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(Weighted Pseudo) Almost Automorphic Solutions in Distribution for
Fractional Stochastic Differential Equations Driven by Levy Noise

Min Yang?®

?College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, PR China

Abstract. In this paper, by using contraction principle, fractional calculus and stochastic analysis, we
study the existence and uniqueness of (weighted pseudo) almost automorphic solutions in distribution for

fractional stochastic differential equations driven by Lévy noise. An example is presented to illustrate the
application of the abstract results.

1. Introduction

In the literature, several generalized functions were presented to study almost periodic functions, such
as almost automorphic functions, asymptotically almost periodic functions, asymptotically almost auto-
morphic functions, pseudo-almost periodic functions, pseudo-almost automorphic functions and weighted
pseudo-almost automorphic functions. The properties of these functions have been extensively studied,
see the monographs of Corduneanu [12], N'Guérékata [24], the works [2,3, 5-14, 16-20, 23, 24, 27, 30,33] and
references therein.

The almost automorphic functions play a significant role in characterizing recurrence, randomness, and
complexity of dynamical systems which have been seen as an important generalization of the classical
almost periodic functions. Since they have been introduced by Bochner [5], they have been considerably
investigated and undergone some interesting, natural and powerful generalizations.

Besides, noise or stochastic perturbation is unavoidable and omnipresent in nature as well as in man-
made systems. Therefore, it is of great significance to consider stochastic effects into the investigation of
fractional differential systems. Most of the current studies on almost automorphic solutions for stochastic
differential equations are concerned with equations perturbed by Brownian motion. We refer the reader to
[9,25-27] for more detalils.

However, many real models involve jump perturbations, or more general Lévy noise. Wang and Liu
[29] first introduced the concept of Poisson square-mean almost periodicity and studied the existence,
uniqueness and stability of square-mean almost period solutions for stochastic evolution equations driven
by Lévy noise. Liu and Sun [22] introduced the concepts of Poisson square-mean almost automorphy and
almost automorphy in distribution, established the existence of solutions which are almost automorphic
in distribution for some semilinear stochastic differential equations with infinite dimensional Lévy noise.
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Li [21] established the existence and uniqueness of weighted pseudo almost automorphic solutions for the
following nonautonomous stochastic partial differential equations driven by Lévy noise.

dY(t) =AY (D)t + f(t, Y(E)dt + g(t, Y(£)AW(E)
+ f E(t, Y(+-), x)N(dt, dx) + f G(t, Y(t-), x)N(dt, dx), (1.1)

[xly <1 |x]y>1

where A(t) satisfies the Acquistapace-Terreni condition [1]. f : R x L%(P,H) — L?(P,H),q: R x L%(P,H) -
L(V, L2(P,H)),F : Rx L2(P,H) x V — L*(P,H),G : R x L%(P,H) x V — L?(P, H) are stochastic processes, W,
N and N are the Lévy-Itd decomposition components of the two-sided Lévy process.

Besides, fractional calculus has gained much attention due to their extensive applications in the fields
such as physics, fluid mechanics viscoelasticity, heat conduction in materials with memory, chemistry and
engineering. In recent years, notable contributions have been made in theory and applications of fractional
differential equations, one can refer to [34,35] and the references therein.

However, up to now, most of the studies on (weighted pseudo) almost automorphic solutions for stochas-
tic differential equations are concerned with integer-order differential equations perturbed by Brownian
motion, (weighted pseudo) almost automorphic solutions for fractional stochastic differential equations
driven by Lévy noise have still rarely been treated in the literature. Motivated by these facts, in this paper,
by using sectorial operator, we mainly study the existence and uniqueness of (weighted pseudo) almost
automorphic solutions in distribution to the system

t t— a-2
dY(t) = j; %AY(s)dsdtJr F(t, Yot + g, Yo do(t)

+ Ft, Y(t-), u)N(dt, du) + f G(t, Y(t-), u)N(dt, du), (1.2)

lulu<1 [l >1

Y():(pGB,

where 1 < a <2, A: D(A) € H — H is a linear densely defined operator of sectorial type on a complex
Banach space H, for 0 € (=0, 0], the history Y; : (—c0,0] — B defined by Y;(0) = Y(t+0) belongs to the phase
space B defined axiomatically in Section 2; f, g, F, G are functions satisfying some additional conditions to
be specified later. The convolution integral in (1.2) is understood in the Riemann-Liouville sense.

We organize this paper as follows. In the next section, we recall several basic definitions and useful
lemmas. In Section 3, by using sectorial operator, we obtain very general results on the existence and
uniqueness of (weighted pseudo) almost automorphic solutions in distribution for the semilinear problem
(1.2) under Lipschitz hypothesis on the nonlinearity. Finally, in Section 4, we apply our theory to an example
which enables us to a better understanding of the work and hence attract the attention of researchers who
are entering the subject.

2. Preliminaries

Let (Q, ¥, P) be the complete probability space and (H, |||, {-, -)) be a separable Hilbert space. The notation
L?(P, H) stands for the space of all H-valued random variables x such that Ellx|? = fQ |lx(w)|?dP < oo. For

x € L2(P,H), let ||x]l, = ( fQ lx(w)I?dP)z. 1t is clear that £2(P, H) is a Hilbert space equipped with the norm
Il - ll. Suppose that {§(t) : t € ]} be the Poisson point process, taking its values in a measurable space
(V,B(V)) with a o finite intensity measure v(dx). Let N(ds,dx) be the Poisson counting measure, which
is induced by §(-) and the compensating martingale measure denoted by N(ds, dx) = N(ds,dx) — v(dx)ds.
We assume that the filtration is generated by the Poisson point process §(t) and is augmented; that is,
Fi = o{N((0,s],s <t,A € B(Z)} vV N,t € ], where N is the class of P-null sets.

A closed linear operator A is said to be sectorial of type u if there exist 0 < 0 < 7,M > 0 and u € R
such that the spectrum of A is contained in the sector p + S¢ = {u+ A : A € C\ {0}, larg(—A)| < 6}, and

IAI =A™ < |/\A—A#| forall A ¢ u + Sg. (see [15])
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In order to give an operator theoretical approach to system (1.2) we recall the following definition.

Definition 2.1 ([15,31].) Let A be a closed and linear operator with domain D(A) defined on a Banach space X. We
call A the generator of a solution operator if there exist u € R and a strongly continuous function T, : R* — B(X)

such that {A% : ReA > u} C p(A) and A*1(A*] — A)"lx = f e MT,(t)xdt for all ReA > u, x € X. In this case,
0
T,(t) is called the solution operator generated by A which satisfies T,(0) = I. We observe that the power function A“

is uniquely defined as A* = |A%)e% 280 with —1 < arg(A) < 7.
We note that if A is a sectorial operator of type u with 0 < 6 < 7(1 — §), then A is the generator of

a solution operator given by Ta(t) := % f eMAYL(AT — A)7'dA,t > 0, where ) is a suitable path lying

outside the sector u + Zg (cf. [13]). In 2007, Cuesta [13, Theorem 1] proved that if A is a sectorial operator
of type u <0, for M > 0and 0 < 6 < (1 — %), then there exists C > 0 such that

CM ;
1+ |plte”

ITa(®)l < > 0. 21)

In this paper, the phase space (8, ||-||lg) will denote a seminormed linear space of ¥ o-measurable functions
mapping from (—co,0] into H which satisfies the following axioms:

(1) If x : (—o0,b] — H, b 20, is such that x |g€ B, then, for every ¢t € [0, )], the following conditions
hold:

(a) Xt € B,'

(b) lIx(HIl < Mlx:lls;

(©) llxellg < No(t) supfllx(s)ll : 0 < s <t} + N3(B)llxyll3;

where N is a constant, Ny, N3 : [0, 00) — [1, 0), N; is continuous, Nj is locally bounded, N1, N,, N3 are
independent of x(-).

