ΓBs ,Λ).

In the other direction, assume that X satisfies Ufin(s-ΓBs ,Λ). Let {Un : n ∈ N} be a sequence of open
Bs-covers of X. Enumerate each Un bijectively as {Un

k : k ∈ N} and for each n consider the collection
Vn = {Vn

k : k ∈ N} where Vn
k = Un

1 ∪ · · · ∪ Un
k . By Lemma 3.3, each Vn is a s-γBs -cover of X. Apply

Ufin(s-ΓBs ,Λ) to {Vn : n ∈ N} to choose a finite subsetWn of Vn for each n such that {∪Wn : n ∈ N} is a
large cover of X. By deconstructing the members ofWn, we can find a finite subset Zn of Un for each n.
The proof will be complete if we show that ∪n∈NZn is a large cover of X. Let x ∈ X. Now x ∈ ∪Wn for
infinitely many n i.e. for infinitely many n there is a Vn

k ∈ Wn such that x ∈ Vn
k = Un

1 ∪ · · · ∪Un
k . Thus there

is a Un
j ∈ Zn such that x ∈ Un

j for infinitely many n and consequently ∪n∈NZn is a large cover of X.

Theorem 3.3. Let B be a bornology on X with closed base. If X is Bs-Lindelöf, then the following statements hold:
(1) Ufin(OBs ,OBs ) = Ufin(s-ΓBs ,OBs );
(2) Ufin(OBs , s-ΓBs ) = Ufin(s-ΓBs , s-ΓBs );
(3) Ufin(OBs ,O) = Ufin(s-ΓBs ,O);
(4) Ufin(OBs , s-Γ) = Ufin(s-ΓBs , s-Γ);
(5) Ufin(O, s-ΓBs ) = Ufin(s-Γ, s-ΓBs ).

Proof. We prove only (2). Suppose that X satisfies Ufin(s-ΓBs , s-ΓBs ). Let {Un : n ∈ N} be a sequence of
open Bs-covers of X where Un = {Un

k : k ∈ N} for each n. Now for each n ∈ N consider the collection
Vn = {Vn

k : k ∈N}, where Vn
k = Un

1 ∪ · · · ∪Un
k . By Lemma 3.3,Vn’s are s-γBs -covers of X. Apply Ufin(s-ΓBs , s-

ΓBs ) to {Vn : n ∈ N} to find a finite subsetWn ofVn for each n such that {∪Wn : n ∈ N} is a s-γBs -cover of
X. By deconstructing members ofWn, we find a finite subsetZn ofUn for each n. Clearly ∪Wn = ∪Zn for
each n. We show that {∪Zn : n ∈ N} ∈ s-ΓBs . Let B ∈ B. Since {∪Wn : n ∈ N} ∈ s-ΓBs , there is a sequence
{δn : n ∈ N} of positive real numbers such that d({n ∈ N : Bδn * ∪Wn}) = 0 i.e. d({n ∈ N : Bδn * ∪Zn}) = 0.
Consequently {∪Zn : n ∈N} is a s-γBs -cover of X and hence X satisfies Ufin(OBs , s-ΓBs ). The other direction
is straightforward.

Extending [8, Theorem 3.5], we obtain the following game theoretic characterization of S1(s-ΓBs ,ΓBs ).

Theorem 3.4. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies S1(s-ΓBs ,ΓBs );
(2) ONE has no wining strategy in the game G1(s-ΓBs ,ΓBs ).

Proof. It is enough to prove (1) ⇒ (2). Let F be a strategy for ONE in the game G1(s-ΓBs ,ΓBs ). Let the first
move of ONE be F(X), a s-γBs -cover of X enumerated bijectively as {U(n) : n ∈N}. Let for each finite sequence
τ of natural numbers of length at most m, Uτ have been already defined. Now define {U(n1,...,nk ,m) : m ∈ N}
to be F(U(n1), . . . ,U(n1,...,nk)) \ {U(n1), . . . ,U(n1,...,nk)}, where the enumeration {U(n1,...,nk,m) : m ∈N} is bijective. It is
clear that for each finite sequence τ of natural numbers, {Uτ_(m) : m ∈ N} is a s-γBs -cover of X. Now using
(1) and proceeding as in [8, Theorem 3.5], we can conclude that F is not a wining strategy for ONE.

