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Abstract. The dynamical systems on the classical fractals can naturally be obtained with the help of their
iterated function systems. In the recent years, different ways have been developed to define dynamical
systems on the self similar sets. In this paper, we give composition functions by using expanding and folding
mappings which generate the classical Sierpinski Gasket via the escape time algorithm. These functions
also indicate dynamical systems on this fractal. We express the dynamical systems by using the code
representations of the points. Then, we investigate whether these dynamical systems are topologically
conjugate (equivalent) or not. Finally, we show that the dynamical systems are chaotic in the sense of
Devaney and then we also compute and compare the periodic points.

1. Introduction

Fractals are one of the popular research subjects and have a great importance because of the different
applications (see [9, 11, 13, 15, 18, 19]). Moreover, there is a strong relationship between chaos, fractals
and dynamical systems. Thus, there also have been many studies involving these subjects in common
(see [1, 3, 4, 8, 10, 17, 22, 24]). For instance, Barnsley defined a dynamical system on the right Sierpinski
triangle in [4] through the related iterated function systems and by using this manner, many dynamical
systems can be constructed on the different fractals. There are also different ways to define any dynamical
systems on the fractals considering their structures. For example, the Cantor set, Cantor dust, the classical
Sierpinski gasket (S), the right Sierpinski gasket, the Koch curve, the Vicsek fractal and the Sierpinski
carpet are obtained by using the composition functions defined in [2] via escape time algorithm and these
composition functions also state dynamical systems on the related fractal sets. Moreover, the dynamical
systems can be expressed by using the code representations of the points on these fractals. In order to show
that whether a dynamical system is chaotic or not, we need an intrinsic metric defined on the code set of
the fractal set. The intrinsic metrics on the classical fractals such as the Sierpinski gasket, Sierpinski-like
gasket, Sierpinski tetrahedron, Sierpinski gasket SG(3) and Vicsek fractal have been recently defined in
[3, 12, 20, 21, 23, 25] by using the code representations of their points. The geometrical and topological
properties of these fractals can be expressed more clearly (see [12, 23, 26]) thanks to these intrinsic metrics.
Moreover, it is more understandable to show that the dynamical systems defined on the Sierpinski gasket
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and the Sierpinski tetrahedron are chaotic by using the intrinsic metric (see [3, 24]). Note that, the chaotic
dynamical system {S; F} given in [24] is constructed by using expanding and folding mappings (see Figure
1) and also the composition function F is defined as follows:

F = f4 ◦ f3 ◦ f2 ◦ f1 (1)

where f1, f2, f3, f4 : R2
→ R2 such that,
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This function is expressed on the code set of the Sierpinski gasket in the following proposition (for details
see [24]). Thus, it is easily shown that {S; F} is chaotic dynamical system by using Proposition 1.2.

Definition 1.1. Let X be a point on S which is denoted by x1x2x3 . . . xi . . . where xi ∈ {0, 1, 2}, i ∈ N. The
sequence x1x2x3 . . . xi . . . is called a code representation of the point X ∈ S (for details see [24]).

Proposition 1.2. If x1x2x3 . . . is the code representation of an arbitrary point X of S, then the function F : S → S
defined in (1) is expressed by F(X) = Y such that the code representation of Y is y1y2y3 . . ., where yi ≡ xi+1+x1 ( mod 3)
for xi, yi ∈ {0, 1, 2} and i = 1, 2, 3, . . ..
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Figure 1: The functions f1, f2, f3, f4 on S.

In the present paper, we first define new functions G and T, by using different folding mappings in (3)
and (8) respectively. Note that, the functions G and T generate the classical Sierpinski gasket via escape
time algorithm, although F do not give. We express the functions G and T on the code set of the Sierpinski
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gasket in Proposition 3.1 and Proposition 4.1. Moreover, we show that {S; G} is chaotic in Theorem 3.2 and
we conclude that {S; T} is also chaotic dynamical system in Corollary 4.5. To this end, we use Proposition
4.4 which states that these dynamical system are topologically conjugate. On the other hand, we determine
that {S; G} and {S; T} are not topologically conjugate with {S; F} in Corollary 3.3.

2. Preliminaries

We now recall the definition of chaotic dynamical systems, equivalent (in other words topologically
conjugate) dynamical systems and the intrinsic metric formula on the Sierpinski gasket by using the code
representation of the points.