(2) For the function x(-) in (1) the function t — x; is continuous from [0, b] into 5.

(3) The space 8 is complete.
Let J; := (—oo,b] and C(J1, L%(P, H)) be the Banach space of all continuous maps from J; into L*(P, H)
satisfying the condition sup E||x:||> < . Let C be the closed subspace of all continuous process x that

tey

belongs to the space C(J1, £2(P, H)) consisting of #;—adapted measurable processes such that ¥y—adapted
processes ¢ € B. Let || - |lc be a seminorm in C defined by

Ellx|lg; = E(sup [lxl[3),

te]q

where ~ y
Ellxll3 < N2ElI$I% + N3 sup{Ellx(s)II* : 0 < s < b},

N> = sup{N,(t)} and N3 = sup{N;()}. It is easy to verify that C, equipped with the norm topology as
tef, teh
defined earlier, is a Banach space.

Remark 2.1 In the rest of this paper, we always suppose that A is a sectorial of type u < 0 with angle O satisfying
0< 0 <mn(l-7%), Mand C are the constants introduced above.
We now recall some notations and properties related to weighted pseudo almost automorphic functions.
Let (H, || - |l) and (V,]| - |) be real separable Hilbert spaces. Let (CQ, #, P) be a complete probability space
with given filtration (¥;)0 satisfying the usual conditions, i.e., the filtration is right continuous and %y
contains all P-null sets. Denoted by L(V, H) the family of all linear bounded operators from V into H.
L%(P, H) stands for the space of all H-valued random variable Y such that E||Y|* = fQ IY|PdP < oo, which

is a Banach space equipped with the norm |Y||; = (E||Y||2)%. We consider a Lévy process with values in V.
2.1. Lévy process.
Assume that L = (L(t),t > 0) is a V—valued Lévy process, then L is stochastically continuous, has
independent and stationary increments, and satisfies L(0) = 0 almost surely. We define the process of jumps
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of L by AL(t) = L(t) — L(t—) for each t > 0. Since every Lévy process is cadlag, then there exists QQy € F with
P(Q)y) = 1 such that t — L(f)(w) is cadlag for all w € (). Define the counting Poisson random measure N on
V\Oby
N(t,E)w) = ${0 < s < t : AL(s)(w) € E} = Z Ye(AL(S)(@)) < 00, > 0,
0<s<t

where w € Qy, E € B(V \ {0}) with 0 ¢ E, the closure of E in V. # means the counting, B(V \ {0} is the
Borel o-field on V' \ {0} and xf is the characteristic function. If w € Qf, then N(¢t, E)(w) = 0. Note that for
each w € Qp, t > 0, the set function E — N(t, E)(w) is a counting measure and E(N(t, E)) = fN(t, E)(w)dP(w)
is a Borel measure. We write v(:) = E(N (1,-)) and call it the intensity measure associated with L. The
compensated Poisson random measure N is defined by

N(t,dx) = N(t, dx) — tv(dx).

Proposition 2.1 ([4, 21, 22].) If L is a V -valued Lévy process, then there exist a € V, a V—valued Wiener process W
with convariance operator Q, and an independent Poisson random measure on R* x (V' \ {0}) such that for each t > 0,

L(t) = at + W(t) + f

llxlv <1

xN(t,dx) + f xN(t, dx), (2.2)
[Ixllv>1

where the Poisson random measure N has the intensity measure v which satisfies

f (I /\ Dv(dx) < oo

Let L1(t) and Ly(t),t > 0, be two independent, identically distributed Lévy processes. Set

o[ @ 20, )3
D=1 oo, t<o =

Then L is a two-sided Lévy process defined on the filtered probability space (€, F, P, (¥¢)ter). We assume
that Q is a positive, self-adjoint and trace class operator on V.
Remark 2.2 It follows from (2.2) that flx v(dx) < oo. For convenience, we denote

= dx).
‘ fﬁ;lv>1 V( X)

2.2. Almost automorphic process and weighted pseudo almost automorphic process.

In this subsection, we present some preliminaries which are used throughout this paper.
Definition 2.2 ([26].) A stochastic process Y : R — L2(P,H) is said to be L£2—bounded if there exists a constant
M > 0 such that E||Y(#)I]> = fQ IY(#)|[PdP < M.
Definition 2.3 ([26].) A stochastic process Y : R — L*(P,H) is said to be L*-continuous if for any s € R,

lv=1

ltim EllY(H) = YG)|I? = 0.
—5

Denote by SBC(R, £L*(P, H)) the collection of all the £2—bounded and £?- continuous processes.
Remark 2.3 ([21,26].) SBC(R, £L2(P, H)) is a Banach space equipped with the norm ||Y||e = suptE]R(EllY(t)llz)%.
Let U be the set of all functions which are positive and locally integrable over R. For given r > 0 and

p € U, define m(r, p) = f_r p(t)ydt and Us = {p € U| lim m(r, p) = +oo}.
r r—00
Definition 2.4 ([27].) For p € U, define a class of stochastic processes

1
m(r, p)

SBCo(R, p) = {Y € SBC(R, LXP, H))| lim f EIY(IRp(ae = 0}
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Remark 2.4 ([21].) SBCy(R, p) is a linear closed subspace of SBC(R, £2(P, H)).
Remark 2.5 ([21].) SBCy(R, p) equipped with the norm ||Y||« is a Banach space.
Definition 2.5 ([21].) An L2-continuous stochastic process Y : R — L?(P,H) is said to be square-mean almost

automorphic if every sequence of real numbers {s,,} has a subsequence {sn} such that for some stochastic process
Y :R — L2(PH), im E||Y(t +s,) — Y(H)I? = 0 and lim E||Y(t —s,) — Y(®)I* = 0 hold for each t € R.

The collection of all square-mean almost automorphic process Y : R — L*(P,H) is denoted by
SAA(R, L%(P,H)). It is a Banach space with the norm ||Y/|e.
Remark 2.6 ([29].) If Y € SAA(R, L*(P H)), then Y is bounded, that is, ||Y||le < 0. Similarly, any square-mean
almost automorphic function g : R — L(V, L2(P, H)) is bounded, i.e., sup, g 196, r2my < oo.
Proposition 2.11 ([29].) Let f : Rx L?(P,H) — L2(P,H), (t,Y) — f(t, Y) be square-mean almost automorphic
int € R for each Y € L2(P, H), and assume that f satisfies the Lipschitz condition in the following sense:

Elf¢t,Y) - f(t, DIF < LIY - ZI?

forallY,Z € £L2(P,H), and for each t € R, where L > 0 is independent of . Then for any almost automorphic
process Y : R — L*(P, H), the stochastic process F : R — £L*(P,H) given by F(t) := f(t, Y(t)) is square-mean
almost automorphic.
Definition 2.6 ([26].) An L?—continuous stochastic process f : R — L2(P,H), is said to be square-mean weighted
pseudo almost automorphic with respect to p if it can be decomposed as f = g + @, where g € SAA(R, L*(P, H)) and
@ € SBC(R, p).

The collection of all square-mean weighted pseudo almost automorphic processes with respect to p is
denoted by SWPAA(R, p).
Definition 2.7 ([33].)A set D is said to be translation invariant if for any f(t) € D, f(t + ) € D forany t € R.

Denote

U™ = { p € U«|SBCy(R, p) is translation invariant}.

