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Identities Related to Generalized Derivations and Jordan
(∗, ?)-Derivations

Amin Hosseinia

aKashmar Higher Education Institute, Kashmar, Iran

Abstract. The main purpose of this research is to characterize generalized (left) derivations and Jordan
(∗, ?)-derivations on Banach algebras and rings using some functional identities. LetAbe a unital semiprime
Banach algebra and let F,G : A→A be linear mappings satisfying F(x) = −x2G(x−1) for all x ∈ Inv(A), where
Inv(A) denotes the set of all invertible elements ofA. Then both F and G are generalized derivations onA.
Another result in this regard is as follows. LetA be a unital semiprime algebra and let n > 1 be an integer.
Let f , 1 : A → A be linear mappings satisfying f (an) = nan−11(a) = n1(a)an−1 for all a ∈ A. If 1(e) ∈ Z(A),
then f and 1 are generalized derivations associated with the same derivation onA. In particular, ifA is a
unital semisimple Banach algebra, then both f and 1 are continuous linear mappings. Moreover, we define
a (∗, ?)-ring and a Jordan (∗, ?)-derivation. A characterization of Jordan (∗, ?)-derivations is presented as
follows. Let R be an n!-torsion free (∗, ?)-ring, let n > 1 be an integer and let d : R → R be an additive
mapping satisfying d(an) =

∑n
j=1 a?n− jd(a)a∗ j−1 for all a ∈ R. Then d is a Jordan (∗, ?)-derivation on R. Some

other functional identities are also investigated.

1. Introduction and preliminaries

The notion of generalized derivation was defined by Brešar [9]. LetA be an algebra. A linear mapping
f : A → A is called a generalized derivation if there exists a derivation d : A → A such that f (ab) =
f (a)b + ad(b) for all a, b ∈ R. We say f is inner if there exist c, b ∈ A such that f (a) = ca − ab for all a ∈ A. For
results concerning generalized derivations we refer the reader to [1, 9, 15, 18, 20, 21]. Brešar and Vukman
introduced the concept of a left derivation as follows. An additive mapping d : R → X, where R is a
ring and X is a left R module is called a left derivation if d(rs) = rd(s) + sd(r) for all r, s ∈ R. An additive
mapping d : R → X is called a Jordan left derivation if d(r2) = 2rd(r) for all r ∈ R. Inspired by the definition
of a generalized derivation, Ashraf and Ali [2] introduced the notion of a generalized left derivation as
follows: an additive mapping G : R → R is called a generalized left derivation (resp. generalized Jordan
left derivation) if there exists a left derivation δ : R → R (resp. Jordan left derivation δ : R → R) such
that G(xy) = xG(y) + yδ(x) (resp. G(x2) = xG(x) + xδ(x)) holds for all x, y ∈ R. In the same paper they
gave an example of a generalized Jordan left derivation which is not a generalized left derivation (see
[2, Example 1.1]). The main aim of this article is to characterize generalized (left) derivations and Jordan
(∗, ?)-derivations using functional identities. ”A functional identity (FI) can be informally described as
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an identical relation involving (arbitrary) elements in a ring together with (“unknown”) functions; more
precisely, elements are multiplied by values of functions. The goal of the general FI theory is to determine
the form of these functions, or, when this is not possible, to determine the structure of the ring admitting
the FI in question. This theory has turned out to be a powerful tool for solving a variety of problems
in different areas”. For more material about FI theory, see, e.g. [5]. Let us give a brief background of
this study. We know that every derivation is a Jordan derivation, but the converse is in general not true
(see [14, Example 2.8]). So, it is a natural and classical question in which algebras (and rings) a Jordan
derivation is necessarily a derivation. In an important and interesting article, Herstein [16] answered this
question. Indeed, he achieved a fundamental result which began characterizing the derivations on rings.
He proved that any Jordan derivation on a prime ring of characteristic different from two is a derivation. A
brief proof of Herstein’s result can be found in [8] and in 1975, Cusack [12] generalized Herstein’s result to
2-torsion free semiprime rings (see also [7] for an alternative proof). Recently, the author along with Ajda
Fošner [17] have investigated the same problem for (σ, τ)-derivations from a C∗-algebra A into a Banach
A-moduleM. It should be mentioned that Herstein theorem has been fairly generalized by Beidar et al
[4]. Vukman [10, 24, 25] used some interesting functional identities to characterize derivations and left
derivations. Now, we come to the part where we talk about the achievements of this article. Let A be a
unital semiprime Banach algebra and let F,G : A → A be linear mappings satisfying F(x) = xG(x−1) for
all x ∈ Inv(A), where Inv(A) denotes the set of all invertible elements of A. Then F = 0 = G. Vukman
[25, Theorem 5] proved a theorem stating if A is a unital semisimple Banach algebra and F,G : A → A
are linear mappings satisfying F(x) = −x2G(x−1) for all x ∈ Inv(A), then F = G and further, F(a) = aF(e)
for all a ∈ A. We extend that theorem as follows. Let A be a unital semiprime Banach algebra and let
F,G : A → A be linear mappings satisfying F(x) = −x2G(x−1) for all x ∈ Inv(A). Then both F and G are
generalized (left) derivations on A. In addition, some consequences of this result are presented. Another
objective of this study is to characterize Jordan (∗, ?)-derivations. Let R be a ring. An additive mapping
x 7→ x∗ of R into itself is called an involution in case (x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ R. A ring R
equipped with an involution ‘∗’ is called a ∗-ring. Let R be a ∗-ring. An additive mapping d : R → R is
called a ∗-derivation (resp. a Jordan ∗-derivation) if d(xy) = d(x)y∗ + xd(y) (resp. d(x2) = d(x)x∗ + xd(x)) holds
for all x, y ∈ R. For instance, see [3, 11, 19, 22] and references therein for details on this topic. Inspiring
by the definition of ∗-ring, ∗-derivation and Jordan ∗-derivation, we introduce (∗, ?)-ring, (∗, ?)-derivation
and Jordan (∗, ?)-derivation and then a characterization of Jordan (∗, ?)-derivations is presented. In order
to characterize the Jordan (∗, ?)-derivations on the (∗, ?)-rings, we prove the following result. Let R be an
n!-torsion free (∗, ?)-ring, n > 1 be an integer and let d : R → R be an additive mapping satisfying