Likewise the following characterization can be obtained.

Theorem 3.5. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies S1(s-ΓBs ,Γ);
(2) ONE has no wining strategy in the game G1(s-ΓBs ,Γ).
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Combining with Theorem 3.4, we obtain the following characterization related to the αi-properties.

Theorem 3.6. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies α2(s-ΓBs ,ΓBs );
(2) X satisfies α3(s-ΓBs ,ΓBs );
(3) X satisfies α4(s-ΓBs ,ΓBs );
(4) X satisfies S1(s-ΓBs ,ΓBs );
(5) ONE does not have a wining strategy in G1(s-ΓBs ,ΓBs ).

Proof. We give only proof of the following implications. The other implications follow from the standard
argument.

(3)⇒ (4) Let {Un : n ∈N} be a sequence of s-γBs -covers of X andUn = {Un
m : m ∈N}, n ∈N.

By Lemma 3.2, Vn = {Vn
m : m ∈ N} ∈ s-ΓBs for each n where Vn

m = U1
m ∩ U2

m ∩ . . . ∩ Un
m. Apply (3) to

obtain a sequence 1 = n0 < n1 < n2 < · · · of positive integers such that V = {Vni
mi

: i ∈ N} is a γBs -cover,
where Vni

mi
∈ Vni for each i. Now for each i > 0, each j with ni < j ≤ ni+1, consider Vni+1

mi+1
= U1

mi+1
∩ . . . ∩Uni+1

mi+1

and let U j = U j
mi+1

. Clearly {U j : j ∈N} is a γBs -cover of X.
(5) ⇒ (1) Let {Un : n ∈ N} be a sequence of s-γBs -covers of X. Let Un = {Un

m : m ∈ N}. We define a
strategy σ for ONE in the game G1(s-ΓBs ,ΓBs ) as follows. Let the first move of ONE be σ(∅) = U1. TWO
chooses U1

mi1
∈ U1. Now by Lemma 3.2, {U1

m ∩U2
m : m ≥ mi1 } is a s-γBs -cover of X. Let the second move of

ONE be σ(U1
mi1

) = {U1
m ∩U2

m : m ≥ mi1 }. TWO chooses U1
mi2
∩U2

mi2
and so on.

Since the play σ(∅), U1
mi1

, σ(U1
mi1

), U1
mi2
∩ U2

mi2
. . . in G1(s-ΓBs ,ΓBs ) is lost by ONE, the collection

{U1
mi1
,U1

mi2
,U2

mi2
. . . } is a γBs -cover, which contains infinitely many elements of Un for each n. Hence X

satisfies α2(s-ΓBs ,ΓBs ).

Quite similarly the following characterization can be obtained.

Theorem 3.7. Let B be a bornology on X with closed base. The following conditions are equivalent:
(1) X satisfies α2(s-ΓBs ,Γ);
(2) X satisfies α3(s-ΓBs ,Γ);
(3) X satisfies α4(s-ΓBs ,Γ);
(4) X satisfies S1(s-ΓBs ,Γ);
(5) ONE does not have a wining strategy in G1(s-ΓBs ,Γ).

3.2. The s-Bs-Hurewicz Property

We now define the statistically-strong-B-Hurewicz property and the corresponding game.

Definition 3.2. Let B be a bornology on X with closed base. X is said to have the statistically-strong-B-
Hurewicz property (in short, s-Bs-Hurewicz property) if for each sequence {Un : n ∈N} of open Bs-covers
of X, there is a sequence {Vn : n ∈ N} whereVn is a finite subset ofUn for each n ∈ N such that for every
B ∈ B there exists a sequence {δn : n ∈ N} of positive real numbers satisfying d({n ∈ N : Bδn * U for any
U ∈ Vn}) = 0.

Definition 3.3. The statistically-strong-B-Hurewicz game (in short, s-Bs-Hurewicz game) on X is defined
as follows. Two players named ONE and TWO play an infinite long game. In the n-th inning ONE selects
an open Bs-cover Un of X, TWO responds by choosing a finite set Vn ⊆ Un. TWO wins the play: U1,
V1,U2,V2, . . . ,Un,Vn, . . . if for each B ∈ B there exists a sequence {δn : n ∈ N} of positive real numbers
satisfying d({n ∈N : Bδn * U for any U ∈ Vn}) = 0. Otherwise ONE wins.