Lemma 2.1 ([26].) For p € U™, SWPAA(R, p) equipped with the norm ||Yl|« is a Banach space. Denote
SAA(R x L2(P,H), L2(P,H)) = {g(t, Y) € SAA(R, L2(P, H))| for any Y € L*(P, H)}

and
SBCy(R x L2(P,H), p) = {p(t,Y) € SBCo(R, p)| for any Y € L*(P,H)}.

Definition 2.8 ([26].) An L2-continuous stochastic process f : R X L?(P,H) — L*(P, H) is said to be square-mean
weighted pseudo almost automorphic with respect to p € U, for any Y € L2(P,H) in t if it can be decomposed as
f =g+ ¢, where g € SAAR x L*(P,H), L%(P, H)) and ¢ € SBCo(R x L2(P, H), p). We denote all such stochastic
process by SWPAA(R x L2(P, H), p).
Lemma 2.2 ([26].) Suppose p € U™, f(t,x) € SWPAA(R x L2(P,H), p), and there exists a constant L > 0 such
that for any x,y € L*(P,H),

Ellf(t,x) = f(t, I < LEl|x = yII*,

Then, for any x € SWPAA(R, p), we have f(t, x) € SWPAA(R, p).
Definition 2.9 ([19].) A continuous stochastic process f : RX L2(P,H), p — L(V, £2(P, H)) is said to be square-mean
almost automorphic in t € R for all Y € L2(P, H) if for every sequence of real numbers {s,}, there exists a subsequence
{sn} such that for some function f : R x L2(P,H) — L(V, £L2(P, H))

31_1)120 E“f(t + Sn, Y) - f(tl Y)”i(V,LZ(P,H)) = 0/

and
V}El; E”f(t — Sn, Y) - f(tr Y)”i(V,.Ez(P,H)) =0
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forall Y € L2(P,H) and each t € R.

The collection of all square-mean almost automorphic stochastic process f : Rx £L2(P, H) — L(V, L*(P, H))
is denoted by SAA(R x L2(P, H), L(V, L*(P,H))).
Definition 2.10 ([24].) A stochastic process J(t,x) : R x V — L*(P, H) is said to be Poisson stochastically bounded
if there exists a constant M > 0 such that

fv EIN(E, 9lPv(dx) < M,

forallt € R
We denote the collection of all Poisson stochastically bounded processes by PSB(R x V, £L2(P, H)).
Definition 2.11 ([21].) A stochastic process J(t,x) : RxV — L*(P, H) is said to be Poisson stochastically continuous

if
lim f EINI(E, %) = J(s, 9)lPv(dx) = 0.
—S V

The collection of all Poisson stochastically bounded and continuous processes is denoted by PSBC(IR x
V, L2(P, H)).
Definition 2.12([21].) Let F : RxL*(P, H)XV — L*(P,H), (t, Y, x) — F(t, Y, x), F is said to be Poisson stochastically
continuous, if

f EIF(, Y,2) — F(, Y, 0lPv(dx) — 0 as (1Y) — (£, Y).
174

By PSC(RX L*(P, H)x V — L*(P, H)), resp. PSBC(R X L*(P, H)x V — L*(P, H)), we denote the collection
of all Poisson stochastically continuous processes, resp. Poisson stochastically bounded and continuous
processes.

Definition 2.13 ([21].) A stochastic process J(t,x) € PSBCy(R x V, LX(P, H)), provided that ](t,x) € PSBC(R X
V, L2(P,H)) and lim £ 7 [ E|lJ(t, x)|Pv(dx)dt = 0.

r—0oo r
Definition 2.14 ([21].) For p € U, define a class of stochastic processes PSBCo(R X V, p) = {J(t,x) € PSBC(R X

2 , 1 ' 2 _
VL) lin s [ Bl e = ol

Denote ‘
U," = {p € Ux|PSBCy(R X V, p) is translation invariant }.

Remark 2.7 ([21].) If p = 1, it is obvious that PSBCo(R X V, p) reduces to PSBCy(R X V, L2(P, H)).

Definition 2.15 ([29].) A stochastic process F : RxL%(P,H)xV — L2(P,H),(t,Y,x) — F(t,Y, x) is said to be Poisson
square-mean almost automorphic int € R foreach Y € L2(P, H) if F is Poisson stochastically continuous and for every
sequence of real numbers s, there exists a subsequence s, such that for some function F : Rx L*(P, H)xV — L?(P,H)
with J;/ ElE(t, Y, x)|Pv(dx) < oo is Poisson stochastically continuous such that

n—o0

lim [ E|IF(t+ 54, Y,x) = E(t, Y, 2)|Pv(dx) = 0,
v

and

n—o0

lim [ E|IF(t = su, Y, x) = F(t, Y, x)|Pv(dx) = 0,
v

forall Y € L2(P,H) and each t € R.

We denoted by PSAA(R x L2(P,H) X V' — L*(P,H)) the collection of all Poisson square-mean almost
automorphic stochastic processes F : R x L%(P,H) X V — L*(P, H).

In the following lemma, we give some properties of Poisson square-mean almost automorphic stochastic
processes.
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Lemma 2.3 ([29].) If FF,F, : RX L2(P,H) x V — L*(P,H) are all Poisson square-mean almost automorphic
stochastic processes in t for each Y € L*(P,H), then

(1) F1 + F, is Poisson square-mean almost automorphic.

(2) AF is Poisson square-mean almost automorphic for every scalar A.

(3) For every Y € L%(P, H), there exists a constant M > 0 such that

sup f EIE@, Y, x)|Pv(dx) < M.
14

teR

Lemma 2.4 ([29].) Let F : Rx L*(P,H) x V — L2(P,H),(t,Y,x) — F(t,Y,x) be Poisson square-mean almost
automorphic int € R for each Y € L2(P, H), and assume that F satisfies the Lipschitz condition in the following sense:

f EIIF(, Y,x) - E(t, Z, x)|Pv(dx) < LE|Y — ZIP,
1%

forall Y,Z € L%(P,H) and each t € R, where L > 0 is independent of t. Then for any square-mean almost automorphic
process Y : R — L2(P, H), the stochastic process | : R x V. — L2(P,H) given by J(t,x) := F(t, Y(t),x) is Poisson
square-mean almost automorphic.
Definition 2.16 ([29].) A stochastic process | : R x V. — L2(P, H) is said to be Poisson square-mean pseudo almost
automorphic in t € R for each Y € L*(P,H) if ] is Poisson stochastically continuous and it can be decomposed as
] = g+ ¢, where g € PSAAR X V, L2(P,H)) and ¢ € PSBCo(R x V, L2(P, H)).

The collection of all such stochastic processes is denoted by PSPAA(R x V, L%(P, H)).
Definition 2.17 ([21].) A stochastic process | : R X V. — L*(P,H) is said to be Poisson square-mean weighted
pseudo almost automorphic about p € Uy, in t € R if F is Poisson stochastically continuous and it can be decomposed
as F = g + ¢, where g € PSAA(R x V, L*(P, H)) and ¢ € PSBCy(R X V, p).

The collection of all such stochastic processes is denoted by PSWPAA(R X V, p).
Set

PSAA(R x L2(P,H) X V,p) = {F(t, Y,x) € PSAA(R x V, p)| forany Y € L*(P,H)},

and
PSBCy(R x L*(P,H) x V, p) = {F(t, Y, x) € PSBCo(R X V, p)| for any Y € L2(P,H)}.