d(an) =

n∑
j=1

a?n− jd(a)a∗ j−1

for all a ∈ R. Then d is a Jordan (∗, ?)-derivation on R.

2. Results and proofs

Throughout this section, without further mention, e stands for the unit element of any unital algebra or
unital ring. Recall that an algebra (or ring)A is called prime if for a, b ∈ A, aAb = {0} implies a = 0 or b = 0,
and is semiprime if for a ∈ A, aAa = {0} implies a = 0. A ring R is said to be n-torsion free, where n > 1 is
an integer, if for any x ∈ R, nx = 0 implies that x = 0. The center of an algebra (or ring)A is

Z(A) = {c ∈ A | ac = ca f or all a ∈ A}.

Here, we establish our first theorem.

Theorem 2.1. LetA be a unital semiprime Banach algebra and let F,G : A→A be linear mappings satisfying

F(x) = xG(x−1) (1)

for all x ∈ Inv(A). Then F = 0 = G.
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Proof. Let b be an arbitrary element of A and let n > 1 be a real number such that ‖ b
n−1‖ < 1. It is evident

that ‖ b
n‖ < 1, too. Letting a = ne + b, we have a

n = e + b
n = e− −b

n . Since ‖−b
n ‖ < 1, it follows from [13, Theorem

1.4.2] that e − −b
n is invertible and consequently, a is invertible. Similarly, we can show that e − a is also an

invertible element ofA. In the following, we use the well-known Hua identity a2 = a −
(
a−1 + (e − a)−1

)−1
.

