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The Truncated Euler-Maruyama Method for Highly Nonlinear Neutral
Stochastic Differential Equations With Time-Dependent Delay

Aleksandra Petrovi¢?, Marija Milosevié?

*University of Nis, Faculty of Science and Mathematics, Visegradska 33, 18000 Nis, Serbia

Abstract. The main goal of this paper is to establish the LI-convergence of the truncated Euler-Maruyama
method for neutral stochastic differential equations with time-dependent delay under the Khasminskii-type
condition. Whole consideration is influenced by the presence of the neutral term and delay function. The
main theoretical result is illustrated by an example. Since the main result is related to the L7-convergence
of the Euler-Maruyama method under the global Lipschitz condition on the coefficients of the equation
under consideration, for completeness of the paper, the appropriate results are given in Appendix.

1. Introduction and Preliminary Results

Stochastic differential equations (SDEs) with time-dependent delay are widely known as a useful tool
for describing phenomena which do not have an immediate effect from the moment of their occurrence.
In general, we can find many systems, in almost any area of science (medicine, physics, ecology, biology,
economics, etc.) where it is necessary to include this time lag in the corresponding model which we call
the delay function, since it may change with respect to time. We refer the reader to [3, 5-10, 12, 15] and
the literature cited therein, where the existence, uniqueness, stability and approximations of solutions are
considered, for stochastic differential delay equations, neutral SDEs with time-dependent delay and neutral
functional SDEs.

As is already known, explicit solutions of stochastic differential equations are difficult to obtain. As a
result, different numerical methods have been developed to produce approximate solutions of the observed
equation such as those from the papers [1, 2, 4, 11, 13, 14].

Recently, the truncated Euler-Maruyama method for different types of stochastic differential equations
hasbeen attracted the attention of many authors, as one can observe from papers[1,2,11,13], for example. In
these papers, authors studied the LP-convergence of the truncated Euler-Maruyama solutions for ordinary
SDEs, stochastic differential delay equations and neutral SDEs with constant delay under nonlinear-growth
conditions, as well as properties of these solutions. So, the main goal of this paper is to determine the
sufficient conditions under which the truncated Euler-Maruyama solutions for neutral SDEs with time-
dependent delay converge in the L7-sense to the exact solution of the equation. These conditions include
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the Khasminskii-type condition, as well as certain conditions related to the neutral term and delay function.
Theoretical results are illustrated through an example. Since the proof of the main result of this paper,
that is, the L7-convergence of the truncated Euler-Maruyama method is based on the L7-convergence of
the Euler-Maruyama method under the global Lipschitz condition, in order to complete the analysis, the
corresponding LP-convergence result of the second method is given in Appendix.

The initial assumption is that all random variables and processes are defined on a filtered probabil-
ity space (QQ, F, {Fi}e=0, P) with a filtration {F}0 satisfying the usual conditions (that is, it is increasing
and right-continuous, and ¥, contains all P-null sets). Let B(t) = (B(t), B%(t), ..., B"(t))T,t > 0 be an m-
dimensional standard Brownian motion, #;-adapted and independent of #. Let the Euclidean norm be
denoted by | - | and, for simplicity, trace[ATA] = |A? for matrix A, where AT is the transpose of a vector or a
matrix. Moreover, for two real numbers a and b, we use a V b = max(a, b) and a A b = min(g, b).

For a given 1 > 0, let C([-7, 0]; R?) be the family of continuous functions ¢ from [-7, 0] to R¢, equipped
with the supremum norm |[|p|| = sup___,_, l¢(6)|. Also, denote by C%([—T, 0]; RY) the family of bounded,
Fo-measurable, C([-1, 0]; R%)-valued random variables.

Let 6 : [0, +00) — [0, 7] be the delay function which is Borel-measurable. We introduce the following
autonomous neutral stochastic differential equation with time-dependent delay

d[x(t) — u(x(t = 6(O))] = flx(), x(t = 6(1)dt + g(x(t), x(t = 6(1)))dB(t), t=0, 1)
satisfying the initial condition
xo=¢&= {5(6)/9 € [_T/ 0“/ (2)

where the functions

f:R"xR? - R, g:R"xR?— R"™, y:R!— R,
are all Borel measurable and x(t) is a d-dimensional state process. The initial condition & is supposed to be
a Cg-?)([_T’ 0]; R%)-valued random variable.