Lemma 2.5 ([21].) Assume ] € PSBC(R X V, L%(P, H)). Then ] € PSBCo(R X V, p), where p € U if and only if for
any € > 0,
1
Hdt =0,
) p()

re(@)

lim
r—+00

where
M = (t € [1,7]] f IE(, x)Pr(dn) > e).
174
Theorem 2.1 (121].) If p € Uw, F = g + ¢ € PSWPAA(R x L2(P,H) x V, p) with g € PSAAR x L2(P, H) x

V, L2(P,H)) and ¢ € PSBCo(R x L2(P,H) X V, p). Assume that F and g are Lipschitzian in Y uniformly in t € R,
that is forall Y,Z € L?>(P,H) and t € R,

f EIIF(, Y,x) - E(t, Z, x)|Pv(dx) < LE|Y — ZIP,
14

f Ellg(t, Y, %) - g(t, Z, 9)l2v(dx) < LE|[Y - ZIF,
14

for some constant L > Oindependent of t. Then forany Y € SWPAA(R, p), the stochastic process | : RXV — L2(P, H)
given by J(t,x) := F(t, Y(t), x) is Poisson square-mean weighted pseudo almost automorphic.
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The collection of all square-mean bi-almost automorphic processes is denoted by SBAA(RXR, £L2(P, H)).
Define by P(H) the space of all Borel probability measures on H with the p metric (see [21], [22, 9.3]):
By, m) = sup| f fdu - f fdnl : lIfller < 1}, p,m,€ P(H), where f are Lipschitz continuous real-valued
functions on H with

1l = £l + A1, 1A, = sup L) =S

Tyl

Alflle = sup |f(x)I.
xeH

Definition 2.18 ([21,22].) An H-valued stochastic process Y(t) is said to be almost automprphic in distribution if
its law u(t) is a P(H)—valued almost automorphic mapping, i.e. for every sequence of real number s,, there exist a
subsequence s, and a P(H)—valued mapping [i(t) such that lim p(u(t + s,), fi(t)) = 0 and B(u(t + sy), fi(t)) = 0 hold

foreacht € R.
Definition 2.19 ([21,22].) An H—valued stochastic process Y (t) is said to be weighted pseudo almost automorphic in
distribution with respect to p € U, provided that it can be decomposed as Y = ¢ +1p, where ¢ is almost automorphic
in distribution and { € SBCy(RR, p).
Lemma 2.6 ([31].) Let g € SAA(J, LX(P,H)). If T is the function defined by T'g(t) = fot To(t = s)g(s)ds, for every
t € J, then Tg(t) € SAA(], L2(P, H)).
Lemma 2.7 ([26].) Let u € WPAA(R, p) and assume that B is a uniform fading memory space. Then the function
t — u; belongs to WPAA(R, p).

If Y(t) is L>—bounded, it is easy to see that the stochastic process

t t
Y(t) = T(t)p(0) +f To(t —5)f(s,Ys)ds +f Ta(t = 5)g(s, Ys)daw(s)

(2.4)
f f T.(t — s)F(s, Y(s—), x)N(ds, dx) +f f Tt —s)G(s, Y(s—),x)N(ds, dx)
[y <1 [xly>1
satisfies the equation (1.2), thus it is a mild solution of (1.2).
Let
¢ ¢
?(t) = f To(t —5)f(s, Ys)ds + f Ta(t —5)g(s, Ys)dw(s)
; ~x - t (25)
+ f f Ta(t — 8)F(s, Y(s—), x)N(ds, dx) + f f Tt —s)G(s, Y(s—), x)N(ds, dx).
—oo Jxly<1 —oo Jxly=1
Now one can easily get
YO - 10 =T0pO - [ Tu-976 Y0~ [ Tut= 5965, Yot
t t (2.6)

- fmf T, (t = s)F(s, Y(s—), x)N(ds, dx) — foof T.(t = s)G(s, Y(s—), x)N(ds, dx).
Jxlv <1 t [xly=1
Thus we have Y(t) — Y(t) = O as t — co.

3. Main results

This section is mainly concerned with the existence and uniqueness of (weighted pseudo) almost
automorphic solutions in distribution.

Definition 3.1. An #;-progressively measurable process {(Y(t) : t € (00, b] = [} is called a mild solution to
12)ifYo=¢p€e B, f_boo E||Y(s)|l’ds < o0, a.s., and for each t € ];

¢ ¢
Y(t) :f To(t —5)f(s,Ys)ds +f 2t —9)g(s, Ys)dw(s)

t 3.1)
+f fl;|v<1 T.(t = s)E(s, Y(s=), x)N(ds, dx) +f £|V>1T (t — 8)G(s, Y(s—), x)N(ds, dx).
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Before stating and proving the main results, we introduce the following hypothesis.

(H;) The solution operator T,(s)x € SBAA(R, £2(P, H)) uniformly for all x in any bounded subset of
L*(P,H).

Our first theorem is for the existence and uniqueness of almost automorphic solutions in distribution.

Theorem 3.1. Assume that (Hy) holds, and f € SAA(R x B, L*(P,H)),g € SAAR x B,L(V, L2(P,H))), F,G €
PSAA(R x L%(P,H) X V, L*(P,H)). Suppose that f, g, F and G satisfy the Lipschitz conditions in Y uniformly for t,
that is, there exists a constant L > 0 such that forall Y,Z € L?>(PH)andt € R,

Ellf(t,Y) ~ f(t, 2I* < LEIlY - ZIP%, (3.2)

Ell(g(t, Y) = g(t, Z)Q3IP < LEIIY - ZIP?, (3.3)
Jag, <1 ENF(, Y, %) = E(t, Z, x)|Pv(dx) < LEIIY ~ ZIP, (3.4)
Japys1 ENIG(, Y, %) = G(t, Z, 0)|Pv(dx) < LE|)Y - ZJI™. (3.5)

Then equation (1.2) has a unique £>-bounded almost automorphic solution in distribution.
Proof. We now shall prove the process (3.1) is the unique almost automorphic solution in distribution for
(1.2) with three steps.

Step 1. £?>—bounded solution is £?—continuous.

Assume Y(t) is an £>—bounded solution of (1.2), then it satisfies (3.1), by the Cauchy-Schwarz inequality,
Itd isometry and properties of the integral for the Poisson random measure, we have for ¢ > t,

to
ElY(8) = Y(to)l* < 4Ellf To(t —s)f(s, Ys)ds|
to t
+4l [ 1.0 96 YOIWEIR
t
to
+ 4E||I flled Ta(t = )F(s, Y(s—=), x)N(ds, dx)||*
to
Wt — L Y(s—), x)N(ds, d
+4E||‘ft LlwlT (t —s)G(s, Y(s—), x)N(ds, dx)
to
_ _ 2
+I fb;vﬁ T,(t —s)G(s, Y(s—), x)v(dx)dsl||
to
< A4E|| f Ta(t — 8)f(s, Ys)ds||?
t y
+4E|| f To(t = 8)g(s, Ys)dW(s)|I?
t
to
+4E||ft j|3\(|v<1 T,(t —s)F(s, Y(s—),x)N(ds,dx)ll2
to
+ 4(2E|| ft leﬂ Ta(t = 5)G(s, Y(s=), x)N(ds, dx)||*

to
+ 2E|| f f T, (t —5)G(s, Y(s—), x)v(dx)dsllz)
t lxly>1
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to to
<am? f EIIf(s, Y)IPds + 40P f Ellg(s, YR o, 20y @5
fo
+4M2E||f f E||F(s, Y(s—), x)|*v(dx)ds
[y <1

to
+4M2(2 f f EIIG(s, Y(s=), 0)|Pv(dx)ds
x|y =1

to
+2 f f E||G(s,Y(s—),x)llzv(dx)ds).
t lxly=>1

2412

Since T,(-) is integrable on [0, +0), then E||Y(t) — Y(to)||> — 0 as t — t;. By a similar arguments as in Step 1

in the proof of [22, Theorem 3.2], it follows that
sup,.g Ellf(s, Yo)I* < M,
sup,cg ENlg(s, YOI, oy < Mo
SUP,.g [y, i EIIF(s, Y, 0IPv(dx) < M,
sup,eg [y 51 EIG(s, Y, 0)Pv(dx) < M.