Applying (1), we have the following expressions:

F(a2) = F
(
a −

(
a−1 + (e − a)−1

)−1)
= F(a) − F

((
a−1 + (e − a)−1

)−1)
= F(a) −

(
a−1 + (e − a)−1

)−1
G(a−1 + (e − a)−1)

= F(a) −
(
a−1 + (e − a)−1

)−1
G(a−1) −

(
a−1 + (e − a)−1

)−1
G((e − a)−1)

= F(a) −
(
a−1 + (e − a)−1

)−1
a−1F(a) −

(
a−1 + (e − a)−1

)−1
(e − a)−1F(e − a)

= F(a) −
(
e + a(e − a)−1

)−1
F(a) − (e + a−1

− e
)−1

F(e − a)

= F(a) −
(
e + a(e − a)−1

)−1
F(a) − aF(e − a)

= F(a) − (e − a)F(a) − aF(e − a)
= 2aF(a) − aF(e),

which means that

F(a2) = 2aF(a) − aF(e) (2)

Therefore, we have F(n2e + 2nb + b2) = 2(ne + b)F(ne + b) − (ne + b)F(e) and so,

F(b2) − 2bF(b) + bF(e) = n2F(e) + 2nbF(e) − nF(e). (3)

Putting b = 0 in (3), we have (n2
− n)F(e) = 0 which implies that F(e) = 0. Considering this fact along with

(2), we get that F(a2) = 2aF(a) and since a = ne + b, we deduce that F(b2) = 2bF(b) for any b ∈ A. Thus, F
is a Jordan left derivation and since A is a semiprime algebra, it follows from [25, Theorem 2] that F is a
derivation mappingA into Z(A). Defining H = F − G, we have H(x) = F(x) − G(x) = F(x) − xF(x−1) for any
x ∈ Inv(A). Clearly, H(e) = 0 and also for any invertible element x ∈ A, we have the following statements:

xH(x−1) = xF(x−1) − F(x) = −H(x) = K(x).

According to the first part of the proof, K(= −H) is a derivation mapping A into Z(A). Hence, K(x) =
−x2K(x−1) for any x ∈ Inv(A). This equation along with K(x) = xF(x−1) − F(x) (x ∈ Inv(A)) imply that

(e − x)xF(x−1) = (e − x)F(x) (4)

for any x ∈ Inv(A). Replacing x by a in (4), we get that

(e − a)aF(a−1) = (e − a)F(a).

Multiplying the above relation from the left by (e − a)−1, we get that

F(a) = aF(a−1) (5)

Comparing (1) and (5), we infer that F(a−1) = G(a−1). We have a−1G(a) = G(a−1) and consequently, G(a) =
aG(a−1) = F(a). Since a = ne + b and G(e) = F(e) = 0, F(b) = G(b) for any b ∈ Awhich means that F = G. This
fact along with (1) imply that

F(x) = xF(x−1) (6)
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for any x ∈ Inv(A). Moreover, we know that F is a derivation mappingA into Z(A). So, for any x ∈ Inv(A),
we have

F(x) = −x2F(x−1) (7)

Comparing (6) and (7), we see that F(x−1) = −xF(x−1). Replacing x by −x in the previous equation, we
obtain that (e − x)F(x−1) = 0 for any x ∈ Inv(A). Replacing x by a in the former equation and using the
assumption that e − a is an invertible element of A, we get that F(a−1) = 0 and it follows from (5) that
F(a) = 0. Considering a = ne + b and using the fact that F(e) = 0, we obtain that 0 = F(a) = F(ne + b) = F(b)
for any b ∈ A, as desired.

There is a consequence of the above theorem as follows.

Corollary 2.2. LetA be a unital semiprime Banach algebra and let F : A→A be a linear mapping satisfying

F(x) = x[x−1, y0] (8)

for any x ∈ Inv(A) and some y0 ∈ A. Then y0 ∈ Z(A).

Proof. Defining G : A → A by G(a) = [a, y0], we see that F(x) = xG(x−1) for any x ∈ Inv(A). It follows from
Theorem 2.1 that F = G = 0. Therefore, [a, y0] = 0 for all a ∈ Awhich means that y0 ∈ Z(A).