We now present an example of a space having the s-Bs-Hurewicz property.
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Example 3.3. The space X = R2 together with the Euclidean metric d and the bornology B generated by
{S(0, r) : r > 0}, where S(0, r) is an open ball centred at 0 with radius r, has the s-Bs-Hurewicz property. To
see this, let {Un : n ∈ N} be a sequence of open Bs-covers of X. Then clearly for each k ∈ N, there is a
U ∈ Un such that S(0, k) ⊆ U, where S(0, k) ∈ B.

Consider a sequence of positive integers k1 < k2 < · · · . For each n ∈ N, choose a Un ∈ Un such that
S(0, kn) ⊆ Un and defineWn = {Un}. We show that {Wn : n ∈N}witnesses the s-Bs-Hurewicz property. Let
B ∈ B. SinceU = {S(0,n) : n ∈N} is a s-γBs -cover, for B ∈ B there is a sequence {δn : n ∈N} of positive real
numbers satisfying d({n ∈ N : Bδn * S(0,n)}) = 0. We show that d({n ∈ N : Bδn * U for any U ∈ Wn}) = 0.
Observe that if for n ∈ N, Bδn * U for any U ∈ Wn then Bδn * S(0, kn) i.e. Bδn * S(0,n) as n ≤ kn. Clearly
{n ∈ N : Bδn * U for any U ∈ Wn} ⊆ {n ∈ N : Bδn * S(0,n)} and d({n ∈ N : Bδn * U for any U ∈ Wn}) = 0.
The conclusion now follows.

We now give an example of a space without the s-Bs-Hurewicz property (see [8, Example 4.2]).

Example 3.4. Let X be the Baire space with the bornology B = F . Choose a sequence {Un : n ∈N} of open
Bs-covers of X, whereUn = {Un

m : m ∈ N} and Un
m = { f ∈ X : f (n) ≤ m}. In order to show that the sequence

{Un : n ∈ N} fails to witness the s-Bs-Hurewicz property, let {Vn : n ∈ N} be any sequence, whereVn is a
finite subset ofUn for each n. Let h ∈ X be such that h(n) > 2 ·max{m : Un

m ∈ Vn}. Choose f , 1 ∈ X in such
a way that h = f + 1. Clearly max{ f (n), 1(n)} ≥ 1

2 h(n) and hence { f , 1} * Un
m for each Un

m ∈ Vn and each n.
Let B = { f , 1} ∈ B. Thus for any sequence {δn : n ∈ N} of positive real numbers {n ∈ N : Bδn * Un

m for any
Un

m ∈ Vn} =N. Since d(N) = 1, it follows that X does not have the s-Bs-Hurewicz property.

Next we introduce the notion of statistically-strong-B-groupable cover.

Definition 3.4. LetB be a bornology on X with closed base. An open coverU of X is said to be statistically-
strong-B-groupable (in short, s-Bs-groupable) if it can be expressed as a union of countably many finite
pairwise disjoint sets Un such that for each B ∈ B there exists a sequence {δn : n ∈ N} of positive real
numbers satisfying d({n ∈N : Bδn * U for any U ∈ Un}) = 0.

The collection of all s-Bs-groupable covers is denoted by s-O1p
Bs . Clearly every Bs-groupable cover is

s-Bs-groupable.
Using the techniques of [9, Note 2.2] and [12, Theorem 3.5], we show that under certain condition the

s-Bs-Hurewicz property is equivalent to the selection hypothesis Sfin(OBs , s-O1p
Bs ) (see also [10]).

Theorem 3.8. Let B be a bornology on X with closed base and CDRSub(OBs ,OBs ) hold. The following statements
are equivalent:

(1) X has the s-Bs-Hurewicz property;
(2) X satisfies Sfin(OBs , s-O1p

Bs ).