(3.6)
(3.7)
(3.8)
3.9)

Thus, E||[Y(t) — Y(to)|> = 0 as t — to-. Similarly, we have E||Y(t) — Y(t)|*> — 0 as t — to-. Therefore, Y(t) is

L*—continuous.
Step 2. Existence and uniqueness of £2—bounded solutions.
Let @ be the operator defined on SBC(R, £*(P, H)) by

t

(dY)(t) = ft Ta(t—5)f(s,Ys)ds +f Ta(t —5)g(s, Ys)daw(s)

—00

f f T.(t = s)E(s, Y(s=), x)N(ds, dx)
[xly<1

f f T,(t — s)G(s, Y(s—), x)N(ds, dx).
[xly>1

If Y(t) is £L2-bounded, from (H1) and (3.6)-(3.9), we can derive that (®Y)(t) is L2- bounded.

El(@Y)(t) = (PY)(to)I* < 4E|| ft ' Ta(t = 5)f(s, Ys)ds|I*
watl | Tt - 9)gts, YO
eatl | f| Tl =6 () 9N P
+ 4E|| f " fl " T,(t — 5)G(s, Y(s=), x)N(ds, dx)|
cant [ " Bl YolPds + 4MPE] f Ell6, YOI 1, oy 06)
+ 4M2E|| j; f| » E|IF(s, Y(s=), ¥)|*v(dx)ds
to
+4M>(2 f f| - ElG(s, Y(s—), x)|[*v(dx)ds

to i ] 2
+2f LVZlEIIG(s, Y (s-), x)|Pv(dx)ds||?).

(3.10)
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From the proof of Step 1, (®Y)(t) is an L?>—continuous process as long as Y(t) is an L2~bounded process.
Thus ® maps SBC(R, £2(P, H)) into itself. We next show that @ is a contraction operator. Similar to the Step
2 in the proof of [22, Theorem 3.2], we can obtain the operator @ is a contraction. Therefore, @ has a unique
fixed point Y* € SBC(R, £2(P, H)) which is the unique £2~bounded mild solution of (1.2).

Step 3. Almost automorphy of the £*~bounded solution.

Let {s,;} be an arbitrary sequence of real numbers. Since f € SAA(R, L2(P,H)),g € SAAR, L(V, L?(P,H))),
F,G € PSAA(R x V, L2(P, H)), there exists a subsequence {s,} of {s,} and some functions f 4, F,G such that

lim E|[f(t + su, Y) - f(t, VI =
lim E||f(t — su, Y) - f(E VI =
31_1;1‘;10 E”!](t + Sn, er) - !7(@ Y’x)”i(v,.ﬁz(P,H)) =0,

1}51; E”g(t — Sn, Y/x) - !](t/ Y’x)”i(V,LZ(P,H)) = 0/

lim | EIF(t+ 50, Y, %) - E(t, Y, 2)|Pv(dx) =

n—00
[xly<1

lim EIIF(t = s, Y, %) = F(t, Y, 0)Pv(dx) =

n—o0
[xly<1
and
lim ENG(t + sn, Y, x) = G(t, Y, %)|Pv(dx) =

n—oo
[xly>1

lim [ E|G(t = s, Y,x) = G(t, Y, 0)|Pv(dx) = 0,

n—co
[xly>1

for each t € R, and Y € L2(P, H). By (H1), there exists a solution operator T,(t — s) and a bounded subset B
of L2(P, H) such that for each y € B,

lim E||To(t — s+ s,)y — T, (t = )yll* =

and )
lm E||T,(t—s+su)y — To(t—9)yll> =0

From the estimation of solution operator T,(-), we get

(€M)

2
S TrilE+s + sy Ol 3-11)

ElITa(t + s+ sn)yl* <

for all t > s and y € B. Let Y(t) satisfy the integral equation
t t
Y(t) = f T, (t—s)f(s, Ys)ds + f T, (t = 5)d(s, Ys)daw(s)
f f " (t —s)E(s, Y(s—), x)N(ds, dx) (3.12)
[rlv<1

f f t—s)G(s Y(s—), x)N(ds, dx).
[xly>1

According to (3.11) and Steps 1-2, it follows that Y(#) is unique and £*~bounded. Let w,(0) := w(o + s,) —
@(51), Nu(0,x) := N(0 + 55, %) = N(s,,x) and N, (0, x) := N(o + s, x) — N(s,,, x) for each ¢ € R. It is obvious
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that w, is a Q-Wiener process with the same law as w, N, is also a Poisson random measure and has the
same law as N. In addition, N, is the compensated Poisson measure of N,, and has the same law as N. Let
0 =S —5,, we have

Y(t+s,) = f To(t —0)f(0 + 5, Ygus,)d0

(o]

f
. f Talt = 0)9(0 + 5y Yose,Jdarn(0)

F (3.13)
+ f f Tu(t — 0)F(0 + 5, Y((0 + 5,)=), x)N,.(do, dx)
[xly<1
+ f f T,(t —0)G(o + s, Y((0 + s,)—), x)N,(do, dx).
= [xly>1
We now consider the process
t
YO (t) = f To(t — 0)f(0 + 50, Y)do
¢ —00
+ f To(t — 0)g(0 + 50, Y)daw(0)
e (3.14)
+ f f To(t — 0)E(0 + s, Y (6-), ¥)N(do, dx)
[xly<1
+ To(t — 6)G(o + 5, Y (6-), x)N(do, dx).
[xly>1

It is obvious that Y(t + s,) has the same distribution as Y (f) and Y™ (t) is unique and £>-bounded.
Meanwhile, we can get

E|[Y)(#) N Y(t)IP t
< 4E|| f To(t — 0)f(0 + 50, Y)do — f T/ (t — 0 —5,) f(o, V,)dol?
+4E|| f To(t — 0)g(0 + 5n, Y)daw(0)
t —00
- [ T-0-sg00 Yow@f
T
+4E|| f fl ‘ 1Ta(t—o)F(o+sn,Y(”)(o—),x)N(da,dx)
; 00 Xy <
[ [ 1o - sae, Yom), 0N 0
—00 |tx|v<l
+AE|| f f| ‘ 1Ta(t—U)G(a+s,,,Y(”)(o—),x)N(da,dx)
- f f T (t — 0 - 5,)G(0, Y(0-), x)N(do, dx)||*
[x]y>1 -
<4E||f To(0)f(t = 0 + 5, Y )do — f T, (0 = sn) f(t — 0, Yi_y)dol?
0 00
+4E|| f To(0)g(t = 0 + 5, Y Ydaw(0) — f T'(0 = sn)d(t — 0, Yi_o)dw(o)|?
0
+AE|| f f| . To(0)E(t — 0 + sy, YO ((t — 0)-), x)N(do, dx)

- f T (0 = sn)E(t - 0, V(¢ - 0)-), 9N(do, d9)?
0 lxly <1
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+4E|| f f To(0)G(t — 0 + 5, Y?((t — 0)-), x)N(do, dx)
0 Jhv=1 ] ) (3.15)
- T, (0 = $,)G(t — 0, Y((t — 0)-), x)N(do,dx)|]* := I; + I + I + I,.
0 |xly=>1
Since T,(-) is integrable on [0, +00), then there exists constant N > 0 such that j:o [IT4(0)lldo < N. We now
evaluate each term respectively,

I =4E| fo mmmo)f(t—msmw”) )do — fo T o - st - 0, Vo )dol?
< 12E| f Ta(Of(t =0 + 85, Y ) = f(t = 0 + 5, Vo) ldo]?
0 (o)
+ 126 f TalO)Lf(E =0 + 50, Veos) = f(t - 0, Vrco)ldolP
000
#128) [ 1,00~ Tito =51t =0, Yoo o? 616
<12 f ITa(0)lldo f ITa(@OLEIY(t - 0)) - V(¢ - o))IP
+12 fo @l f UTR(EIfE =0 + 50 Vio) = Fit = 0, Vioo)lPdo

+ 12f ITo(0) = To(o = su)IPEIf(t — 0, Yi—o)lPdo
0 ~
< 12N2LE|lY™(t - 0)) = Y(t — 0))IP + X7,

where
=12 f IT4(0)lldo f ITA@NENFE = 0 + 80, Veos) — it — 0, Vo) |Pdo

+ 12f ITa(0) = To(o = sIPEIf(t = 0, Yiey)IPdo.

