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Abstract. Set-valued optimization which is an extension of vector optimization to set-valued problems is
a growing branch of applied mathematics. The application of vector optimization technics to set-valued
problems and the investigation of optimality conditions has been of enormous interest in the research of
optimization problems. In this paper we have considered a Mayer type problem governed by a discrete
inclusion system with Lipschitzian set-valued mappings. A necessary condition for K-optimal solutions of
the problem is given via local approximations which is considered the lower and upper tangent cones of a
set and the lower derivative of the set-valued mappings.

1. Introduction

A Mayer problem, which is a somewhat different classical formulation of a variational problem has
a terminal criterion rather than an integral criterion that is, a trajectory is evaluated in terms of where it
ultimately terminates. This evaluation does not depend explicitly on the route by which the trajectory
reached its terminal point. The form of the problem and the results obtained are particularly suited to
trajectory optimization and other modern engineering control problems [1].

The paper [2] is devoted to derive the optimality conditions of Mayer problem for differential inclusions
with initial point constraints. By using the discretization method guaranteeing transition to continuous
problem, the discrete and discrete-approximation inclusions are investigated. Discrete and continuous
time problems with higher order ordinary and partial differential inclusions have wide applications in the
field of mathematical economics and in problems of control dynamical system optimization and differential
games. In particular, the problems including the higher order discrete and discrete-approximate differential
inclusions and the higher order partial differential inclusions are studied by E.N. Mahmudov [3–7].

In [8], Çicek and Mahmudov derived the optimality conditions for second-order discrete Mayer problem
with initial boundary constraints using by locally adjoint mapping. The second-order necessary optimal-
ity conditions for the Mayer optimal control problem with an arbitrary closed control set is considered in [9].
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Set-valued optimization is an extension of vector optimization to set-valued problems. The application
of vector optimization principles to set-valued problems has received increasing attention in recent decades
[13, 14, 16–18, 21]. Vector optimization model has found many important applications in decision making
problems such as those in economics theory, management science, and engineering design since the intro-
duction of the Pareto optimal solution in 1896 [10].

The functions involved in an optimization problem are often nondifferentiable. This often occurs in
many problems encountered in several fields, which can be only described by locally Lipschitz functions.
In this regard, and recently, Arana et al. [11] have given new results for K-efficient (optimal) solutions when
the involved functions are nondifferentiable.

The investigation of optimality conditions, especially as regards the vector criterion, has received enor-
mous attention in the research of optimization problems and has been studied extensively. Inspired by
the above observations, aim of this work is to give a necessary condition for K-optimality of the following
Mayer type optimization problem

min xT (1)
xt+1 ∈ Ft(xt), t = 0, ...,T − 1 (2)
x0 ∈M (3)

where T ∈ N, the Ft : Xt ⇒ Xt+1, t = 0, ...,T − 1, are Lipschitzian set-valued mappings in neighborhoods
of the points xt, t = 0, ...,T − 1 respectively, the Xt, t = 0, ...,T, are finite-dimensional Euclidean spaces, and
M ⊂ X0. We also assume that the space XT is partially ordered by a proper cone K.

A necessary optimality condition for solutions of problem (1)-(3) is obtained via local approximations
of sets and set-valued mappings. As such approximations we consider the lower and upper tangent cones
of a set and the lower derivative of a set-valued mapping [19, 20].

This work is organized as follows. Section 2 presents the notation and definitions of tanget cones,
derivative of a set-valued mapping, locally Lipschitzian set-valued mappings, as well as previous results.
In Section 3 we study a Mayer type problem with discrete inclusions involving locally Lipschitzian set-
valued mappings, and give a necessary condition for K-optimal solution for the problem.

2. Necessary concepts

In this section we recall some results from the literature that are of interest for our work. Since many
definitions and terms in the literature have various interpretations, it is useful to do this to avoid possible
misunderstandings. We mostly use the notions introduced in [15, 18–20].