Proof. (1)⇒ (2) Let {Un : n ∈ N} be a sequence of open Bs-covers of X. Since X satisfies CDRSub(OBs ,OBs ),
we can assume thatUn’s are pairwise disjoint. Since X has the s-Bs-Hurewicz property, there is a sequence
{Vn : n ∈ N} of finite sets withVn ⊆ Un for each n such that for B ∈ B there exists a sequence {δn : n ∈ N}
of positive real numbers with d({n ∈ N : Bδn * U for any U ∈ Vn}) = 0. Since Vn’s are pairwise disjoint,
{Vn : n ∈N}witnesses the s-Bs-groupability of ∪n∈NVn. Hence X satisfies Sfin(OBs , s-O1p

Bs ).
(2) ⇒ (1) Let {Un : n ∈ N} be a sequence of open Bs-covers of X and Un = {Un

l : l ∈ N} for each n.
ConsiderVn = {U1

l1
∩U2

l2
∩ . . .∩Un

ln
: n < l1 < · · · < ln} for each n. By [8, Lemma 3.1] and [8, Proposition 3.1],

Vn is an open Bs-cover of X for each n. Now we apply Sfin(OBs , s-O1p
Bs ) to the sequence {Vn : n ∈ N} and

obtain a sequence {Fn : n ∈ N} of pairwise disjoint finite sets such that Fn ⊆ Vn for each n and ∪n∈NFn is a
s-Bs-groupable cover of X. So there is a sequence {Hk : k ∈ N} of pairwise disjoint finite subsets of ∪n∈NFn
such that for B ∈ B there exists a sequence {δk : k ∈N} of positive real numbers for which d({k ∈N : Bδk * H
for any H ∈ Hk}) = 0.

Define Ai = {k ∈N : Hk ⊆ ∪ j>iF j} for each i ∈N. Since each F j’s are finite andHk’s are pairwise disjoint
sets, each Ai is cofinite and so d(Ai) = 1. Also A1 ⊇ A2 ⊇ A3 ⊇ · · · . Choose a m1 ∈ A1 such that m1 > 1.
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Choose a m2 ∈ A2 with m2 > m1 in such a way that for all n > m2, |A1(n)|
n > 1

2 and so on. Thus we obtain a
sequence m1 < m2 < . . . of positive integers such that mi ∈ Ai and |Ai(n)|

n > i−1
i for every n > mi. We now

define a subset K of positive integers as follows. k ∈ K if k ∈ (1,m1] ∩ A1. Also for i > 1, k ∈ K if and only
if k ∈ (mi,mi+1] ∩ Ai. We write K = {k1 < k2 < · · · }. It is easy to verify that d(K) = 1. For the finite number
of elements k of K coming from A1, we take the set of all U1

l , the first components in the representation of
elements ofHk and denote that collection byG1. Again for the next finite numbers of element k of K coming
from A2, we take the set of all U2

l , the second component in the representation of the elements of Hk as
Hk ⊆ ∪ j>2F j. We denote that collection by G2. Continuing in this way we obtain a sequence {Gn : n ∈ N}
where Gn is a finite subset ofUn for each n.

We observe that d({kn ∈ K : Bδkn * H for any H ∈ Hkn }) = 0 and hence d({kn ∈ K : Bδkn ⊆ H for some H ∈
Hkn }) = 1 as d(K) = 1. Also it follows that d({kn ∈ K : Bδkn ⊆ H for some H ∈ Hkn }) 6 d({n ∈ N : Bδkn ⊆

H for some H ∈ Hkn }), i.e. d({n ∈N : Bδkn ⊆ H for some H ∈ Hkn }) = 1.
We now choose σn = δkn for each n. Clearly d({n ∈ N : Bσn ⊆ G for some G ∈ Gn}) = 1 and hence

d({n ∈N : Bσn * G for any G ∈ Gn}) = 0. Consequently {Gn : n ∈N}witnesses the s-Bs-Hurewicz property
of X for {Un : n ∈N}. Thus (1) holds.

Remark 3.1. We do not require the assumption CDRSub(OBs ,OBs ) to prove the implication (2)⇒ (1). We do
not know whether the other direction can be obtained without this assumption.