[25, Theorem 5] asserts that ifA is a semisimple Banach algebra and F,G : A→ A are linear mappings
satisfying F(x) = −x2G(x−1) for all x ∈ Inv(A), then F = G and further, F(a) = aF(e) for all a ∈ A. We extend
that theorem as follows.

Theorem 2.3. LetA be a unital semiprime Banach algebra and let F,G : A→A be linear mappings satisfying

F(x) = −x2G(x−1) (9)

for all x ∈ Inv(A). Then both F and G are generalized (left) derivations onA.

Proof. Let a be an arbitrary element ofA. Similar to what was mentioned in the proof of Theorem 2.1, we
can choose a positive integer n such that both b = ne+a and e−b are invertible elements ofA. Now, suppose
that F(e) = 0. We have F(e) = 0 if and only if G(e) = 0. Note that e = (e − b)(e − b)−1 = (e − b)−1

− b(e − b)−1

and so, b(e− b)−1 = (e− b)−1
− e and also we have, (e− b)−1b = (e− b)−1

− e. Hence, b(e− b)−1 = (e− b)−1b. It
follows from (9) that G(x−1) = −x−2F(x) for all x ∈ Inv(A). Considering c = (e − b)−1b, we have

F(b) = −b2G(b−1) = −b2G(b−1
− e)

= −b2G(b−1(e − b))

= −b2G(((e − b)−1b)−1)

= −b2G(c−1)

= −b2(−c−2F(c))

= b2((e − b)−1b)−2F(c)

= b2
(
((e − b)−1b)−1

)2
F((e − b)−1b)

= (e − b)2F((e − b)−1
− e)

= (e − b)2F((e − b)−1),

which means that

F(b) = (e − b)2F((e − b)−1) (10)
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Replacing b by (e − b) in (10) and using the assumption that F(e) = 0, we obtain that

F(b) = −b2F(b−1) (11)

Applying (9) and (11), we have G(b) = −b2F(b−1) = F(b) and since b = ne + a, G(a) = F(a). Since a is an
arbitrary element of A, F = G. This fact along with (9) imply that F(x) = −x2F(x−1) (x ∈ Inv(A)) and it
follows from the proof of [25, Theorem 5] that F is a Jordan left derivation on A. Since A is a semiprime
algebra, [25, Theorem 2] implies that F is a derivation mapping A into Z(A). Now, we define a linear
mapping H : A → A by H(a) = G(a) − aG(e). Evidently, H(e) = 0 and also −x2H(x−1) = −x2G(x−1) + xG(e).
Consequently, we have

F(x) + xG(e) = −x2H(x−1) (12)

for any x ∈ Inv(A). Defining K : A→A by K(a) = F(a)+aG(e), we have K(x) = −x2H(x−1) for any x ∈ Inv(A).
Obviously, K and H are linear mappings and K(e) = H(e) = 0. According to the first part of the proof, we
infer that K(a) = H(a) for all a ∈ A, which means that F(a) + aG(e) = G(a) − aG(e) for all a ∈ A. Hence,

G − F = R2G(e) (13)

Since F(x) = −x2G(x−1) and G(x) = −x2F(x−1), one can easily get that L(x) = −x2L(x−1) for all x ∈ Inv(A),
where L = F + G. According to the proof of [25, Theorem 5], L is a Jordan left derivation and it follows from
[25, Theorem 2] that L is a derivation mappingA into Z(A). Since G− F = R2G(e) and F + G = L, we deduce
that

G = RG(e) +
1
2
L, (14)

which means that G is a generalized derivation onA. Moreover, we have

F = L − G = L − RG(e) −
1
2
L =

1
2
L − RG(e) =

1
2
L + R−G(e) =

1
2
L + RF(e). (15)

It means that F is a generalized derivation onA. It is clear that both F and G are generalized (left) derivations
onA.

In the following, there are some immediate consequences of the above theorem.

Corollary 2.4. [25, Theorem 5] Let A be a unital semisimple Banach algebra and let F,G : A → A be linear
mappings.