Let X be a finite-dimensional Euclidean space. A set M ⊂ X is said to be convex if the line segment
between any two points in M is contained in M, i.e., if we have

x, y ∈M, 0 ≤ λ ≤ 1⇒ (1 − λ)x + λy ∈M.

Define the norm of x ∈ X by ‖x‖ =
√
〈x, x〉. For a set M ⊆ X, we say that x ∈ M is an interior point

of M if there exists an ε > 0 for which {y ∈ X : ‖y − x‖ ≤ ε} ⊆ M holds. The set of all interior points
of M is called the interior of M and is denoted by int(M). A set M is said to be open if int(M) = M.
We say that M ⊆ X is closed if its complement, X \M, is open. Let M′ denote the set of all accumulation
points of M then cl(M) = M∪M′ is the closure of M. The boundary of M is defined by bd(M) = cl(M)\ int(M).

A set K ⊆ X is called a cone if it satisfies

x ∈ K, λ ≥ 0⇒ λx ∈ K.
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We say that K is a convex cone if it is convex and a cone, which means that λ1x + λxy ∈ K holds for any
x, y ∈ K and any λ1, λ2 ≥ 0. A cone K is said to be pointed if K ∩ (−K) = {0}. We say that a cone K is solid
if it has a nonempty interior, i.e., if int(K) , ∅. A cone K is called a proper cone if it is closed, convex, solid,
and pointed. Let K be a proper cone in X. Then the cone K can induce a partial order ≤K on X by defining
for any x, y ∈ X, x ≤K y⇔ y − x ∈ K \ {0}, for more see [12].

Let M ⊂ X be a set and P(Y) be the family of all subsets of Y. A mapping F : M ⇒ Y is said to be a
set-valued mapping defined on M, if for every x ∈ M, F(x) ⊂ P(Y). The set of dom(F) = {x : F(x) , ∅}
is called by the domain of F. F(x) is called by the image of x, the set im(F) :=

⋃
x∈M F(x) ⊂ Y is the image

of F, and 1ph(F) = {(x, y) : y ∈ F(x)} ⊆ X × Y is called by the graph of F. A set-valued mapping F
is said to be convex if its graph 1ph(F) is convex in X × Y. A set-valued mapping F is said to be convex
valued if F(x) is convex in Y. A set-valued mapping F is said to be closed if its graph 1ph(F) is closed in X×Y.

The closure of a set-valued mapping F : X ⇒ Y is defined as the set-valued mapping F : X ⇒ Y whose
graph 1ph(F) := {(x, y) : y ∈ F(x)} is the closure of the graph of F, i.e., 1ph(F) = cl(1ph(F)).

Let F : X⇒ Y and G : Y⇒ Z be set-valued mappings. The usual composition product G ◦ F : X⇒ Z of
G and F at x is defined by

(G ◦ F)(x) :=
⋃

y∈F(x)

G(y). (4)

The graph of the composition map G ◦ F is defined as 1ph(G ◦ F) = (I×G)(1ph(F)), where I is the identity
map from one set to itself.

Let F : X⇒ Y be a set-valued mapping and x0 ∈ X. If there exists a constant L > 0 and a neighborhood
U ⊂ dom(F) of x0 such that

∀x1, x2 ∈ U, F(x1) ⊂ F(x2) + L‖x1 − x2‖BY (5)

where BY is the open unit ball in Y. Then F is said to be a Lipschitzian set-valued mapping around x0 with
the constant L.

The following properties of are obtained directly from the definition of Lipschitzian set-valued mappings
and their composition.

Proposition 2.1. Let X,Y, and Z be finite-dimensional Euclidean spaces, F : X ⇒ Y and G : Y ⇒ Z be set-valued
mappings.
(i) If F is a Lipschitzian set-valued mapping around a point x ∈ int(dom F) and F(x) ∩ int(dom G) , ∅, then
x ∈ int(dom(G ◦ F)).
(ii) If G is a Lipschitzian set-valued mapping around a point x ∈ int(dom F) with Lipschitz constant LF > 0 and G is
a Lipschitzian set-valued mapping around a point y ∈ F(x) ∩ int(dom G) with Lipschitz constant LG > 0, then the
composition G ◦ F : X⇒ Z is a Lipschitzian mapping around x with Lipschitz constant L = LF · LG.