Definition 2.1. Let (X, d) be a metric space. A transformation f : X → X is a dynamical system and
represented by {X; f } (see [4]).

Definition 2.2. If a dynamical system {X; f } satisfies the following three conditions, then it is chaotic in the
sense of Devaney:

Sensitivity dependence on the initial condition: there exists ε > 0 such that, for any x ∈ X and any ball
B(x, δ) with radius δ > 0, there is y ∈ B(x, δ) and an integer n ≥ 0 satisfying d( f n(x), f n(y)) > ε.

Topologically transitive: for any open subsets U and V of the metric space (X, d), there exists an integer
n such that U ∩ f n(V) , ∅.

Density of periodic points: there exist periodic points of f which is sufficiently close to any point of X
(see [8]).

Definition 2.3. Two dynamical systems {X1; f1} and {X2; f2} are said to be equivalent or topologically con-
jugate, if there is a homeomorphism θ : X1 → X2 such that f2 = θ ◦ f1 ◦ θ−1 (or that means ∀x ∈ X1,
θ( f1(x)) = f2(θ(x))). In this case, f1 and f2 are called conjugate maps and θ is called a conjugacy (see [4]).

In order to compare the dynamical systems, we also use the following proposition.

Proposition 2.4. ([14]) If f : X → X and 1 : Y → Y are conjugate maps via a conjugacy h : X → Y such that
h ◦ f = 1 ◦ h, then

• h ◦ f n = 1n
◦ h for n = 1, 2, 3, . . . .

• If x∗ is a point of period n for f , then h(x∗) is a point of period n for 1. That means {x1, x2, . . . , xn} is a cycle of
period n for f if and only if {h(x1), . . . , h(xn)} is a cycle of period n for 1.

• f is transitive if and only if 1 is transitive.

• f has a dense set of periodic points if and only if 1 has a dense set of periodic points.

To define intrinsic metrics on a fractal set is a substantial matter. As seen from the literature, the intrinsic
metrics can be defined on the same sets with different ways ( see [6, 7, 16, 25]). In this study, we use the
following intrinsic metric defined in [25] by using the code representations of the point on the classical
Sierpinski Gasket.

Theorem 2.5. Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be two representations respectively of the points
A and B on the equilateral Sierpinski Gasket such that ai = bi for i = 1, 2, . . . , k − 1 and ak , bk. The distance d(A,B)
between A and B is determined by the following formula:

d(A,B) = min
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i=k+1
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where

αi =

{
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{
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,
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{
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1, otherwise , δi =

{
0, bi , bk and bi , ak
1, otherwise .
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3. The Construction of a Chaotic Dynamical System on S which is not Equivalent to {S; F}

In this section, we firstly define a composition function G by using an expanding and two folding
mappings. Then, we express this function on the code set of Sierpinski Gasket and we show that this
dynamical system is chaotic in the sense of Devaney. Finally, we compare the dynamical systems {S; G} and
{S; F} by means of the topological conjugacy.

Suppose that the composition function G is defined as

G = 13 ◦ 12 ◦ 11 (3)

where 1i : R2
→ R2 (i = 1, 2, 3) such that
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The function 11 is an expanding mapping. The function 12 is a folding mapping with respect to the line
y = −

√
3

3 x + 2
√

3
3 that moves the points from the upper hand side of this line to the lower hand side. The

function 13 is also a folding mapping that moves the points from the right hand side of the line x = 1 to
the left hand side. Obviously {S; G} is a dynamical system. Since it is difficult to show that whether this
dynamical system is chaotic or not by using the equation (3), we express this function on the code set of the
Sierpinski Gasket with following proposition.

Proposition 3.1. Let x1x2x3 . . . and y1y2y3 . . . be the code representations of the points X and Y respectively for
xi, yi ∈ {0, 1, 2} and i = 1, 2, 3, . . . where the function G : S→ S defined in (3) is expressed by G(X) = Y such that

if x1 = 0, then
G(x1x2x3 . . .) = x2x3x4 . . .

if x1 = 1, then there are two cases:
Case 1:

G(111 . . . 10xk+1xk+2xk+3 . . .) = y1y2y3 . . . ykyk+1 . . .

yi =


0, xi+1 = 1
1, xi+1 = 0
2, xi+1 = 2

(i ≥ 1),

Case 2:
G(111 . . . 12xk+1xk+2xk+3 . . .) = y1y2y3 . . . ykyk+1 . . .

yi =


0, xi+1 = 1
1, xi+1 = 2
2, xi+1 = 0

(i ≥ 1),

(Note that, due to the above rules, G(1) = 0 is obtained).
if x1 = 2, then

G(x1x2x3 . . .) = y1y2y3y4 . . . , yi =


0, xi+1 = 2
1, xi+1 = 1
2, xi+1 = 0

(i ≥ 1).