From Remark 2.6 and that f is square-mean almost automorphic in t. Y(-) is bounded in £2(P, H), we have

sup ||f(0 + 8y, Y(0))lla < o0, so sup || f (0, Y(0))ll2 < 0. According to inequality (3.11) and Lebesgue dominated
o€R o€R
convergence theorem, it follows that

lim f ITa(IEIf(t = 0 +$n, Yims) = f(t = 0, Yi—g)IPPdo = O,
n—oo 0

00

lim ITa(0) = To(o = sIPEIf(t = 0, Yiey)Pdo = 0.
n—oo 0

Hence
lim x7 = 0. (3.17)

n—oo

For I, by It6 isometry, we have

L =A4F| f To(0)g(t = 0 + 5, Y Ydaw(0) — f T.(0 = $,)d(t — 0, Y_o)daw(0)|]?
0 o 0
< 12E]| fo Ta(0)[g(t — 0 + 50, Y) = gt — 0 + 5, Vi—o)ldew(0)]

+12E]| foo Ta(0)g(t = 0 + 5u, Yimg) = G(t = 0, Y1) ldew(0)|I®
0
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00

+ 126 f [T2(0) = To(o - s)1d(t - 0, Tro)dw(@)IP

<12 f IT.(0)lldo f ITa(0)ldo QI LEIY®™ (¢ — 0)) — Yt — o))IP

+12 f ITa(0)lido f ITa(@ENGE = 0 + 50, Vi) = 30t = 0, Ve IQHE,, ooy @0 (3.18)
0
+ 12f ITa(0) = Th(o = sOIPEIF( - 0, V1-0)1Qx 2 w.c2p o
< 12N?QLE|[Y®(t = 0)) = Y(t = o))IP + x4,
where
x=12 f (o) lido f ITa(ENG(E = 0 + 0, Yieg) = (¢ = 0, Vie)IQHR 1o sy @0
0 0
+ 12[ ”Tl!(a) - T{;(O' - S‘VZ)HZEHg(t -0, Y)FG)Q% ”i(V,.EZ(P,H))dG
0
Similarly, we can derive
lim x5 = 0. (3.19)
For I3, Applying the properties of integral for Poisson random measure, we can obtain
net2m) [ [ @I 0 5, YO - 00,0 = Fl - 0 45, V(- o)), 0N a0
[rlv<1
+ 12E]| Ta(O)E(t = 0 +5u, Y((t = 0)-), %) = F(t = 0, Y((t - 0)-), 0)IN(do, dx)|’
0., [xlv<1
+ 12E]| [Ta(0) = To(0 = sn)1F(0, Y(0-), x)N(do, dx)|I
0 Jidy<t
<12 ITa(IPEIF(E = 0 + 55, YO ((t = 0)=), %) = F(t = 0 + 5, Y((t — 0)=), 0)|*N(do, dx)
0 Jhxy<t
+12 ITa(@IPEIE(E = 0 + 50, Y((t — 0)=), %) = F(0, Y((t = 0)-), ¥)I*N(do, dx)
Ooo lxly<1
+12 ITa(0) = T = su)IPENF(@, Y((t - 0)-), 0)IPN(do, dx)
[xly<1
- (-
<12 f T x [ I, @R o 5, ¥ -, 620

—F(t = 0 + s, Y((t = 0)=), x)|[Pv(dx)do

_ M ((+ — 5)—
+12 [Cim oo [ f| - IT@IEIFE =0 5, Y =),
—E(t -0, Y(t - 0), x)|Pv(dx)do
+ 12]; jl;lv<1 (ITa(0) = Tyl = sl PENF(t — 0, Y((t - 0)-), 0)|Pv(dx)do

<12N f To(0)doLE||Y?(t — 6) — Y(t — 0)|I?
0

+12 f‘” f IT()IPENE(E = 0 + 8w, YO(t = 0)=), x) = E(t — 0, Y((t — 0)=), X)|Pv(dx)do
0 [xly<1

+12 ITa(0) — Ty(o = sIPENE(t — 0, Y((t — 0)-), 0)|Pv(dx)do
0 xly<1 B
< 12N2LE|[Y"(t — o)) = Y(t — o)I* + X2,
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where

Xi=12 f ) f ITa(@)IPENF(t = 0 + s, YOU(t = 0)-), x) = F(t — 0, Y((t — 0)-), 0)|Pv(dx)do
Ooo |xly<1

+12 ITa(0) = To(o = sIPEIE(t — 0, Y((t = 0)-), )Pv(dx)do.

0 x|y <1

From (3.4), we have

sup f EIE(t = 0 + s, Y((t = 0)=), x) = F(t — 0 + 5, Y(0-), x)|Pv(dx) < LE|[Y?(t — 6) = Y(0)|I* < co.
t—0€R J x|y <1

By (3) of Lemma 2.3,

sup ElE(t = o + s,,, Y(0), x)|Pv(dx) < MY(0),

t—o0eR J x|y <1

where MY(0) is a constant. Thus

sup ElE(t - o, Y((t = 0)-), %)|Pv(dx) < co.

t—0€R J x|y <1

From assumption (H;) and (3.8), we can derive the formula

fo ) f el = T, (0 = sw)IPENE(t - 0, Y(t — 0)-), %)|Pv(dx)do

tends to zero as 1 tends to infinity. Hence

lim x% = 0. (3.21)

n—oo

Besides,

L < 12E|| j:o jl‘l To(@)[G(t — 0 + 53, Yul(t = 0)=), %) = G(t = 0 + 5, Y((t — 0)-), x)IN(do, dx)|I”
x|y >1
+12E|| f To(0)[G(t = 0 + 55, Y((t = 0)=), %) = G(t — 0, Y((t — 0)-), 0)IN(do, dx)|*
Ooo [xly>1

F12E| f f [Ta(0) = Ts(0 = s)1G(o, V(¢ - 0)=), IN(do, )|

[x|y>1

0
< 24E|| f f To(0)[G(t — 6 + 5, Y ((t — 0)=), x) — G(t — 0 + s, Y((t — 0)-), x)|N(do, dx)||?
Ooo |xly=>1

+24E|| f To(0)[G(t — 0 + 5, YO ((t = 6)=), %) = G(t — 0 + s, Y((t — 0)=), x)][v(dx)do]||?