Following the Pareto concept of optimality, a point x̃ ∈M is called a nondominated minimal point of M
if

M ∩ (x̃ − K(x)) = {x̃}, ∀x ∈M.

If K(x) = K for all x ∈ X with K some nontrivial pointed convex cone then the definitions of a nondom-
inated element of a set M with respect to K-optimal and of a minimal element of a set M with respect to
K-optimal coincide with the concepts of an optimal element of M in the space X partially ordered by the
convex cone K.
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The inclusion relation of the system (2) determines a finite point sequence. That sequence {xt}
T
t=0 is called

a trajectory of the system (2) − (3). We call that {xt}
T
t=0 is the zero trajectory if xt = 0 for t = 0, 1, ...,T. If the

terminal point x̃T of the trajectory is a nondominated minimal in the attainability set of system (2)− (3) with
respect to the cone K, i.e., if there is no trajectory {ỹt}

T
t=0 of system (2) − (3) such that x̃T − ỹT ∈ K \ {0}, than

the trajectory {x̃t}
T
t=0 is said to be K-optimal solution [11].

Obviously, a K-optimal trajectory {xt}
T
t=0 for the problem (1)-(3) is necessarily K-optimal; in general, the

converse fails.

A necessary optimality condition for solutions of problem (1)-(3) is obtained via local approximations of
sets and set-valued mappings. As such approximations we consider the lower and upper tangent cones of
a set and the lower derivative of a set-valued mapping. In this connection, we use the notions introduced
in [19, 20].

The lower tangent cone of a subset M ⊂ X at a point x ∈ cl(M) is defined as the set

Tl(x; M) = lim inf
t→0+

M − x
t

.

The upper tangent cone of a subset M ⊂ X at a point x ∈ cl(M) is defined as the set

Tu(x; M) = lim sup
t→0+

M − x
t

.

It is very convenient to use the following characterization of the lower and upper tangent cones.

h ∈ Tl(x; M) if and only if ∀{tk}
∞

k=1 → 0+,∃{hk
}
∞

k=1 → h such that x + tkhk
∈M,∀k ∈N

and

h ∈ Tu(x; M) if and only if ∃{tk}
∞

k=1 → 0+,∃{hk
}
∞

k=1 → h such that x + tkhk
∈M,∀k ∈N,

or equivalently

h ∈ Tu(x; M) if and only if ∃{rk}
∞

k=1 → +∞,∃{hk
}
∞

k=1 → h such that rk(hk
− x)→ h,

where 0 < tk ∈ R, hk
∈ M,∀k ∈ N , lim inf and lim sup stand for the Painlevé-Kuratowski upper and lower

limits. It follows from properties of lower and upper limits that the sets Tl(x; M) and Tu(x; M) are closed
cones and Tl(x; M) ⊂ Tu(x; M). We also know that if M is a convex set, then Tl(x; M}) = Tu(x; M) is also
convex. It is obvious that the lower and upper tangent cones to a singleton is obviously reduced to {0},
i.e.,Tl(x0; {x0}) = Tu(x0; {x0} = {0}.

