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Robust Numerical Method for Singularly Perturbed Parabolic
Differential Equations with Negative Shifts

Mesfin Mekuria Woldaregay?, Gemechis File Duressa®

?Department of Mathematics, Jimma University, [imma, Ethiopia

Abstract. This paper deals with numerical treatment of singularly perturbed parabolic differential equa-
tions having delay on the zeroth and first order derivative terms. The solution of the considered problem
exhibits boundary layer behaviour as the perturbation parameter tends to zero. The equation is solved
using 0-method in temporal discretization and exponentially fitted finite difference method in spatial dis-
cretization. The stability of the scheme is proved by using solution bound technique by constructing barrier
functions. The parameter uniform convergence analysis of the scheme is carried out and it is shown to

be accurate of order O(le’lfc& + (A1)?) for the case 0 = %, where N is the number of mesh points in spatial

discretization and At is the mesh size in temporal discretization. Numerical examples are considered for
validating the theoretical analysis of the scheme.

1. Introduction

Singularly perturbed parabolic differential equations (SPPDEs) are equations that relate unknown func-
tion to its derivatives evaluated at the same instance, whereas singularly perturbed parabolic differential
difference equations (SPPDDEs) are equations that model process for which the evaluation does not only
depend on the current state of the system but also on its past history. When the perturbation parameter
tends to zero, the smoothness of the solution of the SPPDDEs deteriorates and it forms boundary layer
[13]. Such type of equations have an applications in modeling of neuronal variability in computational neu-
roscience [16], in mathematical modeling of population dynamics and epidemiology [7], in physiological
kinetics [1], and in the study of variational problems in control theory [6].

Some authors have considered and investigated the numerical solution of these types of problem. To
mention some, Lange and Miura [12] considered steady state form of singularly perturbed differential
difference equation having delay on the zeroth and first order derivative terms of the equation. The authors
applied the asymptotic approximation method using WKB method for treating the problem. Kumar and
Kadelbajoo [8] considered similar problem as in [12] and applied Taylor’s approximation to treat the delay
terms and apply B-spline collocation method on piece-wise uniform Shishkin mesh to treat the resulting

boundary value problem. The method is shown to be parameter uniform convergent with almost second
order of convergence.
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Kumar and Kumar [10] considered SPPDDEs having delays on the zeroth and first order derivative terms
of the space variable. The authors proposed a monotone Schwarz iterative method based on three-step
Taylor Galerkin finite element scheme. The authors discussed the stability and e-uniform convergence of
the scheme. The same authors in [11] considered semi-linear form of the problem and propose a monotone
schwarz iterative method (MSIM) under the framework of domain decomposition strategy. They discussed
the stability and convergence of the scheme. In [9], Kumar and his colleagues considered the problem in [10]
and solved using discrete Monotone Iterative Domain Decomposition (MIDD) method based on Schwarz
alternating algorithm. The algorithm includes Domain Decomposition Method based on the Schwarz
alternating procedure using three-step Taylor Galerken. Their scheme gives linear order of convergence in
spatial direction. In [20], Woldaregay and Duressa developed numerical scheme using non-standard FDM
for spatial discretization together with Runge-Kutta method of order 2 and 3 for temporal discretization.
Their scheme gives first order uniform convergence.

Some authors further considered for the case when the shift parameters are greater than the perturbation
parameter. Bansal and Sharma in [2-4] developed numerical schemes using the non-standard FDM for
SPPDDEs with general shift arguments (the positive and negative shifts parameters are greater than the
perturbation parameter) on the zeroth order derivative terms. The authors treated the shift parameters
using interpolation technique and specially designed mesh techniques that put the shifts at the grid point.
In [14], Rao and Chakravarthy designed a fitted numerical scheme for solving SPPDDEs having positive
and negative shifts. The authors considered the case when the shift parameter is less than the perturbation
parameter and the shift parameter is greater than the perturbation parameter. For the first case they applied
Taylor series approximation for the terms with the shift parameter and for the second case they used special
mesh for treating the shift parameters.

Even though differently many authors tried to solve the problem under consideration, the area is still
at its infant stage. So, it is crucial to develop numerical methods that are simple, accurate and convergent
uniformly (convergent independent of the values of the perturbation parameter). The objective of this
work is to develop simple, accurate and uniformly convergent numerical method for treating singularly
perturbed parabolic differential equations with two negative shifts.

Notations and Terminologies: In this paper, N and M stand for the number of mesh intervals in space
and time directions respectively. The symbol C ( indexed in some cases) is denoted for positive constant
independent of € and N. The norm ||.|| denote the maximum norm (i.e. ||g|l = max, |g(x, £)]).

2. Statement of the Problem
We consider one dimensional singularly perturbed problem of the form:

% B 832715 + a(x)@ +b(ou(x —0,1) = f(x,1), V(x,1) €D, M)

on the domain D = Q x A = (0,1) x (0, T] with the boundary dD = D — D, for some fixed positive number
T, subject to the initial and interval-boundary conditions

u(x,0) = ug(x),x € Dy = {(x,0) : x € O},
u(x, t) = o(x, 1), (x,t) € Dp = {(x, 1) : (x,t) € [-56,0] X A}, 2)
u(L,t) =y¢(1,t),(x,t) eDr ={(x,t) :x =1, t € A},

where, ¢,0 < ¢ < 1 is singular perturbation parameter and 6 is delay parameter satisfying 6 < ¢. The
functions a(x), b(x), f(x,t), uo(x), p(x,t) and P(1,t) are assumed to be sufficiently smooth, bounded and
independent of the parameter .

The presence of the parameter ¢ on the highest order derivative term creates oscillations in the computed
solution while using standard numerical methods [13],[21]. To avoid these oscillations, a large number of
mesh points are required when ¢ is very small. To handle the drawbacks of the standard numerical
methods, we developed exponentially fitted finite difference method which treats the problem without
creating oscillation or divergence.
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2.1. Estimate for the Terms with the Shifts

For the case of 6 < ¢, the use of Taylor’s series approximation for the terms containing delay is valid
[17]. So, we approximate uy(x — 6,t) and u(x — 6,t) as

U (X = 8, 1) = 1y (x, ) — Sty (x, £) + O(5?),

8 5 3)
u(x —o,t) =u(x, t) — duy(x, t) + ?uxx(x, t) + O(5°).