The intent of the next result is to show that under certain condition, a countable openBs-cover becomes
s-Bs-groupable. In the following result we use the fact that if U = {Un : n ∈ N} is an open Bs-cover, then
for each B ∈ B there are positive real numbers δn > 0 and Un ∈ U such that Bδn ⊆ Un for infinitely many n
and conversely (see [8, Proposition 3.1]). Thus for any finite subsetV ofU,U \V is also an openBs-cover
of X.

Proposition 3.2. Let B be a bornology on X with closed base. If ONE has no wining strategy in the s-Bs-Hurwicz
game on X, then every countable open Bs-cover of X is s-Bs-groupable.

Proof. Let U be a countable open Bs-cover of X. Consider the following strategy σ for ONE in the s-Bs-
Hurewicz game on X. Let the first move of ONE be σ(∅) =U. TWO responds with a finite setV1 ⊆ U. The
second move of ONE is σ(V1) =U \V1. TWO responds with a finite setV2 ⊆ σ(V1) and so on.

By our assumption, there is a play σ(∅),V1, σ(V1),V2, . . . which is lost by ONE. So for each B ∈ B there
exists a sequence {δn : n ∈N} of positive real numbers such that d({n ∈N : Bδn * U for any U ∈ Vn}) = 0.

By construction, Vn’s are pairwise disjoint finite sets and hence {Vn : n ∈ N} witnesses the s-Bs-
groupability of ∪n∈NVn. SinceU is countable, we can show thatU is a s-Bs-groupable cover of X.

We end this section with the following game-theoretic implication.

Proposition 3.3. Let B be a bornology on X with closed base. If ONE has no wining strategy in the s-Bs-Hurewicz
game, then ONE has no wining strategy in the game Gfin(OBs , s-O1p

Bs ).

Proof. Let τ be a strategy for ONE in Gfin(OBs , s-O1p
Bs ). We define a strategy σ for ONE in the s-Bs-Hurewicz

game. Let the first move of ONE in the s-Bs-Hurewicz game be σ(∅) = τ(∅). TWO responds with a finite set
V1 ⊂ σ(∅). Let the second move of ONE be σ(V1) = τ(V1) \V1. TWO responds with a finite setV2 ⊆ σ(V1)
and so on.

By our assumption, there is a play σ(∅),V1, σ(V1),V2, . . . which is lost by ONE. Thus for each B ∈ B
there is a sequence {δn : n ∈N} of positive real numbers such that d({n ∈N : Bδn * U for any U ∈ Vn}) = 0.

Clearly ∪n∈NVn is a s-Bs-groupable open cover of X. Now for the strategy τ, consider the play
τ(∅),V1, σ(V1),V2, . . . in Gfin(OBs , s-O1p

Bs ). As ∪n∈NVn is a s-Bs-groupable open cover of X, τ is not a
wining strategy for ONE in Gfin(OBs , s-O1p

Bs ).
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4. Results in Function Spaces

Let B be a bornology on (X, ρ) with closed base and (Y, ρ′) be another metric space. For f ∈ C(X,Y), the
neighbourhood of f with respect to the topology τs

B
of strong uniform convergence on a bornology B is

denoted by

[B, ε]s( f ) = {1 ∈ C(X,Y) : ∃δ > 0, ρ′( f (x), 1(x)) < ε,∀x ∈ Bδ},

for B ∈ B, ε > 0 ([4, 5]).
The symbol 0 denotes the zero function in (C(X), τs

B
) (where C(X) = C(X,R)). Since the function space

(C(X), τs
B

) is homogeneous, it suffices to focus at the point 0 when we deal with local properties of this
space.

Recall that a sequence { fn : n ∈N} of functions in (C(X), τs
B

) s-converges to 0 with respect to τs
B

if for any
neighbourhood [B, ε]s(0), (B ∈ B, ε > 0), d({n ∈N : fn < [B, ε]s(0)}) = 0.

The following lemmas are very useful in our subsequent results.

Lemma 4.1. ([12, Lemma 2.3]) Let B be a bornology on X with closed base. A sequence of functions in (C(X), τs
B

)
is s-convergent if and only if any of its statistically dense subsequence is s-convergent.