A d-dimensional stochastic process {x(t),t > —7} is said to be a solution to Eq. (1) if it is a.s. continuous,
Fi-adapted, fooo |f(x(t), x(t — 0(B)ldt < o0 ass., fooo lg(x(t), x(t — 6(1))Pdt < 0, a.s., xp = & a.s. and for every
t > 0, the integral form of Eq. (1) holds a.s. A solution {x(t),t > —7} is said to be unique if any other solution
{%(t),t = —7} is indistinguishable from it, in the sense that P{x(t) = X(t),t > -t} = 1.

For the purpose of the following consideration we impose some hypotheses.
Hi : (The local Lipschitz condition) For each integer R, there exists a positive constant Kz, such that for all
x,y,% 7 € R with |x| V [y| V %] V |§] <R,

fey) = FE&DP Vg, y) - 9& )P < Ke(lx - yi? + 12 - 7).
H,: There exists a constant k € (0, 1) such that, for all x, y € R4,

|u(x) = u(y)l < klx = yl. 3)
Moreover, we suppose that #(0) = 0 which, together with (3), implies that
|u(x)] < kixl. (4)

Hj: The delay function 6 is continuously differentiable and &’(t) < 6 < 1.
‘H, : There are constants p > 2 and K > 0 such that, foralla € (0,1] and x,y € R4,

-1
(x —au(y))T f(x,y) + pTlg(x, Y < K1 + [ +aly).

Clearly, particularly for a = 1 we obtain the following condition.
Hy : (The Khasminski-type condition) There are constants p > 2 and K > 0 such that, for all x, y € RY,

(=) fa ) + Pl ) < K(L+ ef o+ yP)
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Hs: There exists a positive constant C¢ such that, for p > 2,

E  sup &) — &) < CeAL. (5)

t,s€[-1,0],|s—t|<A
Hs: There exists a positive constant 1 such that
6() =o(s) < mlt —sl, 520 (6)

At the end of this section we introduce the following existence and uniqueness theorem. The proof of this
result can be found in [12] for V(x) = |x!, U(x) = 0 forall x € R%, ¢; = ¢c; = 1, A; = 2K[1 + 3(p — 2)2""?] and
arbitrary A, > 0 for which A, > A1 /(1 = 9).

Theorem 1.1. Let Assumptions Hy, Ha, Hs and Hy be satisfied. Then, for any initial condition & € Cé;o ([=7,0]; R
there exists a unique global solution x = {x(t),t > —1} of Eq. (1). Moreover, the solution has the property that for all
T > 0, we have that

sup Elx(t)F < oco.
—1<t<T

2. The Truncated Euler-Maruyama Approximate Solution

In this section we will introduce the truncated Euler-Maruyama approximate solution to Eq. (1). To
define the truncated Euler-Maruyama numerical solutions, we first choose a strictly increasing continuous
function p : Ry — R, such that p(r) — co whenr — oo and forall r > 1

sup (If(x, ) V 1g(x, y)l) < u(@). 7)

[xV]yl<r

The inverse function of y is denoted by u~'. So, u=! : [1(0),0) — R is a strictly increasing continuous
function. We also choose constant A* € (0, 1) and a strictly decreasing function / : (0, A*] — (0, o) such that

h(A7) 2 p(@),  lim A(A) = oo, 8)
and for all A € (0, A*] and some ¢ € (0, 1) we have that

A R(A) < 1. )

Now, for a given step size A € (0, A*], we define a mapping ma(x) from R? to the closed ball {x € R? : |x| <
uH(h(A))) by

() = (x| A y‘l(h(A)))é—', (10)

where we set x/|x| = 0 when x = 0. Function 75 (x) will map x to itself when |x| < u~!(h(A)) and to u™* (h(A))ﬁ
when |x| > u~(h(A)). Now, we can define the truncated functions

ot y) = f(max), ma(y),  galx, y) = g(ma(x), ma(y)),  ualx) = u(ma(x)),
for x,y € R%. It is easy to see that
(W1 A g AN | < 17 ),

which together with (7) implies that, for all x, y € R?,

fale IV 1ga, )l < pu™ (1)) = h(A). (11)
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Namely, we have showed that both truncated functions fa and g, are bounded although f and g may not
be. So, we consider the following stochastic differential equation

d[x(t) = ua(x(t = 6] = falx(t), x(t = 6(1)))dt + galx(t), x(t = 6(1)))dB(t), t=0,

satisfying the initial condition (2).