The lower derivative of a set-valued mapping F : X ⇒ Y at a point (x, y) ∈ 1ph(F) is defined as the
set-valued mapping DlF(x, y) : X⇒ Y, whose graph is the lower tangent cone of the set 1ph(F) at the point
(x, y), i.e., 1ph(DlF(x, y)) = Tl((x, y); 1ph(F)). The upper derivative of F : X ⇒ Y at a point (x, y) ∈ 1ph(F) is
defined as the set-valued mapping DuF(x, y) : X ⇒ Y, whose graph is the upper tangent cone of the set
1ph(F) at the point (x, y), i.e., 1ph(DuF(x, y)) = Tu((x, y); 1ph(F)). The circatangent derivative of F : X ⇒ Y
at a point (x, y) ∈ 1ph(F) is defined as the set-valued mapping DCF(x, y) : X ⇒ Y, whose graph is the
Clarke tangent cone of the set 1ph(F) at the point (x, y), i.e., 1ph(DCF(x, y)) = TC((x, y); 1ph(F)). We have the
following inclusions

DCF(x, y)(u) ⊂ DlF(x, y)(u) ⊂ DuF(x, y)(u), ∀u ∈ X.

Let’s consider the composition Ft ◦ Ft−1 : Xt−1 ⇒ Xt, t = 1, ...,T defined analogous to (4)

(Ft ◦ Ft−1)(xt−1) =
⋃

xt∈Ft−1(xt−1)

Ft(xt).
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Theorem 2.2. [20] Consider set-valued maps F : X⇒ Y and G : Y⇒ Z. Fix x0 ∈ dom(F), y0 ∈ F(x0)∩dom(G) and
z0 ∈ G(y0). If F and G are closed and satisfy the transversality condition lm(DCF(x0, y0)) − dom(DCG(y0, z0)) = Y
then DlG(y0, z0) ◦DlF(x0, y0) ⊂ Dl(G ◦ F)(x0, z0).

The following property of the lower derivative of the composition of set-valued mappings can be derived
from Theorem 2.2.

Lemma 2.3. Let F : X⇒ Y and G : Y⇒ Z be set-valued mappings, and let G be a Lipschitzian set-valued mapping
in a neighborhood of a point y ∈ F(x) ∩ dom(G). Then for any points (x, y) ∈ 1ph(F) and (y, z) ∈ 1ph(G) we have

DlG(y, z) ◦DlF(x, y) ⊂ Dl(G ◦ F)(x, z).

The following result is crucial in this work, see [21].

Theorem 2.4. Let K be a convex subset of X with 0 ∈ bd(K), M be a subset of X and x̃ ∈M a nondominated minimal
point of M. Then

Tu(x̃; M) ∩ (−int(K)) = ∅.

Proof. Suppose that x ∈ Tu(x̃; M)∩(−int(K)). Since 0 < int(K), x , 0. There exist some sequences {tk}
∞

k=1 → +∞

and {xk
}
∞

k=1 → x such that tk(xk
− x̃) → x. Since x is an interior point of −K, there exist an open ball

N(x) ⊂ −int(K) and a positive integer number k̄, such that if k ≥ k̄ we have tk(xk
− x̃) ∈ N(x). Choose k0 ≥ k̄,

such that tk0 ≥ 1 and xk0 , x (since y , 0 and tk → +∞, such k0 can be chosen). Thus there exists x0 ∈ int(K)
such that tk0 (xk0 − x̃) = −x0, x̃ − xk0 = x0

tk0
. Since 0 ∈ bd(K) and K is a convex set, we have

(0, x0] = {λx0 : 0 < λ ≤ 1} ⊂ int(K).

Thus x0
tk0
∈ int(K). This contradicts the fact that x̃ is a nondominated minimal point of M.

3. Main results

To give some optimality conditions for solutions of problem (1)-(3) we will need the following proposi-
tions and lemma.

Proposition 3.1. Let F : X ⇒ Y be a set-valued mapping and (x, y) ∈ 1ph(F), then for any v ∈ X we have
DlF(x, y)(v) ⊂ DuF(x, y)(v).