Using the approximations in (3) into (1) gives

2
% —ce(x )3 -+ p(x) + b(x)u(x, t) = f(x,t), Y(x,t) € D, (4)

with the initial and boundary conditions

u(x,0) = uo(x), x € Q,
u(0,t) = ¢(0,1), t € A, 6)
u(l,t) =y¢(1,t), teA,

where c.(x) = € — —b(x) + da(x) and p(x) = a(x) — 6b(x).

For small values of 6, (1)-(2) and (4)-(5) are asymptotically equivalent, since the difference between the
two equations is O(6%). We assume, 0 < c.(x) < €2 — %Zb* + 0a* = ¢, where b* and a* are the lower bound for
b(x) and a(x) respectively. We assume also p(x) = a(x) — 0b(x) > p* > 0, implies occurrence of right boundary
layer. The other case p(x) = a(x) — 0b(x) < p* < 0, which implies the occurrence of left boundary layer and
can be treated similarly. The boundary layer is maintained for 6 # 0, but sufficiently small. In this paper,
we consider and treat only the right boundary layer problem.

For the right boundary layer problems, there exist a constant C independent of ¢, such that for all
(x,t)eD,

lu(x,t) — u(x,0)| = lu(x, t) — ug(x)| < Ct and
[u(x,t) = u(0, )| = lu(x,t) — ¢(0, 1) < C(1 - x),

for the detail one can refer [15] page 105.

Remark 2.1. Note that there does not exist a constant C independent of ¢, such that |u(x,t) — u(1,t)| = |u(x,t) -
(1, t)| < Cx, since the boundary layer occurs near x = 1.

Let us now denote the differential operator L for the differential equation in (4)-(5) as Lz(x, t) = E —c.53 W +
PO % + b(x)z(x, ).

Lemma 2.2. Continuous maximum principle. Let z be a sufficiently smooth function defined on D which satisfies
z(x,t) > 0,VY(x,t) € dD. Then, Lz(x,t) > 0,Y(x, t) € D implies that z(x,t) > 0,Y(x,t) € D.

Proof. Let (x*,#*) € D be such that z(x*, ") = min, »ep (%, t), and suppose that z(x*, ") < 0. It is clear that
(x*, ') ¢ dD implying that (x*, ') € D, since z(x*, ') is minimum value. From extremum values in Calculus,
we have z,(x*, ") = 0, z;(x", t*) = 0 and zy,(x*,#*) > 0, which implies that Lz(x", t*) = z;(x", ") — ceZx (", t*) +
p(xX)ze(x*, 1) + b(x")z(x*, ') < 0 which is a contradiction to the assumption made Lz(x*, t*) > 0,V(x, ) € D.
Therefore, z(x,t) > 0,Y(x,t) € D. O

Lemma 2.3. Stability estimate. Let u(x,t) be the solution of the continuous problem in (4)-(5). Then, it satisfies
the bound
||f l
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Proof. Letus define two barrier functions 9*(x, t) as 9*(x, ) = I/ H+max {luo()1, 190, I, [Y(1, H} tu(x, t). At the
initial stage, it gives 9*(x,0) = ”l{*” + max{[uo(x)l, [$0, t)l, [P(1, t)| + up(x) > 0. On the boundary lines, it gives
950, ) = H{—” + max{luo(x)|, 1p(0, ), [P(1, I} £ $(0, 1) > 0, and 9%(1,t) = ”bL” + max{luo(x)|, 10, )1, [P (L, H)I} £
Y(1,t) > 0. On the differential operator, we have

LO*(x, 1) =87 (x, ) — c. 9%, (x, £) + p(x) 95 (x, £) + b(x)9* (x, 1)

&t(llfll . t))_ (;922(|Ifll )
+()_wm )
b )(Ilf )
=b(x )(”f ” ) f(x,£) 20, since b(x) > b* >0,

which implies that L9*(x,f) > 0. Using maximum principle, *(x,t) > 0, Y(x,t) € D, which implies the
required bound. [

Lemma 2.4. The bounds on the derivatives of the solution u(x, t) of the problem in (4)-(5) with respect to x and t are
given by

I*u(x, t)
oxkot!
Proof. Referin [2]. O

<CA+cfe Py 0<k<4, 0<k+1<4.

3. Formulation of the Numerical Scheme

To develop the numerical scheme, first we discretize the time domain on uniform mesh using 6-method
and then an exponentially fitted finite difference scheme is used for spatial discretization.

3.1. Temporal Discretization and G-Method

Let us sub-divide the temporal domain [0, T] into M — 1 intervals as to = 0, t; = jAt,j=0,1,2,..,.M -1,
where At = T/(M —1). The continuous problem in (4)-(5) is semi—discretized using 0-method. For the case
0 = 1, the scheme becomes implicit Euler method and for 6 = 3, it become Crank Nicolson method. In

general, we obtain stable numerical scheme for the value of 0, 1 S 6 < 1[18]. At this stage of discretization
a system of boundary value problems becomes

Uil (x) — U/(x) . 6[

2 .
o il w”(x)+p(x)—u1+1(x)+b(x)u1+1 W]+ -0)-c. dzw(x)

e ©)
+ p(x)allf(x) + b(x)Uf(x)] = 0f(x,tjp1) + (1= 0)f(x, t)),

where U/*1(x) is denoted for the approximation of u(x, ¢ j+1) at the (j + 1)th time level discretization. Rear-
ranging (6) is rewritten as

(1 + AtOLAHU (x) = G (x), x € Q, 7)
with discretized boundary conditions
W0) = (0, tj1), WA =y(L,tia), j=01,2,..,M-1, ®)

where LA = —c, & dxz +p(0)4L + b(x), and G/ (x) = —(1 — O)ALLM U (x) + OALf(x, 1) + (1 — O)ALf(x, 1)).
In the next few lemmas we give the stability and convergence of the semi-discrete scheme.
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Lemma 3.1. Semi-discrete maximum principle. Let z/*1 be sufficiently smooth function on the domain Q. If

ZI*1(0) > 0, zZ/*1(1) > 0 and (1 + OAtLA)zIt 1 (x) > 0,Vx € Q, then z/*1(x) > 0,Vx € Q.