Now, we will define the truncated Euler-Maruyama approximate solution x, of Eq. (1) on the finite
time interval [0, T], for arbitrary T > 0. Without loss of generality, we may assume that T/7 is a rational
number; otherwise we may replace T by a larger number. Let the step size A € (0, 1) be a fraction of 7 and
T, namely, A = /M = T/N for some integers M > 7 and N > T.

Primarily, we define the discrete-time truncated Euler-Maruyama approximate solution X, of Eq. (1)
on the equidistant partition ¢, = kA, for k € {-(M +1),-M,...,0,1,...,N}. In order for this solution to be
well defined, set

o(=A) = 6(0), Xa(=(M + 1)A) = E(—MA). (12)
Then, define

Xalte) =&t), k=-M,-(M -1),...,0, (13)

Xa(tre1) = Xalte) + ua(Xa (b — Ia[0(t0)A)) — ua(Xa (t—1 — Ia[6(t-1)]A)) (14)

+ fa (Xa(te), Xa (e = Ia [6(t)] A)) A + ga (Xa(te), Xa (f — In [0(t)] A)) AB,  k€1{0,1,...,N},

where ABy = B(ty+1) — B(t). Here Ix[u] denotes the integer part of the real number u/A, where u € [0, 7].
Thus, Ix[0(t)] represents the integer part of 6(fx)/A. In our analysis, it is more convenient to work with the
continuous-time approximations. In that sense, we introduce the step processes

z

N-1

a) = )Xol ®), Ta®) = Y, Xalte = IASEIN g 1 (), (15)
0 k=-1

o~
Il

where Ij;, 1. )(t) is the indicator function of [fk, tr+1). Then, we define the linear combination of Xa(f—1 —
Ia[6(tk-1)]A) and X (t — Ia[6(t)]A) as

Z40) = 7ata) + T @a(h) = 7)), (16)

whenever t € [t, tx11),k=0,1,2,...,N — 1. For convenience, denote that

t—

) 17)

Zk(t) = (1 — %)yA(tk—l) +
N-1

2a() = Y Zk®)lg .10 (18)
k=0

Then, we are in a position to define the continuous-time truncated Euler-Maruyama approximate solution
{xa(t),t € [-7, T]} such that xA(t) = &(t), t € [-7,0], while

xa(t) = &(0) + ua (2a(1)) — ua(Xa(=A — Ia[6(=A)]A))

t t
# [ a5 960 + [ 0a(a®), 7B, e 0L (19)
0 0

Clearly, for t € [y, tk11), Eq. (19) can be written as

f t
xa(t) = Xa(t) + ua(Zu(®) — ta(Xa(tt — I[5(t1)]A) + f Fa(Ea(s), Fa(s))ds + f 9a(Ea(9), Ta($)dB(S). (20)
te b
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Clearly, xa(tx) = Xa(tx) = Xa(tx) for every k > —M, that is, the discrete and continuous-time truncated
Euler-Maruyama solutions coincide at the grid points f;. Bearing in mind that, for ¢ € [0, T], there is a
unique integer k > 0 such that t € [t, fx41), from (18), (17) and (15), respectively we see that

Za(®)] = |1Z(D)]

t—t
< (1= 5 gt +

E—t _
A [7a (o)l

t—t t—t
< (1 - Tk) sup |xa(s)| + A k sup |xa(s)l

—T<s<t —1<s<t

< sup |xa(s)l. (21)

—T<s<t

In order to complete this section we establish the following lemmas which are essential for obtaining
the main results of this paper.

Lemma 2.1. Let Assumption H; hold. Then, for k € (0, %) andall x,y € R4,

[ua(x) — ua(y)l < 3klx — yl. (22)
Moreover, for all x € RY,
[ua(x)l < kix]. (23)

Proof. Let x,y € R? be arbitrary. In following consideration we observe x, y € R? such that x # 0 and y # 0.
For x, y € R? with |x| < u71(h(A)) and |y| < u~'(h(A)), the assertion (22) follows immediately.