(i) If F and G satisfy F(x) = −x2G(x−1) for all x ∈ Inv(A), then F = −G and furthermore F(a) = aF(e) for all a ∈ A.

(ii) If F and G satisfy F(x) = x2G(x−1) for all x ∈ Inv(A), then F = G and furthermore F(a) = aF(e) for all a ∈ A.

Proof. (i) It follows from Theorem 2.3 that L = F + G and F = 1
2L + RF(e), where L is a left derivation on A

mapping A into Z(A). According to [25, Theorem 4], L = 0. So, F = −G and further F(a) = aF(e) for all
a ∈ A.
(ii) Indeed, we can write F(x) = −x2(−G)(x−1) for all x ∈ Inv(A). Now, part (i) completes the proof.

Corollary 2.5. LetA be a unital semiprime Banach algebra and let f , 11, 12 : A→A be linear mappings satisfying
f (ab) = b11(a) + a12(b) for all a, b ∈ A. Then f , 11, 12 are generalized derivations. In particular, ifA is semisimple,
then f , 11, 12 are continuous.
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Proof. Clearly, we have f (e) = a−111(a) + a12(a−1) for all invertible elements a ∈ A. A routine calculation
shows that 12(a)−a f (e) = −a211(a−1) for any invertible element a ∈ A. Defining a linear mapping F1 : A→A
by F1(b) = 12(b) − b f (e) (b ∈ A), we have

F1(a) = −a211(a−1),

for all invertible elements a ∈ A. It follows from Theorem 2.3 that there exists a left derivation L1 : A→A
such that 11 = R11(e) + 1

2L1. We know that L1 is a derivation mappingA into Z(A) and so 11 is a generalized
derivation. Reasoning like above, there exists a derivation L2 : A → A mapping A into Z(A) such that
12 = R12(e) + 1

2L2, and so 12 is a generalized derivation. Our next task is to show that f is a generalized
derivation. Since f = 11 + R12(e) and 11 = R11(e) + 1

2L1, we deduce that f = 1
2L1 + R f (e). Similarly, we have

f = R11(e) + 12 = R11(e) + R12(e) +
1
2
L2 =

1
2
L2 + R f (e).

Therefore, f is a generalized derivation associated with both L1 and L2. If A is simisimple, then in view
of [23, Theorem 2.3.2], the derivations L1 and L2 are continuous and consequently, f , 11 and 12 are also
continuous linear mappings.

Corollary 2.6. LetA be a unital semisimple Banach algebra and let F,G : A→A be linear mappings satisfying

[F(x), y] = x2[G(x−1), y] (16)

for any x ∈ Inv(A) and y ∈ A. Then F(A),G(A) ⊆ Z(A) and furthermore

• F(a) = F(e)a + K(a),

• G(a) = G(e)a + S(a),

where K and S are linear mappings fromA into Z(A).

Proof. Let y0 be an arbitrary element of A. Defining the mappings f , 1 : A → A by f (a) = [F(a), y0] and
1(a) = [G(a), y0], we see that f (x) = x21(x−1) for all x ∈ Inv(A). It follows from Corollary 2.4 that f = 1 and
f (a) = a f (e) for all a ∈ A. Indeed, we have

[F(a), y0] = [G(a), y0], (17)

and

[F(a), y0] = a[F(e), y0] (18)

It follows from (17) that [F(a) − G(a), y0] = 0 for all a ∈ A and since y0 is an arbitrary element of A,
F(a) − G(a) ∈ Z(A) for all a ∈ A. Now, suppose that F(e) ∈ Z(A). It follows from (18) that [F(a), y0] = 0 for
all a ∈ A and since y0 is an arbitrary element of A, F(A) ⊆ Z(A). Suppose that H : A → A is an additive
mapping satisfying

[H(x), y] = x2[F(x−1) − x−1F(e), y] (19)

for any x ∈ Inv(A) and y ∈ A. Therefore, we have

x2[H(x−1), y] = [F(x) − xF(e), y] (20)

for all x ∈ Inv(A). Defining a linear mapping K : A→A by K(a) = F(a) − aF(e), we have