000 [xly>1

+24E]| f f To(0)[G(t — 6 + s, Y((t — 0)-),x) = G(t — 0, Y((t — 0)-), x)[N(do, dx)||*

0 [x]y>1
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+24E|| j; ) fl . To(0)[G(t — 0 + s, Y((t — 0)-), x) — G(t — 0, Y((t — 0)-), x)]v(dx)do]]?
+24E|| L 1[Ta(o) —T.(0 — s)]G(t — 0, Y((t — 0)=), x)N(do, ds)||>
+24E|| f ) [Ta(0) = T, (0 — 5,)1G(0, Y((t - 0)-), x)v(dx)do][*

[xly>1

_ M ((+ — ~5)—
<2 f IT.(0)ldo f f TG =0+ 50 Y=,
—G(t — 0 + s, Y((t = 0)-), x)|*N(do, dx)
_ M ((+ _
24 f ITo(0)lldo f f| - ITe@IEIG( =0 +5, Yt ~0)),
—G(t — 0 + s, Y((t = 0)-), X)|Pv(dx)do (3.22)

24 f ITa(0)ldo f f| ITEIGE =0+ 5, ¥ =),
—G(t—a Y ((t-0)-), x)||2N(da dx)

1 fo It (o)l fo f| - IT@IEIGE =0+, Y10 =)0
-Gt -0, Y((t —0)-), x)IIZV(dx)do

24 To(0) = T, (0 — s)IPENG(t — o, Y((t — 0)-), x)|*N(do, d
" ffxm” (0 = s)IPEIIC(E — 0, V(¢ — 0)-), x)|PN(do, d)

. ITa(0) = Tolo = sIPEIG(E — o, Y((t — 0)-), %)Pv(dx)do

< 48N2LE||Y<">(t —o)-Y(t-o)*+x},
where

= 24f0 IITa(G)IIdeO lezl ITa(OIENG(t = 0 + s, Y((t = 0)—), X)
~G(t -0, Y((t — 0)-), 0)|?N(do, dx)
+24j; IITa(G)IIde IT2(NENG(t = 0 + 50, Y((t = 0)-), %)

[xly>1

—G(t—o0, Y((t - o)—),ox)||2v(dx)da
+24 ITa(0) = To(o = s)lPENG(t — 0, Y((t - 0)-), x)PN(do, dx)

0 o |xly=>1

+24 ITa(0) = To(o = s)IPENG(E = 0, Y((t = 0)=), )| Pv(dx)do.
0 |xly=>1
By similar arguments as above, we can get
lim xjy = 0. (3.23)

n—oo

From (3.17)-(3.23), it follows that

4
EIYO () - YOI? < )t + (72 + 12Q)NLEY(t - 0)) - Yt - o))
i=1

We oberave that Y(f +s,,) has the same distribution as Y,,(t), from [30, Remark 2.12], we have Y(t +s,) — Y(t)
in distribution as n — 0. Similarly, we have that Y(t —s,) — Y(#) in distribution as n — oo for each t € R.
This makes the proof complete. O

The second theorem is for the existence and uniqueness of weighted pseudo almost automorphic solu-
tions in distribution to system (1.2).

Theorem 3.2. Assume that (Hy) holds, and f € SWPAA(RXB, L*(P,H)), g € SWPAA(RXB, L(V, L*(P,H))),F,G €
PSWPAA(R x L%(P,H) x V, L%(P,H)). Suppose that f = m + 1,9 = p + g with m € SAA(R x B, L?(P,H)),
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l,g € SBCy(R X B, L%(P,H),p),p € SAAR x B,L(V, L2(P,H))),F = h+ ¢,G = a + p with h,a € PSAA(R X
L*(P,H) x V, L*(P,H)) and ¢, € PSBCy(R x L*(P,H) X V, p), where p € U™ N U™ and t € R. In addition,
suppose that f,m, g,p,h, o, F and G satisfy the Lipschitz conditions in Y uniformly for t, that is, for all Y, Z € L*(P, H)
and t € R, there exists a constant L > 0 independent of t, such that for all Y,Z € L?>(P,H) and t € R,

Elf(t,Y) - f(t, 2)I* < LEIlY - ZIF%,
Ellm(t, Y) = m(t, Z)|* < LE||Y - ZIP,
EH(g(t Y) !](t Z))Q “L(VLZ(PH)) < LE”Y_ Z“2/

E”(p(t Y) P(t Z))Q ”L(V.EZ(PH) < LE”Y - ZI|2/

f' EIIF(, Y,x) - E(t, Z, x)|Pv(dx) < LE]Y = ZIP,
[xly<1
\f Ellh(t, Y, ) - h(t, Z, 9)|2(dx) < LE|Y — ZIP,
[xly<1
j‘ EIG(, Y,2) — G(t, Z, 9)lPv(dx) < LEIY = ZIP,
[xly>1

f Ella(t, Y, x) — a(t, Z,x)|[v(dx) < LE||Y - Z|I*.
Ixlv=1

Then (1.2) has a unique £?—bounded mild solution, which is weighted pseudo almost automorphic in distribution.
Proof. One can easily see that if Y(t) is £2—bounded, then Y(t) is a mild solution of (1.2). From the
assumptions, we have f(t,Y:) = m(t,Y;) + I(t,Ye), g(t, Ys) = p(t,Ys) + q(t, Ys), F(t, Y(t=), x) = h(t, Y(t-),x) +
et Y(t=),x),G(t, Y(t=), x) = a(t, Y(t-),x) + B(t, Y(t-), x). Then we have

t t
Y(t) = j: Ta(t—5)f(s, Ys)ds + I To(t —5)g(s, Ys)da(s)

(o)

¢

+ I - fl; » T.(t — 8)F(s, Y(s—), x)N(ds, dx)

+ f To(t —5)G(s, Y(s—), x)N(ds, dx)
[xlv=1

¢
= [f T,(t —s)m(s, Ys)ds + f To(t = s)p(s, Ys)daw(s)
f LVd T.(t — s)h(s, Y(s—), x)N(ds, dx) (3.24)
+f To(t —s)a(s, Y(s—), x)N(ds, dx)]
" [xly>1 ;
+ f Tt —s)I(s, Ys)ds + f To(t = 5)q(s, Ys)dw(s)

f f Ta(t = s)p(s, Y(s—), x)N(ds, dx)
[xly<1

f j; X Tu(t = 9)B(s, Y(s—), x)N(ds, dx)]
= Y5 (f) + Ya(h).

From the proof of Theorem 3.1, we have that Y; is the unique almost automorphic solution in distribution.
We now in a position to prove that Y € SBCy(R, p). Ya(t) is L2—continuous and L2-bounded would be

showed first. Set A(t) = f o Ta(t=s)m(s, Ys)ds+ f o Ta(t=9)q(s, Ys)dw(s). By similar arguments as [13, Theorem
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4.1], it follows that A(t) is £2—continuous and £2-bounded. Since ¢, 8 € PSBCo(R x L2(P,H) x V, p), then
@, B are both Poisson stochastically bounded and Poisson stochastically continuous. Similarly, we can show

t
— _ 2_
that f j; o Ta(t = 8)p(s, Y(s—), x)N(ds, dx) + f L . o(t = 8)B(s, Y(s—), x)N(ds, dx) is L=—continuous.

According to the properties of the integral for the Poisson random measure, we have

Ellf L|V<1 Ta(t = s)p(s, Y(s—), x)N(ds, dx)
f f Ta(t = 5)B(s, Y(s—), x)N(ds, dx)|I?
|ﬂv>1

< 2E|| Ta(t = s)p(s, Y(s—), x)N(ds, dx)||?

—oo JJrly<1

+4E||f f Ta(t — s)B(s, Y(s—), x)N(ds, dx)|?
lxly 21 (3.25)

+4E||f fl g To(t = 8)B(s, Y(s—), x)v(dx)ds|*

< 2f j;lv<1 IT.(t = s)IPEllg(s, Y(s=), x)|?N(ds, dx)
_ Q)2 NPT

+4 I f| Tt 9IPEIRG, Y(5-), 2PN, )

t
4 f f ITa(t - $)PEIBGs, Y(s=), )| Pr(d)ds.
- [xly=>1

Since T,(-) is integral on [0, o) and ¢, B € PSBCy(R x L2(P, H) X V, p), we have

t
EIIIoo led Ta(t = 8)p(s, Y(s—), x)v(dx)ds

< | |XlVdIITa(S)IIZEII(;D(t—S,Y((f—S)—),X)IIZV(Q’?C)dS (3.26)
< C

M [T M 8 Y((E - 9)-), VIR
L Te e ds[) T+ b ds LVd Ellpt —s, Y((t —5)=), x)|[*v(dx)
< (CMY* [, Ellp(t = s, Y((t = 5)=), 0)IPv(dx) < co.