Proof. We must show that the function G is well defined on the code set of the Sierpinski Gasket. According
to the cases of x1, the four different rules are valid (see Figure 2, Figure 3, Figure 4 and Figure 5). If X has
unique code representation, then G(X) has also. Suppose that X has two different code representations such
as x1x2x3 . . . xnαβββ . . . and x1x2x3 . . . xnβααα . . . . There are two different code representations of some points
such as 01, 10, 02, 20, 12, 21, 001, 010, 012, 021, 002, 020, 110, 101, 120, 102, 112, 121, 202, 220, 212, 221, 201, 210.
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Figure 2: The images of the code sets S0, S0x2 and S0x2x3 under G
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Figure 3: The images of the code sets S10, S110, S1110 under G
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The images of these points are

G(01) = 1,
G(10) = 1,

G(02) = 2,
G(20) = 2,

G(12) = 1,
G(21) = 1,

G(010) = 10,
G(001) = 01,

G(020) = 20,
G(002) = 02,

G(012) = 12,
G(021) = 21,

G(110) = 01,
G(101) = 10,

G(112) = 01,
G(121) = 10,

G(120) = 12,
G(102) = 12,

G(202) = 20,
G(220) = 02,

G(212) = 10,
G(221) = 01,

G(201) = 21
G(210) = 12

.
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Figure 4: The images of the code sets S12, S112, S1112 under G

According to the above results, we can clearly see that the images of different code representations of
any points indicate the same points on the Sierpinski Gasket. Since there are all possible cases for the
function G, it is enough to investigate the images of the above points. By this means, we can determine the
images of any other points. In the general form, if σ = x1x2x3 . . . xn,where xn ∈ {0, 1, 2} then σαβ and σβα are
the different code representations of same points and thus the images of these pairs of points indicate the
same addresses independently of σ.
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Figure 5: The images of the code sets S2, S2x2 ve S2x2x3 under G

By using the intrinsic metric defined in [25], we show that the dynamical system {S; G} is chaotic in the
sense of Devaney.

Theorem 3.2. The dynamical system {S; G} is chaotic in the sense of Devaney.

Proof. Initially, we prove that G is sensitive dependence to initial conditions. Let A ∈ S be an arbitrary point
whose code representation is a1a2 . . . ak−1akak+1 . . . where ak ∈ {0, 1, 2} for k ∈N. For any δ, there exists k ∈N
which satisfies 1

2k−2 < δ. If a point B ∈ S with the code representation a1a2 . . . ak−1bkbk+1 . . . is chosen, where
bi , ak for i = k, k + 1, k + 2, . . . , then one can easily show that

d(A,B) < δ

from the intrinsic metric given in (2). Note that the images of the different sth (s ≥ k) terms of A and B under
the Gk−1 are different. Therefore, the images of points A and B under Gk−1 are

Gk−1(A) = C

Gk−1(B) = D,

where dk , ck and dk+i , ck (i = 1, 2, 3, . . . ), the code representations of C and D are ckck+1ck+2 . . . and
dkdk+1dk+2 . . . respectively and we get the desired result as follows:

d(Gk−1(A),Gk−1(B)) ≥
1
2
.
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In order to show that G is topologically transitive, consider nonempty open sets U and V in S. For any
A ∈ U with the code representation a1a2 . . . ak . . ., there is a natural number k such that B(A, 1

2k−1 ) ⊂ U. Easy
calculations show that

U′ = {a1a2 . . . akxk+1xk+2xk+3 . . . | a1, . . . , ak are fixed} ⊆ B(A,
1

2k−1
)

where xi ∈ {0, 1, 2} are arbitrary for i = k+1, k+2, k+3, . . .. Since y j are determined according to the arbitrary
x j where j = k + 1, k + 2, k + 3, . . . , the image of U′ under Gk is obtained as

Gk(U′) = {yk+1yk+2yk+3 . . . |yi ∈ {0, 1, 2}, i = k + 1, k + 2, . . .}.