Lemma 4.2. ([6, Lemma 2.2]) Let B be a bornology on the metric space (X, ρ). Consider the following statements:
(a) LetU be an open Bs-cover of X. If A = { f ∈ C(X) : ∃U ∈ U, f (x) = 1 for all x ∈ X \U}. Then 0 ∈ A \ A in

(C(X), τs
B

);
(b) Let A ⊆ (C(X), τs

B
) and letU = { f−1(− 1

n ,
1
n ) : f ∈ A}, where n ∈N. If 0 ∈ A and X < U, thenU is an open

Bs-cover of X.

Lemma 4.3. LetB be a bornology on X with closed base. Let { fn : n ∈N} be a sequence in (C(X), τs
B

) that s-converge
to 0. If for each n there is an open set Un in X such that fn(X \Un) = {1}, then {Un : n ∈N} is a s-γBs -cover of X.

Proof. For the neighbourhood [B, 1]s(0), we have d(T) = 0, where T = {n ∈ N : fn < [B, 1]s(0)}. We need to
show that for B ∈ B, there is a sequence {δn : n ∈ N} of positive real numbers for which d(S) = 0, where
S = {n ∈N : Bδn * Un}. First note that f−1

n (−1, 1) ⊆ Un for each n.
If n < T, then fn ∈ [B, 1]s(0) i.e. there is a ηn > 0 with Bηn ⊆ f−1

n (−1, 1) ⊆ Un. Fix a δ > 0. Define δn = δ if
n ∈ T and δn = ηn otherwise. Then n < T implies n < S. Thus we obtain a sequence {δn : n ∈ N} for which
S = T and d(S) = 0. Hence {Un : n ∈N} is a s-γBs -cover of X.

Lemma 4.4. Let B be a bornology on X with closed base. Let { fn : n ∈ N} be a sequence of functions in (C(X), τs
B

).
If { f−1

n (− 1
n ,

1
n ) : n ∈N} is a s-γBs -cover of X, then { fn : n ∈N} s-converges to 0 with respect to τs

B
.

Proof. For B ∈ B there is a sequence {δn : n ∈ N} of positive real numbers for which d(S) = 0, where
S = {n ∈ N : Bδn * fn(− 1

n ,
1
n )}. We now show that for any neighbourhood [B, ε]s(0), d(T) = 0, where

T = {n ∈ N : fn < [B, ε]s(0)}. For ε > 0, choose a n1 such that 1
n1
< ε. Now if n ∈ T \ {1, 2, . . . ,n1 − 1}, then

fn < [B, ε]s(0) i.e. for any ζ > 0, Bζ * f−1
n (−ε, ε) i.e. Bζ * f−1

n (− 1
n ,

1
n ). Choose ζ = δn, then Bδn * f−1

n (− 1
n ,

1
n ).

Clearly n ∈ S and hence T \ {1, 2, . . . ,n1 − 1} ⊆ S. It is now evident that d(T) = 0. Hence { fn : n ∈ N}
s-converges to 0 with respect to τs

B
.

Under certain assumption on a subset of C(X), in the following result we show that every openBs-cover
of X has a s-γBs -subcover.

Proposition 4.1. Let B be a bornology on X with closed base. For A ⊆ (C(X), τs
B

) with 0 ∈ A, if there is a sequence
in A which s-converges to 0, then every open Bs-cover of X contains a s-γBs -cover of X.

Proof. Let U be an open Bs-cover of X. For B ∈ B there exist a UB ∈ U and a δ > 0 such that B2δ
⊆ UB.

Choose a fB ∈ C(X) such that fB(Bδ) = {0} and fB(X \ UB) = {1}. Consider the set A = { fB : B ∈ B}. Clearly
0 ∈ A. By our assumption, there is a sequence { fBn : n ∈ N} s-converging to 0. Clearly {UBn : n ∈ N} is a
s-γBs -cover by Lemma 4.3.
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The statistically strictly Frèchet-Urysohn property of C(X) can be characterized by a S1-type selective
property of X.

Theorem 4.1. Let B be a bornology on X with closed base. The following statements are equivalent:
(1) (C(X), τs

B
) is s-SFU;

(2) X satisfies S1(OBs , s-ΓBs ).