Proof. Let’s take any w ∈ DlF(x; y)(v)), then from the definition of the lower derivative we have (v,w) ∈
1ph(DlF(x, y)), namely (v,w) ∈ Tl((x, y); 1ph(F)). Therefore from the definition we have that for any sequence
{tk}
∞

k=1 → 0+ there exists sequences {vk
}
∞

k=1 → v and {wk
}
∞

k=1 → w such that y + tkwk
∈ F(x + tkvk) for all

k ∈ N. Thus using the upper tangent cone of 1ph(F) at (x, y) we have (v,w) ∈ Tu((x, y); 1ph(F)), namely
(v,w) ∈ 1ph(DuF(x, y)). Thus we have get w ∈ DuF(x, y)(v).

Lemma 3.2. Let the set-valued mapping F : X⇒ Y be convex-valued and Lipschitzian around a point x ∈ X. Then
the lower derivative DlF(x, y) : X⇒ Y at a point (x, y) ∈ 1p1(F) is convex-valued for any v ∈ X.

Proof. Let p, r ∈ DlF(x, y)(v), v ∈ X. Then, for any sequence {tk}
∞

k=1 → 0+, there exist sequences {v1k
}
∞

k=1 → v
and {v2k

}
∞

k=1 → v and sequences {pk
}
∞

k=1 → p and {rk
}
∞

k=1 → r such that y + tkpk
∈ F(x + tkv1k) and y + tkrk

∈

F(x + tkv2k), for all k ∈ N. Since F is Lipschitzian around the point x, there exists L > 0 such that for all k
large enough,

y + tkrk
∈ F(x + tkv1k) + Ltk‖v2k

− v1k
‖

so that we can find another sequence wk
→ r such that

y + tkwk
⊂ F(x + tkv1k).
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Now, F(x + tkv1k) being convex, we deduce that for all λ ∈ [0, 1],

y + tk((1 − λ)pk + λwk) ∈ F(x + tkv1k).

Since (1 − λ)pk + λwk converges to (1 − λ)v + λw we have (1 − λ)v + λw ∈ DlF(x, y)(u).

Proposition 3.3. Let F : X ⇒ Y be a Lipschitzian set-valued mapping around a point x ∈ M ⊂ X. Then for any
y ∈ F(x) we have the following inclusion

DlF(x, y)(Tu(x; M)) ⊂ Tu(y; F(M)).

Proof. Let’s take any u ∈ Tu(x; M) and v ∈ DlF(x; y)(u)). Then there exists sequences {tk}
∞

k=1 → 0+, {hk
}
∞

k=1 → u,
{uk
}
∞

k=1 → u and {vk
}
∞

k=1 → v such that x+tkhk
∈M and y+tkvk

∈ F(x+tkuk) for all k ∈N. Since F is Lipschitzian
set-valued mapping around the point x ∈M ⊂ X with the constant L > 0, we can infer that

y + tkvk
∈ F(x + tkhk) + Ltk

∥∥∥uk
− hk

∥∥∥
so that there exists another sequence {wk

}
∞

k=1 → v such that

y + tkwk
∈ F(x + tkhk) ⊂ F(M).

This last inclusion implies that v ∈ Tu(y; F(M)).

Note that in the case of a singleton M ⊂ X the inclusion converse to the above-proved one is valid for
any set-valued mapping F.

Proposition 3.4. Let F : X ⇒ Y be a Lipschitzian set-valued mapping around a point x ∈ M ⊂ X. Then for any
y ∈ F(x) we have the following inclusion Tl(y; F(x)) ⊂ DlF(x, y)(0) are valid.

One can derive the following result from Proposition 3.3.

Proposition 3.5. Let Ft : Xt ⇒ Xt+1 be a Lipschitzian mappings in neighborhoods of the points xt, t = 0, ...,T − 1
respectively, and x0 ∈M ⊂ X0. Then for any xt+1 ∈ Ft(xt) we have the following inclusion

DlFt+1(xt+1, xt+2)(Tu(xt+1; Ft(M))) ⊂ Tu(xt+2; Ft+1 ◦ · · · ◦ F0(M)), t = 0, ...,T − 2. (6)

Let us now return to optimality conditions for solutions of problem (1)-(3). Consider the composition
FT := FT−1 ◦ FT−2 ◦ · · · ◦ F0 of the set-valued mapping Ft : Xt ⇒ Xt+1, t = 0, ...,T − 1, where Xt are finite-
dimensional Euclidean spaces.