Hence, we get Gk(U′) = S and Gk(U) = S. That is, there exists k ∈Nwhich satisfies

Gk(U) ∩ V , ∅.

For an arbitrary element A ∈ S and open subset U ⊆ S, there exists k ∈ N such that B(A, 1
2k−1 ) ⊂ U. Let

us define
U′ = {a1a2 . . . akxk+1xk+2 . . . |ai are fixed and x j are arbirtrary }

for every i = 1, 2, . . . , k and j = k+1, k+2, . . . .We know that U′ ⊂ B
(
A, 1

2k−1

)
, and thus, by using the definition

of G, we obtain y j corresponding to arbitrary x j for j = k + 1, k + 2, k + 3, . . . such that

Gk({a1a2 . . . akxk+1xk+2 . . .}) = {yk+1yk+2yk+3 . . .}.

Consequently, we have ai = yk+i and xk+i = y2k+i for i = 1, 2, 3, . . . , k. This shows that there are k− periodic
points in any neighbourhood of A. This completes the proof.

3.1. The Computation of the Periodic Points of G

We now compute the periodic points of G. Let the code representation of a point A on S be a1a2a3a4 . . ..
We must solve

G(a1a2a3a4 . . .) = a1a2a3a4 . . .

to determine all fixed points. For the different values of a1, the different rules of G are valid.
• If a1 = 0, then the previous equations gives:

G(0a2a3 . . . ak . . .) = a2a3a4 . . . ak+1 . . . = a1a2a3 . . . ak+1 . . . . (4)

By using the equation (4), we find a2 = a3 = a4 = · · · = ak+1 = · · · = 0. Thus one of the fixed points is
0 = 000 . . . .
• If a1 = 1, then there are two cases:

G(1a2a3 . . . ak . . .) = b1b2b3 . . . bk . . . = 1a2a3 . . . ak . . . (5)

and we therefore get b1 = a1 = 1, b2 = a2, b3 = a3 and so on.
If we consider Case 1 given in Proposition 3.1, we get a2 = 0 and b2 = a2 = 0, since b1 = 1. It follows that

a3 = 1, b3 = a3 = 1 and a4 = 0. So, by solving the equation (5), we find

ai =

{
1, if i is odd
0, if i is even.

So, another fixed point of G is 10 = 101010 . . ..
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If we consider Case 2 given in Proposition 3.1, then we obtain a2 = 2 since b1 = 1. So, we have b2 = a2 = 2
and then a3 = 0, b3 = a3 = 0 and a4 = 1. So, by solving (5) we compute for k = 0, 1, 2, . . . ,

ai =


1, if i = 3k + 1
2, if i = 3k + 2
0, if i = 3k + 3.

It means that 120 = 120120 . . . is also a fixed point of G.
• If a1 = 2, then

G(2a2a3 . . . ak . . .) = b1b2b3 . . . bk . . . = 2a2a3 . . . ak . . . (6)

and from the rule of G,we get b1 = 2, b2 = a2, b3 = a3 . . . . Because of b1 = 2, it follows that a2 = 0, b2 = a2 = 0,
b3 = a3 = 2 and a4 = 0. If we solve the equation (6), then we find

ai =

{
2, if i is odd
0, if i is even

and the fourth fixed point is 20 = 2020 . . . . Hence, we observe that G has a number of fixed points different
from F defined in (1).

Any periodic points can be calculated in a similar fashion. For example, the 2− periodic points of G are
computed as

•0220 = 02200220 . . . , •0110 = 01100110 . . .

•011220 = 011220011220 . . . , •112200 = 112200112200 . . .

•1100 = 11001100 . . . , •1020 = 10201020 . . .

•1210 = 12101210 . . . , •2200 = 22002200 . . . .

In order to compute any 2−periodic points of G, we must solve the following equation

G2(a1a2a3a4 . . .) = a1a2a3a4 . . . .

For example, if a1 = 0, then

G2(0a2a3 . . . ak . . .) = G(a2a3a4 . . . ak+1 . . .) = 0a2a3 . . . ak . . . .