[K(x), y] = x2[H(x−1), y] (21)
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for any x ∈ Inv(A) and y ∈ A. Clearly, K(e) ∈ Z(A) and based on the first part of the proof, K(A) ⊆ Z(A).
Thus, F(a) = aF(e) + K(a) for all a ∈ A, where K is a mapping fromA into Z(A). According to (18), we have

[F(a), y] = a[F(e), y] = [aF(e), y] − [a, y]F(e)

Since K(A) ⊆ Z(A), we have

[y, a]F(e) = [F(a) − aF(e), y] = [K(a), y] = 0

for all a, y ∈ A. We can deduce from [26, Lemma 1.3] that there exists an ideal I of A such that F(e) ∈
I ⊆ Z(A). Using this fact along with (18), we obtain that [F(a), y] = a[F(e), y] = 0 for all a, y ∈ A and so,
F(A) ⊆ Z(A). Using the above argument, we get that G(A) ⊆ Z(A) and also there exists a linear mapping
S : A → Z(A) such that G(a) = G(e)a + S(a) for all a ∈ A. Moreover, note that there exists an ideal J ofA
such that G(e) ∈ J ⊆ Z(A). Considering F(e) − G(e) = ψ(e) and η = Lψ(e) + K − S : A→ Z(A), we have

F(a) = F(e)a + K(a)
= (ψ(e) + G(e))a + K(a)
= G(a) − S(a) + ψ(e)a + K(a)
= G(a) + Lψ(e)(a) + (K − S)(a)
= G(a) + η(a).

In the following theorem, we present another characterization of generalized derivations on semiprime
algebras.

Theorem 2.7. LetA be a unital semiprime algebra and n > 1 be an integer. Let f , 1 : A → A be linear mappings
satisfying

f (an) = nan−11(a) = n1(a)an−1

for all a ∈ A. If 1(e) ∈ Z(A), then f and 1 are generalized derivations associated with the same derivation onA.

Proof. According to the aforementioned assumption, we have

f (an) = nan−11(a), a ∈ A. (22)

Let c be an arbitrary element of Z(A). Replacing a by a + c in (22), we have

f
( n∑

k=0

(n

k

)
an−kck

)
= n

n−1∑
k=0

(n−1

k

)
an−k−1ck (1(a) + 1(c)

)
Using equation (22) and collecting together terms of the above-mentioned expressions involving the same
number of factors of c, it is obtained that

n−1∑
k=1

λk(a, c) = 0, a ∈ A, (23)

where

λk(a, c) =
(n

k

)
f (an−kck

)
− (n − k)

(n

k

)
ckan−k−11(a) − k

(n

k

)
ck−1an−k1(c).
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Replacing c by c, 2c, ..., (n − 1)c in equation (23), we obtain a system of (n − 1) homogeneous equations as
follows:

∑n−1
i=1 λi(x, c) = 0,∑n−1

i=1 λi(x, 2c) = 0,

.

.

.∑n−1
i=1 λi(x, (n − 1)c) = 0.

We see that the coefficient matrix of the above system is:

Y =



1 1 1 . . . 1
2 22 23 . . . 2n−1

. . . . .

. . . . .

. . . . .
(n − 1) (n − 1)2 (n − 1)3 . . . (n − 1)n−1


We know that the determinant of a square Vandermonde matrix is nonzero, and it implies that the above-
mentioned system has only a trivial solution. In particular, λn−2(a, c) = 0. So

0 =λn−2(a, c) =
(n

n−2

)
f (a2cn−2) − 2

(n

n−2

)
cn−2a1(a) − (n − 2)

(n

n−2

)
cn−3a21(c).