Proof. Let x* be such that z/*(x*) = min,.q z/*1(x) and suppose that z/*!(x*) < 0. From the assumption it is
clear that x* ¢ {0, 1}, which implies that x* € (0, 1). Now, using the differential operator on z at the point x*
the operator becomes

(1 + OALLAYZ (') = 2/ (x") + GAt( - cgd—z]”(x*) + p(x*)iz]“(x*) + b(x*)z]“(x*)). 9)
dx? dx
Applying the property in calculus (the minimum value criteria), we obtain
2

d . 2 .
by B PO — L
dxz (x)=0and deZ (x") = 0. (10)

Using the estimates in (10) into (9) gives (1+60AtLA")z/*!(x*) < 0, which is contradiction to (1+60AtLA)z/*! (x*) >
0, V x € Q. Therefore, we conclude that z/*!(x) > 0, ¥ x € Q. Hence, the operator (1 + OAtLAY) satisfies the
semi-discrete maximum principle, consequently, we obtain

1 1
| < —F
1+ OAth

where b(x) > b* > 0. O

(1 + OALLAY)~ (11)

Next, let us analyze the truncation error in temporal semi-discretization. Let us denote u(x, tj;1) and
U/*1(x) be the exact and approximate solution of the problem in (4)-(5) in the above discretization.
Let us denote the local truncation error for each time step by ej.1(x) := u(x, tj.1) — U*(x).

Lemma 3.2. Local truncation error estimate. Suppose that

!
‘iu(x, t)

37 <C (tH)eQxA, 0<1<2.

The local error estimate in the temporal discretization is given by

' Ci(At?, for 1 <6 <1,
lejeal< { Ca(AtY, for 0= 1. (12)

Proof. First, let us prove for the case 8 = 1. Using Taylor’s series expansion for u(x, ]-+1) gives
u(x, tjv1) = u(x, tj) + Atus(x, t;) + O((Ah>?). (13)
Substituting (13) into (4), we obtain

u(x/ tj+1) - u(x/ t])
At

=uy(x, t;) + O((At)%)
= = (= ceu, b + PO, ) + DEU, 1) = f(x,t))) + O((AL).
= (1+ AtLM)u(x, tj1) — (ALf(x, 1)) + u(x, t))) = O((A1?).

Since error satisfies the differential equations. We see that the local truncation error is the solution of the
semi-discrete operator satisfies

(1+ AtLA)ej,1 = O((ABP), €121(0) = 0 = e (1). (14)
Hence, applying the maximum principle on the operator gives

llejs1ll< Cr(AB?. (15)
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For the case % < 0 <1, using Taylor’s series expansion for u(x, tj;1) and u(x, t;) as

At 2
u(x, tiv1) =u(x, tjz12) + ?Mt(xl tiv1j2) + ) u(x, tiv12) + O((AL)),
16
At (At)? 3 (16)
u(x, ty) =u(x, tjr172) — 7%(9@ tiv12) + Tutt(xr tiv12) + O((At)).
Substituting (16) into (4), we obtain
u(x, tiy1) — u(x, ty)
Al =u4(x, tj41/2) + O((A1)?) (17)
=Celer(X, tir172) — POU(X, tir1/2) — BOU(X, tje1p2) + f(x + tir12) + O((A)?),
where u(x, t]'+1/2) = Ou(x, t]'+1) + (1 - O)u(x, t]') + (% — O)Atuy(x, t]'+1/2) + O((Af)z).
Simplifying (17) can be rewritten as
(1 + OALLAYu(x, 1) = G(x, 1) + (% - 0)O((AH?) + O((A1). (18)
And also from (7), we have
(1 + AtOLAHYU T (x) = G (x), x € Q. (19)

From the difference of (17) and (7), we obtain

C(At?, for i <0 <1,

(1 + AtOL)eq (x) < { B
* C(At), for 6 =1,

with the boundary conditions ej;1(0) = 0 = ¢j;1(1). Hence, applying the maximum principle gives

' C(At?, for 3 <0 <1,
lejeall < { C(At), for 6 = 1.

O

Next, we show the bound for the global error of the temporal discretization. Let E;;; be denoted for the
global error estimate up to the (j + 1)th time step.

Lemma 3.3. Global error estimate. The global error estimate up to t;,1 time step is given by

4 C(At),for%<6§1, . B
IEj+1ll< { C(AIY, for 0= 1, ji=12,.,M-1 (20)
Proof. First let us prove for the case 3 < 6 < 1. Using the local error estimate up to the (j + 1)th time step
given in above Lemma, we obtain the global error estimate at the (j + 1)th time step is obtained as

j+1
IEjall=| Y e
=1
<lletll+lleall+... + llejall (21)
<Ci((j + DAB)(AD)

<CiT(At), since (j+1)At<T
=C(At), CiT=C,

where C is constant independent of ¢, and At. In similar manner, it can be proved for the case 6 = 1. [
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Lemma 3.4. Let U/t (x) be solution of (7)-(8) then, the solution UI*1(x) satisfies the bound

G|

j+1 < 7 0
Um0 < T Ner

+ Cmax{lp(0, tjp1)l, (1, ti)l}, Vx € Q. (22)

Proof. We consider barrier functions as n}—'ﬂ(x) = 1'5;‘; + max{|(0, tj1)l, [P(1, tjp1)l} = LW (x).
We need to show that the barrier function satisfies the maximum principle i.e. If n]ﬁrl(O) >0, n]ﬁrl(l) >0
and (1 + AtQLAt)n]il(x) > 0,Vx € Q then, n]irl(x) >0, Vx € Q. We can easily show that

G|
1+ AtOb
G

1+ AtOb

. G|
T =T Ao
G
"1+ AtOb

T4 (0) = +max{Pp(0, tj)l, [P(L, t)l} = Ujsa (0),

+max{|p(0, tj+)l, [P, tir)l} £ PO, tj41) 2 0,
+max{|p(0, tj+1)l, [P(L, tjr)l} + Ujsa (1)
+ max{|p(0, tj+1)l, [P(1, tjr)l £ (1, tj41) = 0.

For the differential operator (1 + AtOLA! )n]ﬁrl(x), we have

+ + d2 + d + +

1+ At@LAt)n]fH(x) =77, (%) + Ate( - cg@n;l(x) + ”(x)ﬁnfﬂ (x) + b(x)n;+1(X))
_ e
"1+ AtOb*

; Ath(x)(

+ maX”(P(O; tj+1)|r |ll}(1/ t]+1)|}
1G]]
1+ AtOb

—(1+ At@b(x))(m
a 1+ AtOb*

+max{p(0, £j+1)l, [P(1, tj+1)|}) + (1 + AtOb(x)LAHYU (x)
+ max{|$(0, tj1)l, |¢(1,tj+1)|}) + G/*(x) > 0, since b(x) > b".