Depending on a2, the valid rule is determined. If a2 = 2, then we solve the equation

G2(02a3 . . . ak . . .) = G(2a3a4 . . . ak+1 . . .) = 02a3 . . . ak . . . . (7)

Hence, we calculate a3 = 2, a4 = 0, a5 = 0, a6 = 2. By the equation (7), we obtain one of the 2− periodic point
0220 and others can be obtained in the same way.

Corollary 3.3. The dynamical systems {S; F} and {S; G} are not topologically conjugate or equivalent.

Proof. These dynamical systems have different number of fixed points. Thus, according to Proposition 2.4,
they are not topologically conjugate or equivalent.
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4. The Construction of a Chaotic Dynamical System on the Sierpinski Gasket which is Equivalent to
{S; G}

By using expanding and folding maps, we define a new function T different from F and G on the
Sierpinski gasket. Let ti : R2

→ R2, (i = 1, 2, 3, 4)

t1(x, y) =
(
2x, 2y

)
t2(x, y) =

(
1
2

∣∣∣∣ x−y
√

3
2

∣∣∣∣ +
√

3
2

(
y+x
√

3
2

)
,

y+x
√

3
4 −

√
3

2

∣∣∣∣ x−y
√

3
2

∣∣∣∣)
t3(x, y) =

(
1 + |x − 1| , y

)
t4(x, y) =

(
x − 1, y

)
.

Thus, the composition function T on the Sierpinski Gasket is defined such that

T = t4 ◦ t3 ◦ t2 ◦ t1. (8)

The mapping t1 doubles the Sierpinski gasket, while t2 and t3 are folding mappings that take the points
from the left hand sides of the lines y =

√
3

3 x and x = 1 to the right hand sides respectively. Also, t4 is a
translation mapping. This shows that T states a dynamical system on the Sierpinski gasket and {S; T} is
expressed on the code set of the Sierpinski gasket in the following proposition.

Proposition 4.1. Suppose that x1x2x3 . . . and y1y2y3 . . . are the code representations of the points X and Y respectively
for xi, yi ∈ {0, 1, 2} and i = 1, 2, 3, . . .. Then the function T : S→ S defined in (8) is expressed by T(X) = Y as follows:

If x1 = 0, then there are two cases:
Case 1:

T(000 . . . 01xk+1xk+2xk+3 . . .) = y1y2 . . . ykyk+1 . . .

yi =


0, xi+1 = 1
1, xi+1 = 0
2, xi+1 = 2

(i ≥ 1).

Case 2:
T(000 . . . 02xk+1xk+2xk+3 . . .) = y1y2 . . . ykyk+1 . . .

yi =


0, xi+1 = 2
1, xi+1 = 0
2, xi+1 = 1

(i ≥ 1).

(Note that, due to the above rules, T(0) = 1 is obtained).
If x1 = 1, then

T(x1x2x3 . . .) = x2x3x4 . . . .

If x1 = 2, then

T(x1x2x3 . . .) = y1y2y3 . . . , yi =


1, xi+1 = 2
2, xi+1 = 1
0, xi+1 = 0

(i ≥ 1).

Proof. Depending on the cases of x1, the four different rules must be applied (see Figure 6, Figure 7, Figure
8, Figure 9). If X has unique code representation, then the result is obvious. If X has two different code
representations such as x1x2x3 . . . xnαβββ . . . and x1x2x3 . . . xnβααα . . . , it is enough to check the images of
01, 10, 02, 20, 12, 21, 001, 010, 012, 021, 002, 020 110, 101, 120, 102, 112, 121, 202, 220, 212, 221, 201, 210.
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Figure 6: The images of the code sets S01, S001, S0001 under T

The images of these points under T according to the rules given in Proposition 4.1 are obtained as
follows:

y

x0 1

2

3

y

x0 1

2

3

3

x

1
t

2
t

y

1

2

3

2

x0

y

0 1

2

3

2

3
t

1

2

3

0

y

x

4
t

3

3
y x=

1x =

Figure 7: The images of the code sets S02, S002, S0002 under T
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T(01) = 0,
T(10) = 0,