Proof. (1) ⇒ (2) Let {Un : n ∈ N} be a sequence of open Bs-covers of X. For B ∈ B and each n ∈ N,
there are UB,n ∈ Un and δ > 0 such that B2δ

⊆ UB,n. Consider the collection UB,n = {U ∈ Un : B2δ
⊆ U}.

For each U ∈ UB,n choose a fB,U ∈ C(X) such that fB,U(Bδ) = {0} and fB,U(X \ U) = {1}. Now define
An = { fB,U : B ∈ B,U ∈ UB,n} for each n ∈ N. Clearly 0 ∈ An \ An. Apply (1) to the sequence {An : n ∈ N} to
find a fBn,Un ∈ An for each n such that { fBn,Un : n ∈N} s-converges to 0 with respect to τs

B
, where Un ∈ Un for

each n. Clearly {Un : n ∈N} is a s-γBs -cover by Lemma 4.3. Hence X satisfies S1(OBs , s-ΓBs ).
(2) ⇒ (1) Let {An : n ∈ N} be a sequence of subsets of C(X) such that 0 ∈ An \ An for each n ∈ N.

By Lemma 4.2, Un = { f−1(− 1
n ,

1
n ) : f ∈ An} is an open Bs-cover of X for each n ∈ N. Apply (2) to the

sequence {Un : n ∈ N} to obtain a Un ∈ Un for each n such that {Un : n ∈ N} is a s-γBs -cover of X. Now
Un = f−1

n (− 1
n ,

1
n ). By Lemma 4.4, it follows that the sequence { fn : n ∈N} s-converges to 0 with respect to τs

B

and hence (C(X), τs
B

) is s-SFU.

Similar to Proposition 3.1, we can compare the following selective properties in C(X).

Proposition 4.2. Let B be a bornology on X with closed base. Consider the following statements:
(1) (C(X), τs

B
) satisfies S1(s-Σ0, s-Σ0);

(2) (C(X), τs
B

) satisfies s-α4(s-Σ0, s-Σ0);
(3) (C(X), τs

B
) satisfies Sfin(s-Σ0, s-Σ0).

Then (1)⇒ (2)⇒ (3) holds.

Proof. The proof of (1)⇒ (2) is trivial.
(2)⇒ (3) Let {Sn : n ∈ N} be a sequence of elements in s-Σ0. For each n take Sn = { fn,m : m ∈ N}. By (2),

there is a T ∈ s-Σ0 and a (statistically dense) subset K = {n1 < n2 < · · · } ofN with d(K) = 1 such that the set
Sni ∩ T is non empty for each ni ∈ K. Let fni,mi ∈ Sni ∩ T for each ni ∈ K. By Lemma 4.1, the subsequence
{ fni,mi : i ∈ N} is s-convergent to 0. Define Fn = { fni,mi } if n = ni and Fn = ∅ otherwise. The conclusion now
follows from the fact that ∪n∈NFn is s-convergent to 0 and each Fn is a finite subset of Sn.

We now give another sufficient condition for a countable open Bs-cover of X to be s-Bs-groupable
(compare with Proposition 3.2) with the help of s-Reznichenko property of C(X). In the following result we
use the fact that a collectionU of open subsets of X is an open Bs-cover if and only if for each U ∈ U there
is a closed set (may be empty) C(U) ⊆ U such that {C(U) : U ∈ U} is a Bs-cover of X (see [8, Theorem 5.1]).

Proposition 4.3. Let B be a bornology on X with closed base. If (C(X), τs
B

) has the s-Reznichenko property, then
every countable open Bs-cover of X is s-Bs-groupable.

Proof. LetU be a countable open Bs-cover of X. For each U ∈ U there is a closed set C(U) with C(U) ⊆ U
such that {C(U) : U ∈ U} is a Bs-cover of X. Define a continuous function fU on X such that fU(C(U)) = {0}
and fU(X \U) = {1}. Clearly { f−1

U ({0}) : U ∈ U} is aBs-cover of X. We can assume that fU and f ′U are distinct
whenever U and U′ are distinct. Consider the set A = { fU : U ∈ U}. Evidently 0 ∈ A\A. By our assumption,
there is a sequence {An : n ∈ N} of pairwise disjoint finite subsets of A such that for the neighbourhood
[B, 1]s(0), d(T) = 0, where T = {n ∈ N : [B, 1]s(0) ∩ An = ∅}. LetUn = {U : fU ∈ An} for each n. ClearlyUn’s
are pairwise disjoint and finite. Using the fact that d(T) = 0, we can show that {Un : n ∈ N} witnesses the
s-Bs-groupability ofU. This completes the proof.