Therefore, we have

f (a2cn−2) = 2cn−2a1(a) + (n − 2)cn−3a21(c). (24)

Putting c = e in (24) and defining the linear mapping h : A → A by h(a) = 21(a) + (n − 2)1(e)a (a ∈ A), we
get that

f (a2) = 2a1(a) + (n − 2)a21(e) = ah(a), a ∈ A. (25)

Reasoning like above, we obtain that

f (a2) = 21(a)a + (n − 2)1(e)a2 = h(a)a, a ∈ A. (26)

Replacing a by a + b in (25) and (26), we get that

f (ab + ba) = ah(b) + bh(a) = h(a)b + h(b)a, a, b ∈ A. (27)

Hence, we have

2 f (a ◦ b) = h(a) ◦ b + a ◦ h(b),

for all a, b ∈ A, where a ◦ b = ab + ba. It follows from [6, Theorem 4.3] that f is a { h2 ,
h
2 }-derivation, which

means that

f (ab) =
h
2

(a)b + a
h
2

(b) = 1(a)b + a1(b) + (n − 2)1(e)ab, a, b ∈ A. (28)

So, we have

f (a) = 1(a) + (n − 1)1(e)a = (1 + L(n−1)1(e))(a), a ∈ A. (29)
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Comparing (28) and (29), we get that

1(ab) = 1(a)b + a1(b) − 1(e)ab, a, b ∈ A. (30)

Considering d = 1 − L1(e) and using (30), we have the following expressions:

d(ab) = 1(ab) − 1(e)ab
= 1(a)b + a1(b) − 1(e)ab − 1(e)ab

=
(
1(a) − 1(e)a

)
b + a

(
1(b) − 1(e)b

)
= d(a)b + ad(b),

which means that d is a derivation on A. Therefore, 1 is a generalized derivation associated with the
derivation d. It follows from (29) that

f = 1 + L(n−1)1(e) = d + L1(e) + L(n−1)1(e) = d + Ln1(e),

which means that f is a generalized derivation associated with the derivation d on A. This yields the
desired result.

Corollary 2.8. LetA be a unital semisimple Banach algebra and let n > 1 be an integer. Let f , 1 : A→A be linear
mappings satisfying

f (an) = nan−11(a) = n1(a)an−1

for all a ∈ A. If 1(e) ∈ Z(A), then both f and 1 are continuous.

Proof. According to the previous theorem, there exists a derivation d on A such that f = d + Ln1(e) and
1 = d + L1(e). It follows from [23, Theorem 2.3.2] that derivation d is continuous and consequently, both f
and 1 are continuous linear mappings onA.

In the following, we are going to present a functional identity to characterize Jordan (∗, ?)-derivations.
Let R be a ring. An additive mapping x 7→ x∗ of R into itself is called an involution on R if it satisfies the
following conditions:
(i) (x∗)∗ = x,
(ii) (xy)∗ = y∗x∗ for all x, y ∈ R.

A ring R equipped with an involution ‘∗’ is called a ∗-ring. Let R be a ∗-ring. An additive mapping
d : R → R is called a ∗-derivation (resp. a Jordan ∗-derivation) if d(xy) = d(x)y∗ + xd(y) (resp. d(x2) =
d(x)x∗ + xd(x)) holds for all x, y ∈ R.

Definition 2.9. Let ∗ and ? be involutions on R. The ring R is called a (∗, ?)-ring if it is both a ∗-ring and a ?-ring.

Now, we provide an example of a (∗, ?)-ring.

Example 2.10. Let

R =

{ [
α 0
0 β

]
: α, β ∈ C

}
Clearly, R is a ring. Define the mappings ∗, ? : R → R by[

α 0
0 β

]∗
=

[
α 0
0 β

]
and

[
α 0
0 β

]?
=

[
β 0
0 α

]
,

where z is the conjugate of z for all z ∈ C. A simple calculation shows that R is a (∗, ?)-ring.
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Definition 2.11. Let R be a (∗, ?)-ring. An additive mapping d : R → R is called a (∗, ?)-derivation (resp. a Jordan
(∗, ?)-derivation) on R if d(xy) = d(x)y∗ + x?d(y) (resp. d(x2) = d(x)x∗ + x?d(x)) holds for all x, y ∈ R.