So, we conclude that (1 + AtOLA )n]{rl(x) > 0. So, by semi-discrete maximum principle, we obtain n]ﬁrl(x) >
0, Yx € Q. Hence, the required bound is satisfied. 0O

In this section, the continuous problem is semi-discretized and converted to a system of boundary value
problems. Next, we set a bound for the derivatives of solution of the boundary value problems in (7)-(8).

Lemma 3.5. The derivatives of the solutions of the boundary value problems in (7)-(8) satisfies the bound

_pra-y

) xeQ 0<k<4. (23)

‘dkuj+1(x)
dxk

< C(l +c ke
Proof. Referin [5]. O

3.2. Discretization in Spatial Direction and Exponentially Fitted Finite Difference Method

For the spatial variable discretization, we use uniform mesh as xo = 0,x; = ih,xy = 1,i =0,1,2,..,N,
where 1 = 1/N. Exponentially fitted operator finite difference method will be applied to treat the problem.

First, let us find the exponential fitting factor for anonymous BVP and then we apply the spatial
discretization.
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3.2.1. Determining the Exponential Fitting Factor

To obtain the numerical solution of (7)-(8), we use the technique used in theory of asymptotic method
for solving singularly perturbed BVP. In the considered case the boundary layer is on the right side of the
domain. From the theory of singular perturbations problems [19], the zeroth order asymptotic solution of
the singularly perturbed BVPs of the form:

—c.u” (x) + a(x)u’ (x) + b(x)u(x) = g(x), x € (0,1), (24)

with the boundary conditions

u0)=a, u(l)=4p (25)
is given by
p(1) Lop(x)  b(x)
u(x) = up(x) + %(‘B — up(1)) exp (- f ( - %)dx) +0(c). (26)

Using Taylor’s series expansion for p(x) about x = 1 and restriction to their first terms, and simplifying
gives

9+ 0(c), @)

DA -
() = o) + (8 — (1) exp ( — L=

&

where 1 is denoted for the solution of the reduced problems (obtained by setting ¢ = 0) in (24).
Considering / is reasonably small and evaluating the result in (27) at x; gives

w(ih) = ug(0) + (B — uo(1)) exp (- p(1)(1/c. — ip)), (28)

where p = h/c, h =1/N.
Consider a uniform grid QY = {xi}fi , and denote i = x;11 — x;. For any mesh function V;, we define the
following difference operators

Vin-Vi o Vi-Viy Vie = Vi -1 Vinn —2Vi+ Vi
P , D7V, = 7 7 , and D'D7V,; = 7 .
To handle the effect of the perturbation parameter, we multiply artificial viscosity (exponentially fitting

factor o(p)) on the diffusive part of the problem. Introducing an exponentially fitting factor o(p) and
applying the central finite difference scheme for (24) takes the form

D'V, = , DV, = (29)

—c.0(p)D* D™ u(x;) + p(x;)D°u(x;) + bx)u(x;) = g(x)- (30)
Multiplying (30) by /& and considering & is small and truncating the term h(g(x;) — b(x;)u(x;)) to zero gives

@(Ui_l —2U; + U,‘+1) + @(Um - ui—l) =0. G

From (28), we obtain
Uizt = Up(0) + (B — Up(1)) exp (— p(1)(1/e — (i = 1)p)). (32)
Substituting (32) into (31) and simplifying, we obtain

pp(xi) (&(1))’

o(p) = — coth > (33)

which is the required exponential fitting factor.
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3.2.2. Fully Discrete Scheme
Using the difference operators in (29) into (7) and applying the exponential fitting factor in (33), the fully
discrete scheme obtained as

(1+AtOLAMU =G i=1,2,.,N-1and j=1,2,..,M~-1, (34)
where (1 + AtOLAMUI*! = (1 - 0Ato(p)c.D* D" )uf+1 + OAtp(x)DUS + OAtb(x) U, and
G/"! = (1= (1= 0)Ate.a(p)D*D™)U, + (1 — O)Atp(x)DU + (1 — O)AD))U] + OALF(xi, tar) + (1 — O)ALf(xi 1)).
In explicit form, the resulting finite difference scheme rewritten as

rrUM U Ul = st UL+ sSU s+ OAEF(xi, ) + (1= O)AEF(x;, 1), (35)
with U = (0,tj1) and UL = (1, tj41) fori =1,2,..,Nand j = 0,1,2,.., M — 1, where

ry = —OATE — gALESD S = —(1- )AL — (1 - g)At,

20 ! S;
r=1+ GAtb(xl) + 20D L e = 14 (1 - O)Ath(x;) +2(1 — G)AtC‘Z§p),
rt = —OATE 4 oA, st = —(1 - QAR 4 (1 - G)AHE,

3.3. Convergence Analysis of the Discrete Scheme
First, we need to prove the discrete maximum principle for the scheme in (34).

Lemma 3.6. Discrete maximum principle. Let the mesh function V{H satisfy Vé“ > 0 and Vﬁ' "> If
(1+OAtLAM V™ > 0,1<i <N -1, then V™' 20,0 <i < N.

Proof. Let us choose k such that V]]:rl = miny; V{H, 1<i<N-11If V{:rl > 0, then the proof is completed. We

assume by contradiction that V{;l < 0. So, we have that V{(i — V,]:rl > 0 and V]]:rl V{:i < 0. Now, from
equation (34), we obtain

j+1 _ 2V]+1 + V]+1 j+1 _ j+1

ANy 7+ _ vt k-1 k+1 k+1 k=1 j+1
(1+ OALM V™ = VI 4 0AH - c.o(p) p +pla) ==+ b)) ) <0,

which contradicts (1 + GAt‘Lh'At)V]](‘Jr1 > 0. Hence, the assumption V{ <0, is wrong and we conclude that
vIi">0,0<i<N O

Lemma 3.7. Uniform stability estimate. The solution ll{“ of the discrete scheme in (34) satisfies the following
bound.

i+1
Gl

j+1 i
;1 < 1+ At6b*

where b(x;) > b* > 0.