Theorem 3.6. Let the trajectory {xk}
T
k=0 is a K-optimal solution of problem (1)-(3) and let Ft be Lipschitzian set-valued

mappings in neighborhoods of the points xt, t = 0, ...,T − 1, respectively. Then the zero trajectory is a K-optimal
solution of problem of the associated problem below

min x′T (7)
x′t+1 ∈ DlFt(xt, xt+1)(x′t), t = 0, ...,T − 1 (8)
x′0 ∈ Tu(x0; M) (9)

Proof. Let {xk}
T
k=0 be a K-optimal solution trajectory of problem (1)-(3). Since K is a proper cone, K is convex

and 0 ∈ bd(K). Let’s define the composition FT := FT−1 ◦ FT−2 ◦ · · · ◦ F0, so FT : X0 ⇒ XT. On the other hand,
due to FT(M) = FT−1 ◦ FT−2 ◦ · · · ◦ F0(M) and the inclusions (2), xT ∈ FT(M) ⊂ XT is satisfied. Hence, thanks
to Theorem 2.4, we have

Tu(xT; FT−1 ◦ FT−2 ◦ · · · ◦ F0(M)) ∩ (−int(K)) = Tu(xT; FT(M)) ∩ (−int(K)) = ∅. (10)



Ö. Deǧer / Filomat 35:7 (2021), 2333–2340 2339

If we consider Proposition 2.1, 3.3, 3.5 and Lemma 2.3 together the following inclusion is obtained

DlFT−1(xT−1, xT)(Tu(xT−1; FT−2 ◦FT−3 ◦ · · · ◦F0(M))) ⊂ (Tu(xT; FT−1 ◦FT−2 ◦ · · · ◦F0(M))) = Tu(xT; FT(M)). (11)

From (10) and (11) we have

DlFT−1(xT−1, xT) ◦DlFT−2(xT−2, xT−1) ◦ · · · ◦DlF0(x0, x1)(Tu(x0; M)) ∩ (−int(K)) = ∅. (12)

With Proposition 3.4, the relation (12) is equivalent to the fact that the zero trajectory is a K-optimal solution
of problem (7)-(9).

4. Discussion and Conclusions

In this study, we focused on K-optimality for a Mayer type problem governed by a discrete inclusion
system with Lipschitzian set-valued mappings, that is given with (1)-(3). The main result we have obtained
is a necessary K-optimality condition for solutions of the problem which is given Theorem 3.6. To obtain the
necessary condition we have used the lower and upper tangent cones of a set and the lower derivative of a
set-valued mapping. Unlike the paper [8], we have considered a first order discrete Mayer type problem,
used set-valued mappings more than one and the terminal point not in a specific set. One can consider the
problem of finding trajectories of the system (1)-(3), whose terminal points provide the minimum of some
real-valued function on the attainability set of this system, and it can be obtained necessary optimality
conditions for this problem.
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Ö. Deǧer / Filomat 35:7 (2021), 2333–2340 2340

[15] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, (1970).
[16] B. N. Pshenichnyi, Convex Analysis and Extremal Problems (Russian), Nauka, Moscow, (1980).
[17] G. Y. Chen, J. Jahn, Optimality conditions for set-valued optimization problems. Set-valued optimization. Math. Methods Oper.

Res. 48, (1998), 187-200.
[18] E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, (2011).
[19] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, Basic Theory, Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences]330 , Springer-Verlag, Berlin, (2006).
[20] J. -P. Aubin, H. Frankowska, Set-Valued Analysis, Boston, (1990).
[21] G. Y. Chen, X. Huang, X. Yang, Vector Optimization: Set-Valued and Variational Analysis, Berlin, Springer, (2005).