On the other hand, for x, y € R? with |x| > u~!(h(A)) and |y| > p~1(h(A)), on the basis of (3), we have that

lua(x) — ua(y)l = lu(mta(x)) — u(ma(y))l
< klea(x) — ma(y)l

) )

Y lyl
B ()l = uT (AIyly + p (BA)Iyly — p ((A))Ixly

|xllyl

k(y‘l(h(A))lyI N
()

-1 h
(MM —yl+ P - y|)_

x| ||

|

lx =yl
[xllyl

IA

lyl = IXII)
lxllyl

IN

Using the condition p~(h(A))/|x| < 1, we conclude that
lua(x) — ua(y)l < 2klx — yl,
that is, the inequality (22) holds.
For x, y € R? with |x| > u~1(h(A)) and |y| < u~!(h(A)), bearing in mind (3), we find that
lua(x) = ua(Y)l = lu(mta(x)) — u(ma(y))l
< klma(x) = mta(y)l
-1
W)
Y
o ((A))xlyl - ylxllyll
|x[|yl
u (h(A)xlyl — w (R(A)Ixly + ™ ((A))lxly — ylyllx]
|x[[y] '
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Thus, we conclude that

o) = < kL BV - ) < (LI gy -] oo
Since |x| > p~1(h(A)) > |yl, then
1 (A = Tyl = 17 (B(A)) = Iyl < Ixl = Iyl = Il = Iyl < x = . (25)
Moreover, we have that
syl il _ Il =gl e el 06

yl |yl
Substituting (25) and (26) into (24) yields (22). The same way (22) follows for x, y € RY with u~{(h(A)) > |x|
and (D)) < yl.

Now, we suppose that one of the values x and y is equal to null vector, e.g. ¥ = 0. Then, from (4), we have
that

lua(x) = ua(y)l = lu(ma ()| < klma(0)] < kix| = klx — yl.
If x = 0 and y = 0 then (22) holds. It should be pointed out that (23) holds as well. [
Lemma 2.2. Let Assumption H; hold. Then, for every A € (0, A*] and all x,y € R, we have that

-1 _
E st < KA+ P + 1y, @)

(= us() falx, y) +
where K = 3K.

Proof. Fix any A € (0, A*]. Since the function } is decreasing and function u~! is increasing, it follows that,
for all A € (0,A"],

p ) = g ((AY)). (28)
Thus, using the condition (8) we obtain
pTHR(A) 2 pH (u(@) = 1. (29)

For x,y € R? with [x| V |y| < u~(i(A)), on the basis of Assumption ], the inequality (27) obviously holds
fora=1.
Furtheron, let [x| A [y| > p~1(h(A)). Then, we have that

p-1
2

(= ua(y)" falx, y) + 92 (x, )P

-1
= (x = u(ma(y))' f(a(x), ma(y) + pTlg(ﬂA(x), TA(W)P

(A ' — 1 (A

— oy (s = i Pt | s, maton + L s, m(y»ﬁl
-1 h T _

<m0 = o Putma | S, s + Lo m(y))lzl-
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So, on the basis of Assumption H; and (29), we see that

w7 (h(d))

x|

p- 1 2 |x|
2 IS gy

_ [ M, )
ETR@) W

< K[l + Ixl? + [y

(x = ua(y)" falx, y) + [1 + ma()? +

InA(y)IZ]

” + Im(y)lz]

<K[1+ P+ yP],

where K = 3K.
On the other hand, if |x| > u~}(h(A)) and y < u~(h(A)), then Assumption ‘H; and (29) imply

-1
gt )P

(= ua(m)" falx, y) +

-1
= (¢ = u(y) " f(ma(0), v) + Eo=lgra, )P

(A : -1
(a0 = 2 u0) a0+ L5 s, P

-1(p
K{LHnM@F+E—%%2Wﬂ

|x]

Tt ((A)
|x]

Tt (r(A)

_ |x] u ()

| g *

< K[l + Ixf? + [y

ll? + Iylz]

<K[1+ 1P +1yP],

that is, the desired assertion (27) holds.
Finally, for [y| > p~'(h(A)) and x < u~'(h(A)), applying Assumption ] for a = 1, we obtain

-1 -1
P~ 1ae 9 = (= ulra) F ma) + Eo =l ma)P

(x = ua(y) falx, y) +
<K[1+ 1 +Ima@)?]
<SK[1+ P+ yP].