+ max{|¢(0, tj+1)|/ |¢(1/ tj+1)|}r l = 0/ 11 21 [ N/

j+1
1G]

Proof. Let us construct a barrier functions as n;fjﬂ = e max{|P(0, i)l [P(1, i)} + U;H. We can

easily show that
j+1
. Gl

o1 =T+ AtOF
1G]

+max{p(0, 1), [9(L t)l} £ UL >0,

+

TNl = m +max{|p(0, tj1)l, [P(1, tir)l} = '>o.
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Then, fori=1,2,...,N -1, we have
(1+MOLMAE ) =nit, |+ A0 — c.DTDRE,y + p(r)DmE,,y + b(x)Ts )
G/ . , ,
=gy maxlie, bl (L bl £ ut+ At@( Fc.D*'DU £ p(x)DU™
G/l "
4 006) (1 + max(9(0, Hol (L )l = 1))
j+1
— i hAtyg 7+
=(1 + AtOb(x;)) T+ Ao max{|¢p(0, tj+1)l, [P(1, tj+1)|}) + (1 + AtOb(x;) LUl
j+1 ‘
=(1 + At6b(x;)) m + max{|p(0, tj11)l, [Y(1, t]-+1)|}) + Gf“ > 0, since b(x;) > b".

Using the discrete maximum principle, we obtain T( ,20,v¥i=0,1,2,..,N. O
Lemma 3.8. Let V{H be any mesh function such that V(])+1 = Vﬁ Y= 0. Then,

V7 < IV, (36)

Proof. We consider two barrier functions of the form 7 1 = L ||Lh'AtV£+1|| + Vij "1 We can easily show that

h,At i+1 i+1
T ie1 = —||L VISl V)

1
_E  max | - c.o(p)D*D~ V]Jrl + p(xl)DOV]Jrl + b(x,)V]+1| + V]Jr1 > 0, since V] =0,
<k<

+ _ hAty7j+1 j+1
"N,j+1—§||L Vk ||J_rVN

1

=7 1}{1?\’x | = cco(p)D*D"~ V]Jrl + p(xl)DO vty b(x,)VJHI + V]Jr1 > 0, since V] =0.
<k<

Next, we want to prove that L"Art £.20i=12.,N-1

Lh At j:

1]+1 CéU(p)D+D nz ,j+1 + p(x,)DO 1]+1 + b(xl)nz]+1

— _Cga(p)D+D—(EHLh,AtV]](‘Fl” + VZ+1) +P(Xi)DO(§||Lh'AtV,]<+1|| + VZ-%—l) + b(xi)(_“Lh,Atv]-H” + V]+1)

=b(xi)<E||Lh'AtVi+lll) + (= cco(p)D*D VI + p()D°V/" + b(x))V]'"), since D*D ( LAV =0,
1 .
and D'(- LVl = 0
— Lty i+ Aty 7j+1 : .
=) (LA V]) £ LV 2 0, since b(xi) 2 b
Hence, using the discrete maximum principle, we obtain |V] +1| bl maxj <x<n_1|LA V! +1| O
Next, we consider the semi-discrete problem in (7) and the fully discrete scheme in (34) to find the truncation

error of the spatial direction discretization.

Theorem 3.9. Let the coefficient functions p(x), b(x) and GI*(x) in (7) be sufficiently smooth functions so that
Ui*Y(x) € C*0, 1]. Then, the computed solution U] of the problem in (34) satisfies the following bound

, . -2 ‘(1 -x;
\ILPAY U () — Ufﬂ)l < N—Cf\l-i- . (1 +ct exp ( - P—( xl))),

- - (37)
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Proof. Let us consider the local truncation error in space discretization as
, d ,
LA () - U = - CLG(p)(— - DD )W () + p(xi)(a - DY ()|
R d? \y i
<|- Cg[p(x,-)— coth (;:(1)3) —1|D*D U ()| + |c,5(—2 — D*D7)u (x)
-1

. N
)p(x, (— —DO)UJ 1(x1)' where o(p) = p(xi) = coth(p(l) ), and p = o

Let C; and C; are constants we have p coth(p) — 1 < Cyp? for p < 1. For p — oo, since lim,_.« coth(p) = 1
gives p coth(p) — 1 < Cip. In general for all p > 0 we have

2 2 ~1/4)2 -2
p p /ce)* N

C1p+1 < pcoth(p) -1 SCzp and cg[pcoth(p)—l] <C5N e+l NOio (38)

From Taylor series expansion we obtain the bound as
) dz j+1 : d ;
DD )| < | EEE, and (4L - prDruiviee] < v 2||”—<x> , (39)
dx?
where ||M” = SUPxie(p ) dku;;(x") | Similarly for first derivative term,
& i
(4 - D)) < o2 2L )

Using the bounds for the differences of the derivatives in (38), (39) and (40), we obtain
CN72 | d*Ui*(x))
Rl
< (j]\]_2 "dzuj+l(xl‘))‘

“Nl+c, 2

Here, the target is to show the scheme convergence independent of the perturbation parameter. Using the
bounds for the derivatives of the solution in Lemma 3.5, we obtain

e e e

d* U] ( i) AU i)
el 2+l =]

LA W () — Ui )| <

CN™

) U] sy (1 exp (- PO )+ O 1t ep (- )

Ce
+ (1 +c° eXP( - p—*(l ~ Xi)))]

Ce
CN2 2 P*(l - Xi) ) -3 P*(l - Xi)
SN_l +C€(l +c; exp(— T)) +CN [(cg +c; exp(— T))
* 1 — 1’
(e exp (- EET)
Since c;® > ¢;2, we obtain
WALy 41 (o, j+1 CN~2 -3 pr(l—x)
LA () - Ut < = (1+cPexp( - C—)) (41)
which gives the required bound. O
Lemma 3.10. For a fixed number of mesh numbers N and for ¢, — 0, it holds
—ax; a(l-x;
Xpl=~ Xp\—e
lim max # =0, lim max M =0, m=1,2,3,.. (42)

=0 1<i<N-1 cr c.—0 1<i<N-1 o

where x; = ih,h =1/N,¥Vi=1,2,..,N — 1.
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Proof. Consider the partition [0,1] := {x;}}} for the interior grid points, we have

exp(—ax;/c;) < exp(—axi/c) _ exp(—ah/c,) .