Ixlv

Similarly,
¢
Ellf f To(t —s)B(s, Y(s—), x)v(dx)ds|?
[xly>1

R - - 2 3.27
<) 1+Iu|s“dsﬁ|v>lv(dx)f T+] |sadsﬁcv>1E”5(t SV =) Alfvidnds - (3.27)
<M [ BB Y - 97 Ol <o

[xly>1

By (3.25)-(3.27), we have

t
Ellfoo fled To(t = s)p(s, Y(s—), x)v(dx)ds

¢
+f f To(t = 8)B(s, Y(s—), x)v(dx)ds|* < oo.
—00 Jlxly=1

Then Y,(t) is £2—bounded. We next show that hm _ E 1Y (D) p(t)dt < co. From the definition of

r—+00
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Y, (), we can derive

m(r, p) f ElV2(0)IFp(ht t
1 Y t
< m(t”/ ) IrE Iw To(t = 9)I(s, Ys)ds + Iw To(t = s)g(s, Ys)daw(s)
Talt - , Y (5-), x)v(dx)d
+ f fw o (t = 8)g(s, Y(s—), x)v(dx)ds

t
' ‘["0 lezl Talt _ts)ﬁ(s, Y(s—), x)v(dx)ds t
] ’”(3 P>f Fl Ttz f Talt=94(s, Yo (s)

" (V p) J-, f L o at = 5)p(s, Y(s ), )v(dx)ds
f f Ta(t = 5)B(s, Y(s—), x)v(dx)ds p(t)dt.
—oo Jxly=1

By a similar way as the proof of [28, Theorem 4.1], we can derive

2
p(t)dt (3.28)

2

p(t)dt

2

p(t)dt =

T, (t —9)I(s, Ys)ds + f To(t —5)q(s, Ys)dw(s)

r1—1>IElo m(yl p) _

In addition,

r t
m(:’ ) _VEIIIOO \f|;|v<1 Ta(t — s)p(s, Y(s—), x)N(ds, dx)

| - - 2
+f >]|;le To(t —s)B(s, Y(s—), x)N(ds, dx)||” p(t)dt

2 " t _ B y ,
Sty LB J, Tt 90t Yo 0 o

RG] I G TR R

Tntp) J

< m(ip) :EII f t f » Talt = $)¢(s, Y(s=), x)N(ds, dx)|*p(t)dt
Yt _:EII I t f| - Ta(t = s)B(s, Y(s=), x)N(ds, dx)|P p()dt
+%,p) _:E” f t L o Ta(t = 5)B(s, Y(s=), \)v(dx)ds| p(t)dt,

and

IR ) 2
m(r,p) J_, Ell f ]|;|v<1 To(t = s)p(s, Y(s—=), x)N(ds, dx)||p(t)dt

2 )ﬂp(”d”f” f ) f| TPt =5, Y(t = 5)-) v

)f p(t)th“f «led 1 +lusa(p(t—s, Y((t - 5)-), x)v(dx)ds|?

(C]\/I)2 B L .
= M(i’,p)f (t)dtf f;|v<1 1+ys“E”(P(t 5, Y((t = 5)=), 0)lI"v(dx)ds.
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According to Fubini theorem, we derive that
p(t) dtf f Ellp(t —s, Y((t — s)=), x)|[Pv(dx)ds
m(r ) f W<t 1+ #S“ ¢

cM [ ,
ol 1+|Hlsads f , f| Bl =, Y( =5, v

Since p € U™, p € PSBCy(R x L2(P, H) X V, p), it follows that

rl_l)I:’lo m(: ) f Ellj; f|| 1Ta(s)(p(if =5, Y((t —s)-), x)v(dx)dsllzp(t)dt — 0. (3.29)
Similarly,
rl_lﬂlo m(: ) I Ell‘f; [l g Ta(s)B(t —s,Y((t —5)-), x)v(dx)dsllzp(t)dt - 0. (3.30)

Combing (3.28), (3.29) with (3.30), we have

)f EIIY2(8)IPp(t)dt = 0.

m
r—+00 m(

Therefore Y;(t) € SBCy(IR, p). The proof is complete. O

4. Applications

In what follows, we use the previous theory to verify the existence and uniqueness of almost automorphic
solutions in distribution for a class of fractional partial integro-differential equations. We are concerned
with the following system

d 9
0 9) = [ G =, )

+ h(t) k(s)u(t +s,9)ds + a(t) f b(s)o(t — s, 9)dw(s) + h(t, u, z) aaf
v(6,9) = (p(@ ), 0Oe(-,0],

, t>0,¢c>0, 9€]0,m], (4.1)

where 1 < a < 2, Let H = L%([0, 7], R || - I 2), h(t),a(t) € SAA(R, L*(P,H)), k,b € Cy([—o0,0],R) and
2
satisfy some particular conditions specified later. Define the operator A on H by Av = (ﬁ - o).

D(A) = {v € H = L*([0,n],R) : v" € L?[0,m], v(0) = v(rm) = 0}. It is well known that A is sec-
0

torial of type w = —c < 0. Let u(t)(¥) = o(t,9) for t € [0,00), f(t,u)(9) = h(t)f k(s)o(t + s, 9)ds,

(o)

0
glt, up)(S) = a(t)f b(s)u(t + s, 9)dw(s), h(t,u,z)dZ = f H(t, X, z)N(dt, dz) +f H(t, X, z)N(dt, dz),

[lzllu<1 |Izllr=1
with Z(t, x) = j|\|Z||u<1 zN(dt, dz) + ﬁzl|u>1 zN(dt,dz), H(t, X, z) = h(t, u,z)z. Here we may assume for simplicity

that the Lévy pure jump process Z on L?(0, ) is decomposed as above by the Lévy-Itd decomposition

- (-9
a-1 —

theorem and J{ u(t) = fo m
in the space K = [0, +o0) with a o—finite intensity measure (), 7, P) on the complete probability space.
Let N(ds, dn) be the Poisson counting measure which is induced by §(-) and the compensating martingale
measure is denoted by N(ds,dz) = N(ds,dz) — v(dz)ds, then (4.1) can be rewritten as an abstract system of
the form (1.2). Furthermore, suppose that the assumptions of Theorem 3.1 hold, then from Theorem 3.1,
system (4.1) admits an almost automorphic solution in distribution.

u(s)ds. Let {4(t) : t € ]} be the Poisson point process taking values
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5. Conclusion

In this paper, we have considered a class of fractional integro-differential equations driven by Lévy noise.
Since T,(-) generated by sectorial operator is integral in ¢ on [0, o), it enables us to use sectorial operator to
establish the existence and uniqueness of (weighted pseudo) almost automorphic solutions in distribution
for system (1.2). In particular, the fixed point technique, fractional calculus and stochastic analysis are used
for achieving the sufficient conditions to ensure the existence and uniqueness of (weighted pseudo) almost
automorphic solutions in distribution for fractional integro-differential equations driven by Lévy noise
with an illustrative example. Our future work will be focused on investigating the Stepanov-like almost
automorphic solutions for fractional stochastic differential equations with Poison jumps or Lévy noise.
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