T(02) = 0,
T(20) = 0,

T(12) = 2,
T(21) = 2,

T(001) = 10,
T(010) = 01,

T(002) = 10,
T(020) = 01,

T(021) = 02,
T(012) = 02,

T(110) = 10,
T(101) = 01,

T(112) = 12,
T(121) = 21,

T(120) = 20,
T(102) = 02,

T(202) = 01,
T(220) = 10,

T(212) = 21,
T(221) = 12,

T(201) = 02
T(210) = 20

.

x0 1

2

3

y

x0 1

2

3

3
1
t

1

2

3

2

x0

y

0 1

2

3

2

1x =

x

y

y

1 2

1x =

2

3

x

y

3

3
y x=

2
t

3
t

4
t

Figure 8: The images of the code sets S1, S1x2 and S1x2x3 under T



N. Aslan et al. / Filomat 35:7 (2021), 2317–2331 2329

x0 1

2

3

y

x0 1

2

3

3

1

2

3

2

x0

y

0 1

2

3

2 x

y

y

1 2

2

3

x

y

3

3
y x=

1x = 2
t

1x =

4
t

1
t

3
t

Figure 9: The images of the code sets S2, S2x2 and S2x2x3 under T

In the general form, for σ = x1x2x3 . . . xn, σαβ and σβα are the different code representations of the same
points and the images of these pairs of points indicate the same addresses independently of σ.

In the following, we give a conjugacy H between T and G:

Lemma 4.2. Let the code representations of the points X, X′ ∈ S be x1x2x3 . . . and x′1x′2x′3 . . . respectively where
xi, x′i ∈ {0, 1, 2} for i ∈N. If the function H : S→ S is defined by

H(X) = X′, x′i =


1, xi = 0
0, xi = 1
2, xi = 2

, (9)

then we get H(G(X)) = T(H(X)) for X ∈ S.

Proof. It is clear from the definitions of the functions F and G.

Lemma 4.3. For all X,Y ∈ S, d(H(X),H(Y)) = d(X,Y).

Proof. Suppose that the code representations of X and Y are x1x2x3 . . . and y1y2y3 . . . respectively where
xi, yi ∈ {0, 1, 2} and xi = yi for i = 1, 2, 3, . . . k − 1 and xk , yk. Due to the definition of H, the images
of the points are H(X) = x′1x′2x′3 . . . x

′

k−1x′kx′k+1 . . . and H(Y) = y′1y′2y′3 . . . y
′

k−1y′ky′k+1 . . . where x′i = y′i for
i = 1, 2, 3, . . . k − 1 and x′k , y′k. Moreover,

xk+i = yk ⇐⇒ x′k+i = y′k and xk+i , yk ⇐⇒ x′k+i , y′k

yk+i = xk ⇐⇒ y′k+i = x′k and yk+i , xk ⇐⇒ y′k+i , x′k.

Therefore, considering the metric d, we obtain the desired result d(H(X),H(Y)) = d(X,Y).
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Since H, which is given in (9), is also surjective, we have the following proposition.

Proposition 4.4. The function H defined in (9) is a homeomorphism.

Corollary 4.5. {S; T} is a chaotic dynamical system.

Proof. Since {S; G} is chaotic and S is compact and T is continuous, we conclude from Proposition 2.4 and
[5] that {S; T} is a chaotic dynamical system.

The computation of periodic points of {S; T} by using the homeomorphism H
From Proposition 4.4, we conclude that {S; T} and {S; G} are equivalent dynamical systems. Hence {S; T}

and {S; G} have the same number of periodic points. By the help of H defined in (9), the periodic points of
{S; T} can be easily found, while the periodic points of {S; G} are known.

Since the fixed points of G are

•0 = 000 . . . , •20 = 2020 . . . , •10 = 1010 . . . , •120 = 120120 . . . ,

the fixed points of T are computed as

•H(0) = 1, •H(20) = 21, •H(10) = 01, •H(120) = 021.

Similarly, 2−periodic points of T are

•H(0220) = 1221, •H(0110) = 1001, •H(011220) = 100221

•H(112200) = 002211, •H(1100) = 0011, •H(1020) = 0121

•H(1210) = 0201, •H(2200) = 2211.

5. Conclusion

In the present paper, we give chaotic dynamical systems {S; G} and {S; T} on the Sierpinski Gasket and we
compare the dynamical systems {S; F} given in [24], {S; G} and {S; T}. With a similar way, different dynamical
systems can be constructed on many fractals and can be compared whether they are topologically conjugate
or not.
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