max nd
1<i<N-1 ! ct cn ’
exp(—a(l —x;)/c.)  exp(—a(l —xn-1)/c:)  exp(—ah/c)
max m S m = m 4
1<i<N-1 c! c! ct

since x1 = h1,1 — xy—1 = h. The repeated application of L'Hospital’s rule gives

_h B m |
mexp(ac/c)_ . n m

c111—>0 " ,,:1/1(;{_>oo exp(ahn) - 11:1}?—>w (ah)™ exp(ahn) -

This complete the proof. [

Using Lemma 3.10 in (41) gives

. . CN™2
LU () - ™) < : 43
LA ) - U < e (43)
Hence, by the discrete maximum principle in Lemma 3.6, we obtain
; j CN™?
U () - i < . 44
e - Ul < e (44)

Theorem 3.11. Let u(x;, tj;1) and U{H be respectively the exact solution of (4)-(5) and solution by the proposed
scheme in (34) on discretized domain. Then, the following parameter uniform error estimate holds

j+1
sup [lu(x;, tis) = U] || <
0<c.<1

{ CINT+(A), for 1 <0 <1, (45)

C(N7t + (At)?), for 6 = 1.

Proof. Immediate result from (44) and (20) and the bound of the solution gives the required bound. [

4. Numerical Results and Discussion

To validate the established theoretical results, we develop an algorithm and perform numerical experi-
ments on Matlab software using the proposed numerical scheme on the problem of considered type.

Example 4.1. From [9], we consider the problem

ou  Ju

. Pu du(x — 8, 1)
o “ox2

+(2-x%) -

+ (x® + 1 + cos(mx))u(x — 6, 1) = 10#> exp(—t)(1 —x)
with the initial condition ug(x) = 0, 0 < x < 1 and the interval-boundary conditions ¢(x,t) =0, on —0 < x <
0, ¢¥(1,t) =0and T = 1. Exact solution of this problem is not known.

Example 4.2. From [9], we consider the problem

u  ,du

du  ,du du(x —6,t)
ot~ o

+(2-x%) EP

+ (8 = x)u(x — 6, t) = exp(t) sin(mx(1 — x))

with the initial condition ug(x) = 0, on 0 < x < 1 and the interval-boundary conditions Pp(x,t) =0, on =6 <x <
0, ¢¥(1,t) =0and T = 1. Exact solution of this problem is also not known.
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Table 1: Example 4.1, maximum absolute error of the proposed scheme, for 6 = 0.3¢, 6=1.
N=2° 26 27 28 2° 210
M=60 120 240 480 960 1920
2.7603e-05 1.1475e-05 5.1610e-06 2.4378e-06 1.1835e-06 5.8293e-07
6.0329e-05 4.4776e-05 2.6261e-05 1.4121e-05 7.3109e-06 3.7184e-06
9.0631e-04 5.4761e-04 2.9850e-04 1.5548e-04 7.9309e-05 4.0049e-05
2.3674e-03 1.1133e-03 6.2555e-04 3.2986e-04 1.6917e-04 8.5644e-05
7.0023e-03 2.4364e-03 7.3345e-04 4.0108e-04 2.0959e-04 1.0711e-04
8.2116e-03 4.2928e-03 1.9106e-03 6.4113e-04 2.0823e-04 1.1110e-04
8.2109e-03 4.3461e-03 2.2350e-03 1.1193e-03 4.8803e-04 1.6233e-04
2714 82106e-03 4.3459e-03 2.2351e-03 1.1332e-03 5.7050e-04 2.8275e-04
2716 82105e-03 4.3459e-03 2.2350e-03 1.1332e-03 5.7054e-04 2.8626e-04
2718 82105e-03 4.3459e-03 2.2350e-03 1.1332e-03 5.7054e-04 2.8626e-04
2720 82105e-03 4.3459e-03 2.2350e-03 1.1332e-03 5.7054e-04 2.8626e-04

NN N R« ®
IS@C\}LNO

N
N
N

ENM  82105e-03 4.3459e-03 2.2350e-03 1.1332e-03 5.7054e-04 2.8626e-04
rNM 0.9178 0.9594 0.9799 0.9900 0.9950 -

Table 2: Example 4.1, maximum absolute error of the scheme without the exponential fitting factor for 6 = 0.3¢, 6=1.
N=2° 26 27 28 20 210
M=60 120 240 480 960 1920

5.1492e-05 2.1139e-05 9.4284e-06 4.4321e-06 2.1460e-06 1.0556e-06

3.5397e-04 1.8773e-04 9.6686e-05 4.9065e-05 2.4715e-05 1.2404e-05
1.7473e-03  8.5978e-04 4.2904e-04 2.1469e-04 1.0740e-04 5.3721e-05
9.3497e-03  2.5392e-03 9.3164e-04 4.0213e-04 1.9387e-04 9.6173e-05
5.7095e-02 2.6556e-02 8.3829e-03 1.9329e-03 5.4103e-04 1.7064e-04
1.3169e-01 1.0584e-01 6.3585e-02 2.7135e-02 8.1066e-03 1.7783e-03

“121.7129e-01 1.7486e-01 1.5461e-01 1.1413e-01 6.5580e-02 2.7326e-02

“141.8377e-01 2.0153e-01 2.0375e-01 1.9079e-01 1.6131e-01 1.1639e-01

“16 1.8709e-01 2.0907e-01 2.1931e-01 2.2054e-01 2.1316e-01 1.9509e-01

“18  1.8793e-01 2.1102e-01 2.2345e-01 2.2895e-01 2.2959e-01 2.2565e-01

20 1.8814e-01 2.1151e-01 2.2451e-01 2.3112e-01 2.3397e-01 2.3429e-01

|
® O B N g

I\)I\)NI\)NI\.IJI\I)I\)I\)NN(—M
=
o

0.45 T T T T 0.4

04r 1 035}

0351 03t

031
0.25F

0.2r

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 1: Numerical solution of Example 4.1 for ¢ = 2720 at T = 1, in (a) using the scheme without the exponential fitting factor which
oscillates, in (b) using the proposed scheme.
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Table 3: Example 4.1, maximum absolute error of the proposed scheme, for 6 = 0.9¢, 0 = 1.

031

0.25F

021

011

0.05

(a)

Figure 2: Numerical solution of Example 4.2 for ¢ = 2720 at T = 1, in (a) using scheme without the exponential fitting factor which
oscillates, in (b) using the proposed scheme.