Theorem 4.2. Let B be a bornology on X with closed base. The following statements are equivalent:
(1) TWO has a wining strategy in the game G1(Ω0, s-Σ0) on (C(X), τs

B
);

(2) TWO has a wining strategy in the game G1(OBs , s-ΓBs ) on X.
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Proof. (1) ⇒ (2) Let ψ be a wining strategy for TWO in G1(Ω0, s-Σ0). We define a strategy σ for ONE in
the game G1(OBs , s-ΓBs ). In the n-th inning, the move of ONE in G1(OBs , s-ΓBs ) is σ(U1, . . . ,Un−1) = Un.
For each B ∈ B, there exist a δ > 0 and a U ∈ Un such that B2δ

⊆ U. Choose a fB,U ∈ C(X) such
that fB,U(Bδ) = {0} and fB,U(X \ U) = {1}. Then the collection An = { fB,U : B ∈ B,U ∈ Un} ∈ Ω0. The
corresponding move of ONE in G1(Ω0, s-Σ0) is ψ( f1, . . . , fn−1) = An. TWO responds with fBn,Un ∈ An
in G1(Ω0, s-Σ0). Correspondingly in G1(OBs , s-ΓBs ), TWO’s response is Un. The play in G1(OBs , s-ΓBs ) is
σ(∅),U1, σ(U1),U2, . . . , σ(U1, . . . ,Un−1),Un . . . and the play in G1(Ω0, s-Σ0) isψ(∅), f1, ψ( f1), f2, . . . , ψ( f1, . . . , fn−1), fn . . . ,
where fn = fBn,Un . Since ψ is a wining strategy for TWO in the play in G1(Ω0, s-Σ0), { fn : n ∈N} ∈ s-Σ0. Now
by Lemma 4.3, σ a wining strategy for TWO in the game G1(OBs , s-ΓBs ).

(2)⇒ (1) Let σ be a wining strategy for TWO in the game G1(OBs , s-ΓBs ). For each n let In = (− 1
n ,

1
n ).

Now define a strategy ψ for ONE in G1(Ω0, s-Σ0). In the n-th inning ONE’s move in G1(Ω0, s-Σ0) is
ψ( f1, . . . , fn−1) = An ∈ Ω0. Then n-th move of ONE in G1(OBs , s-ΓBs ) isU(An) = { f−1(In) : f ∈ An}, by Lemma
4.2. TWO responds with Un ∈ U(An). TWO’s move in G1(Ω0, s-Σ0) is fn, where Un = f−1

n (In).
Similarly, by using Lemma 4.4, we can show that ψ is a wining strategy for TWO in G1(Ω0, s-Σ0).

Translating [8, Theorem 5.6] into the language of statistical convergence, we obtain the following result.

Proposition 4.4. Let B be a bornology on X with closed base.
(1) If ONE has no wining strategy in the game G1(OBs , s-O1p

Bs ) on X, then (C(X), τs
B

) satisfies S1(Ω0, s-Ω1p0 );

(2) If ONE has no wining strategy in the game Gfin(OBs , s-O1p
Bs ) on X, then (C(X), τs

B
) satisfies Sfin(Ω0, s-Ω1p0 ).

With the help of Propositions 3.3 and 4.4, we mention our final result without proof.

Proposition 4.5. Let B be a bornology on X with closed base. If ONE has no wining strategy in the s-Bs-Hurewicz
game on X, then (C(X), τs

B
) satisfies Sfin(Ω0, s-Ω1p0 ) i.e. countable fan tightness and the s-Reznichenko property.
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[13] G. Di Maio, Lj.D.R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal. 2011 (2011) Article ID 420419.
[14] R. Engelking, General Topology, (2nd edition), Sigma Ser. Pure Math., Vol. 6, Heldermann, Berlin, 1989.
[15] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
[16] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amsterdam, 1977.
[17] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73 (1996) 241–266.
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