Example 2.12. Let R be a (∗, ?)-ring and let c be an arbitrary fixed element of R. Then an additive mapping
d : R → R defined by d(x) = x?c − cx∗, is a Jordan (∗, ?)-derivation on R. It is clear that, if R is a commutative
(∗, ?)-ring, then the additive mapping d is a (∗, ?)-derivation on R.

In the next theorem, we present a characterization of Jordan (∗, ?)-derivations.

Theorem 2.13. Let R be an n!-torsion free (∗, ?)-ring, let n > 1 be an integer and let d : R → R be an additive
mapping satisfying

d(an) =

n∑
j=1

a?n− jd(a)a∗ j−1 (31)

for all a ∈ R. Then d is a Jordan (∗, ?)-derivation on R.

Proof. Let c be an element of Z(R) such that c∗ = c = c? and d(c) = 0. Replacing a by a + c in equation (31),
we have

d
( n∑

i=0

(n

i

)
an−ici

)
=

n∑
j=1

( n− j∑
k1=0

(n− j

k1

)
a?n− j−k1 ck1 d(a)

j−1∑
k2=0

( j−1

k2

)
a∗ j−1−k2 ck2

)

=

n−1∑
k1=0

(n−1

k1

)
a?n−1−k1 ck1 d(a)+

n−2∑
k1=0

(n−2

k1

)
a?n−2−k1 ck1 d(a)

1∑
k2=0

(1

k2

)
a∗1−k2 ck2+

... +
1∑

k1=0

(1

k1

)
a?1−k1 ck1 d(a)

n−2∑
k2=0

(n−2

k2

)
a∗n−2−k2 ck2+

d(a)
n−1∑
k2=0

(n−1

k2

)
a∗n−1−k2 ck2 .

Rearranging the above relations with respect to involving equal number of factors of c, we arrive at

n−1∑
i=1

γi(a, a∗, a?, c) = 0, (32)

where,

γi(a, a∗, a?, c) =
(n

i

)
d(an−ici) −

n−i∑
k=1

(n

i

)
a?n−i−kcid(a)a∗k−1. (33)

Replacing c by c, 2c, 3c,..., (n − 1)c in equation (32), we obtain a system of n − 1 homogeneous equations as
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follows:

∑n−1
i=1 γi(a, a∗, a?, c) = 0∑n−1

i=1 γi(a, a∗, a?, 2c) = 0∑n−1
i=1 γi(a, a∗, a?, 3c) = 0

.

.

.∑n−1
i=1 γi(a, a∗, a?, (n − 1)c) = 0

It is observed that the coefficient matrix of the above system is:

V =



(n

1

) (n

2

) (n

3

)
. . .

(n

n−1

)
2
(n

1

)
22

(n

2

)
23

(n

3

)
. . . 2n−1

(n

n−1

)
. . . . .
. . . . .
. . . . .

(n − 1)
(n

1

)
(n − 1)2

(n

2

)
(n − 1)3

(n

3

)
. . . (n − 1)n−1

(n

n−1

)


In view of the determinant of a square Vandermonde matrix, one can easily get that

detV =

( n−1∏
k=1

(n

k

))
(n − 1)!

∏
1≤i< j≤n−1

(i − j).

It is evident that the determinant of V is nonzero, i.e det V , 0, and it implies that the system has only a
trivial solution. In particular, γn−2(a, a∗, a?, c) = 0. It means that

(n

n−2

)
d(a2cn−2) −

2∑
k=1

(n

n−2

)
a?2−kcn−2d(a)a∗k−1 = 0. (34)

Since R is an n!-torsion free ring, it follows from equation (34) that

d(a2cn−2) = a?cn−2d(a) + cn−2d(a)a∗. (35)

Using the assumption that e∗ = e = e? along with equation (31), we get that d(e) = 0. Replacing c by e in
equation (35), we obtain that d(a2) = d(a)a∗ + a?d(a) and it means that d is a Jordan (∗, ?)-derivation on R.
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