0.2 0.4

0.6 0.8

e N:24 26 28 210 212

l M=40 80 160 320 640

20 1.7168e-04 1.0679e-05 6.7213e-07 4.2614e-08 2.6882e-09
272 2.0170e-04 1.3525e-05 1.0341e-06 1.1217e-07 1.9146e-08
24 1.0925e-03 7.3054e-05 5.3569e-06 5.3684e-07 8.4697e-08
276 5.0696e-03 3.5084e-04 2.3447e-05 1.8460e-06 2.2385e-07
278 1.3757e-02  1.4934e-03 1.0020e-04 6.7137e-06 5.7807e-07
2710 1.5304e-02 3.8896e-03 3.9332e-04 2.6136e-05 1.7507e-06
2712 1.5297e-02 4.3235e-03 1.0065e-03 9.9855e-05 6.6122e-06
2714 1.5295e-02 4.3231e-03 1.1184e-03 2.5434e-04 2.5089e-05
2716 1.5295e-02 4.3230e-03 1.1184e-03 2.8258e-04 6.3826e-05
2718 1.5295e-02 4.3230e-03 1.1184e-03 2.8258e-04 7.0907e-05
2720 1.5295e-02 4.3230e-03 1.1184e-03 2.8258e-04 7.0907e-05
ENM  15295e-02 4.3230e-03 1.1184e-03 2.8258e-04 7.0907e-05
rNM 1.8230 1.9506 1.9847 1.9928 -

(b)

2396

Table 4: Example 4.1, maximum absolute error of the proposed scheme, for different values of delay parameter with & = 0.1, 0 = 1.
0 N=2*
l M= 40

26

80

160

28

210

320

0 1.9896e-03
0.1¢ 1.6218e-03
0.2¢ 1.3647e-03
03¢ 1.1760e-03
0.4¢ 1.0323e-03
0.5¢ 9.1971e-04
0.6e 8.2926e-04
0.7¢ 7.5511e-04
0.8¢  6.9326e-04
09¢ 6.4087e-04

1.3275e-04
1.0806e-04
9.0951e-05
7.8496e-05
6.9055e-05
6.1681e-05
5.5763e-05
5.0905e-05
4.6835e-05
4.3372e-05

9.2654e-06
7.6552e-06
6.5324e-06
5.7100e-06
5.0831e-06
4.5888e-06
4.1874e-06
3.8534e-06
3.5698e-06
3.3251e-06

8.3401e-07
7.1444e-07
6.2896e-07
5.6477e-07
5.1447e-07
4.7362e-07
4.3944e-07
4.1014e-07
3.8455e-07
3.6185e-07

Since the exact solution of the examples are not known, the maximum point-wise absolute error is



Table 6: Example 4.2, maximum absolute error of the scheme without the exponential fitting factor for 6=1, 6 = 0.3¢.
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Table 5: Example 4.2, maximum absolute error of the proposed scheme for 6=1, 6 = 0.3¢.

€ N=2° 26 27 28 2° 210

l M=60 120 240 480 960 1920

20 4.1932e-05 1.4070e-05 5.3143e-06 2.2303e-06 1.0090e-06 4.7809e-07
272 1.1744e-04 4.8840e-05 2.1918e-05 1.0329e-05 5.0067e-06 2.4638e-06
274 2.4218e-04 7.8095e-05 3.0163e-05 1.3431e-05 6.3911e-06 3.1262e-06
276 2.0869e-03 6.256%e-04 1.9376e-04 6.6208e-05 2.5345e-05 1.0726e-05
278 6.5473e-03  2.5099e-03 7.9960e-04 2.4684e-04 8.2724e-05 3.1209e-05
2710 73601e-03 4.1134e-03 1.9613e-03 7.1151e-04 2.2339e-04 7.2143e-05
2712 73608e-03 4.1400e-03 2.1809¢-03 1.0989%e-03 5.0176e-04 1.8282e-04
2714 73609e-03 4.1402e-03 2.1812e-03 1.1057e-03 5.5778e-04 2.7916e-04
2716 7.3609e-03 4.1402e-03 2.1812e-03 1.1057e-03 5.5781e-04 2.8102e-04
2718 73609e-03 4.1402e-03 2.1813e-03 1.1057e-03 5.5781e-04 2.8102e-04
2720 7.3609e-03 4.1402e-03 2.1813e-03 1.1057¢-03 5.5781e-04 2.8102e-04
ENM  73609e-03 4.1402e-03 2.1813e-03 1.1057¢-03 5.5781e-04 2.8102e-04
rNM 0.8302 0.9245 0.9802 0.9871 0.9891 -

€ N=2° 20 27 28 27 210
l M=60 120 240 480 960 1920
20 1.0208e-04 3.8275e-05 1.5887e-05 7.1254e-06 3.3574e-06 1.6272e-06
272 21909e-04 7.6627e-05 2.9920e-05 1.2844e-05 5.8907e-06 2.8122e-06
274 6.6381le-04 1.5624e-04 4.4965e-05 1.8980e-05 8.6116e-06 4.0860e-06
276 1.2883e-02 2.9128e-03 6.4947e-04 1.4487¢-04 2.8577e-05 1.0068e-05
278 1.0573e-01 4.7266e-02 1.4354e-02 3.1352¢-03 7.2088e-04 1.7523e-04
2710 25888e-01 2.0196e-01 1.1925e-01 5.0315e-02 1.4875e-02 3.2162e-03
2712 34122e-01 3.3811e-01 2.9414e-01 2.1524e-01 1.2310e-01 5.1141e-02
2714 36725e-01 3.9088e-01 3.8877e-01 3.6094e-01 3.0385e-01 2.1873e-01
2716 37418e-01 4.0579e-01 4.1876e-01 4.1751e-01 4.0178e-01  3.6691e-01
2718 3.7594e-01 4.0964e-01 4.2674e-01 4.3351e-01 4.3283e-01 4.2445e-01
2720 3.7638e-01 4.1062e-01 4.2877e-01 4.3764e-01 4.4110e-01  4.4074e-01
/ o — = // N
/ / . \\\ 0.2 //
.,/-’ o 2:2:2 Y 0.15 //A
p oo . a
4 | 0.1 “
i, \\? ///
. . . . 0 *‘f;/” . . . .
(a)

2397

(b)

Figure 3: Effect of the perturbation parameter on the behaviour of the solution with layer formation on (a) Example 4.1, on (b) Example

4.2.
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Table 7: Example 4.2, maximum absolute error of the proposed scheme for 6 = 1, 6 = 0.9¢.

€ N:24 26 28 210 212

l M=40 80 160 320 640

20 3.9497e-04 2.6462e-05 1.8603e-06 1.7887e-07 3.2047e-08
272 1.8972e-04 1.2568e-05 8.5784e-07 7.1561e-08 9.2072e-09
24 4.3199e-04 2.8205e-05 1.8901e-06 1.6005e-07 3.4802e-08
276 4.0588e-03 2.7850e-04 1.6996e-05 9.0615e-07 4.5610e-08
278 1.1209e-02  1.5449e-03 1.0605e-04 6.5966e-06 3.9100e-07
2710 1.1924e-02 3.7156e-03 4.4448e-04 3.0069e-05 1.9399e-06
2712 1.1921e-02 3.9150e-03 9.7621e-04 1.1334e-04 7.6563e-06
2714 1.1921e-02 3.9156e-03 1.0251e-03 2.4632e-04 2.8534e-05
2716 1.1921e-02 3.9157e-03 1.0252e-03 2.5847e-04 6.1813e-05
2718 1.1921e-02 3.9157e-03 1.0252e-03 2.5847e-04 6.4651e-05
27200 1.1921e-02 3.9157e-03 1.0252e-03 2.5847e-04 6.4651e-05
ENM  11921e-02 3.9157e-03 1.0252e-03 2.5847e-04 6.4651e-05
rNM 1.6062 1.9334 1.9878 1.9993 -

2398

Table 8: Example 4.2, maximum absolute error of the proposed scheme for different values of delay parameter for ¢ = 0.1, 0 = 1.
0 N=2% 26 28 210
l M= 40 80 160 320
0 7.7742e-04 5.1003e-05 3.2872e-06 2.2770e-07
0.1¢  6.4072e-04 4.1867e-05 2.7243e-06 1.9795e-07
0.2¢  5.4558e-04 3.5588e-05 2.3403e-06 1.7937e-07
03¢ 4.7573e-04 3.1053e-05 2.0626e-06 1.6746e-07
0.4 4.2235e-04 2.7603e-05 1.8527e-06 1.5943e-07
0.5¢ 3.8027e-04 2.4891e-05 1.6886e-06 1.5323e-07
0.6 3.4627e-04 2.2715e-05 1.5568e-06 1.4793e-07
0.7¢  3.1827e-04 2.0936e-05 1.4486e-06 1.4316e-07
2.9485e-04 1.9449e-05 1.3582e-06 1.3876e-07
2.7500e-04 1.8188e-05 1.2815e-06 1.3464e-07

0.9¢

o 0.2 0.4 0.6 0.8 1 o} 0.2 0.4 0.6 0.8 1

(a)

Figure 4: Effect of delay on the behaviour of the solution on (a) Example 4.1, on (b) Example 4.2 for ¢ = 274,

calculated using the double mesh principle. Let U%’M be denoted for the computed solution using N, M

number of mesh points and UZZ?IZM be denoted for the computed solution on double number of mesh points
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2N, 2M by including the mid-points Xi+1/, = 2% and tipq,0 = 514 into the mesh numbers. The maximum
y g P / 2 j+1/ 2

absolute error is given as

ENM = max UMM — y2N2M),
£,0 i,j 1,] L]

For any given mesh points N and M the e-uniform error estimate is calculated using the formula

ENM = max |EN’M .
£ £,0

The rate of convergence of the scheme is calculated using the formula
NM _ NM ;2N.2M
Tes = log, (Es,(‘) / Es,é )
and the e- uniform rate of convergence is calculated using the formula
M _ NM ;p2N.2M
M = log, (ENM/E2N2M),

The solution of the problems in Example 4.1 and 4.2 exhibits boundary layer of thickness O(¢) on the
right side of the domain as the parameter ¢ goes small (as it is seen in Figure 3 for ¢ goes from 27* to
278). In Figure 1(a) and 2(a), one can observe that the numerical solution of the problems oscillates or
diverges in the boundary layer region while using the numerical scheme without the exponential fitting
factor. Whereas, in Figure 1(b) and 2(b), the solution of the problem using the proposed scheme which did
not creates oscillations. As one observes the maximum absolute error in Table 2 and 6, the scheme without
the fitting factor gives good result for bigger values of ¢, but as ¢ goes small the result in these tables assures
the divergence of the scheme. From Table 1 and 5, we observe that for the case 0 = 1, the developed scheme
converges independent of the perturbation parameter with order of convergence one. In Table 3 and 7, the
maximum absolute error is depicted for the case 6 = 3. The result in these tables shows that developed
scheme converges independent of the perturbation parameter with order of convergence two. In Table 4
and 8, the effect of the delay on the solution is shown using maximum absolute error for ¢ = 0.1. The results
in these tables guarantee that the convergence is also independent of the delay parameter. In Figure 4, the
effect of the delay on the solution profile is shown. As one observes, when the magnitude of the delay
increases the thickness of the boundary layer decreases and vise versa. In Figure 5, the 3D simulation of
the solution of Example 4.1 and 4.2 are given for visualizing the boundary layer at ¢ = 272, In Figure 6, we
show the second order convergence of the scheme for different small values of the perturbation parameter
¢ for 6 = 1. In this figure, we observe the uniform convergence of the proposed scheme in Log-Log scale
plot.

0.35
0.3 0.25

0.25

0.15

Numerical Solution U(x,t)
Numerical Solution U(x,t)

(a)

Figure 5: 3D view of numerical solution for ¢ = 2720, on (a) Example 4.1, on (b) Example 4.2.

(b)
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Figure 6: Log-Log plot of maximum absolute error verses N for different values of ¢ and 0 = % on (a) Example 4.1 on (b) Example 4.2.

5. Conclusion

We considered singularly perturbed parabolic differential difference equations having delay on the
first and zeroth order derivative terms. The solution of the considered problem exhibits boundary layer
on the right side of the domain. Numerical scheme is developed for treating the considered problem.
The developed scheme constitute of O-method in time direction and exponentially fitted operator finite
difference method in space direction. The stability and parameter uniform convergence analysis of the
developed scheme is investigated theoretically. The effect of the perturbation parameter and the delay
on the solution profile are shown using Figures and maximum absolute errors. The developed method
is simple, accurate and convergent independent of perturbation parameter with order of convergence

O(X=— + (Ah)?) for the case 0 = 1.

N-1+c,
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