Therefore, the proof is complete. [J

3. The L7-convergence of the Truncated Euler-Maruyama Solutions

The main aim in this section is to establish the L7 closeness between the truncated Euler-Maruyama
solution (19) and exact solution of Eq. (1). In that sense, we first prove several assertions which are essential
for proving the main result.

Let [ -] be the integer part function.

Lemma 3.1. If Assumptions Hy, Hs, Hs and He hold, together with the condition
kG +1n))* <1, (30)
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then, for any A € (0, A*] and for any integer I > 1 and p > 2,

E sup |Xa(t) — Xaltr)P < A% +5AT (h(A)Y, (31)
—M<k<N

where constants ¢ > 0 and ¢; > 0 are independent of A and ¢; is dependent on I.
Proof. Fix any A € (0, A*]. On the basis of (12), (13) and Assumption Hs, we observe that

E sup |Xa(te) — Xa(te1)P = E sup [E(t) — E(te)P < CeAL. (32)
-M<k<0 —M<k<0

Whenk € {1,2,...,N}, from (14), we have

Xa(te) = Xa(tr-1) = ua(Xa (t-1 = Ia[0(t-1)]A)) — ua(Xa (tk—2 — Ia[0(tk-2)1A))
+ fa (Xa(te1), Xa (t—1 = I [0(t—1)1 A)) A + ga (Xa(te1), Xa (Br—1 = Ia [0(t-1)]1 A)) ABy—1.

Applying the elementary inequality

1 -1 4
|a+b|Ps[1+evfl]” (Ial’”+%), 2,beR, p>1, (33)
and on the basis of (22), we obtain
) -1 3ky .
E sup [Xa(t) = Xa(ten)l’ < [1+€7T|  “=2F sup [Xa (b1 = Ial6(t1)]A) = Xa (ez = Ia[6(t2)1A) P (34)
1<k<N € 1<k<N

a1 qp-1
+2r! [1 + erH] E sup |fa (Xa(fx-1), Xa (=1 — Ia [0(ti-1)]1 A)) P AP
1<k<N

_ 1l
+27 [1+e7 | E sup lga(Xatir), Xa (fior = 12 [6(t-)] A) ABia .
1<k<N

In the sequel, we will deal with these three terms separately. Thus, on the basis of Hs, we have that, for
k=23,...,N+1,

[te-1 = Ia[0(tk-1)]A = tia + Ia[O(t-2) 1Al £ A + [Ta[6(tk-2)] = Ia[o(-D)]IA < A+ (1 + A < B + [nDA.
For k =1, since 6(—A) = 6(0), we find that
lte-1 — Ia[0(tk-1)]A = tia + IA[6(tk—2)JAl = A.
So, fork=1,2,...,N+1we get
|(k = 1) = Ia[6(te-1)] = (k = 2) + Ia[6(te-2)]l < B + L)) (35)

Since, on the basis of Hj, we have that (k — 1) — Ia[0(t—1)] > (k — 2) — IA[0(t—2)] for any k € {1,2,...,N + 1},
then, using (35), we obtain

(k=1)=1a[0(t-1)]

1Xa (k1 = Ia[0(t1)]A) = Xa (te—a — IA[6(t—2)1A) P < 3+ [n)y~! Z [Xa(t) = Xa(ti-0)l
j=(k=2)=1a[0(tr-2)]+1
<@+l sup [Xa(t)) — Xalti-1)F. (36)
~M<j<N

Consequently, we find that

E sup [Xa (-1 — Ia[0(t-1)]A) = Xa (fe2 = IA[0(tk—2)IA) P < B+ InI)PE sup XA (t) — Xa (1) P. (37)
1<k<N+1 —-M<k<N

On the basis of (11), we see that

E sup |fa (Xa(te-1), Xa (1 = Ia [6(te-1)] A)) P < (R(A)Y. (38)
1<k<N
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By (11) and the Holder inequality, for any integer [ > 1, we get

E sup |ga (Xa(ti-1), Xa (=1 — Ia [6(tk—1)] A)) ABx_1 [
1<k<N

< E( sup |ga (Xa(tx-1), Xa (=1 = Ia [6(ti-1)]1 A)) P sup |ABx_[
1<k<N 1<k<N

< (W(A))P [E( sup |ABk|2’7’)r

0<k<N-1
N-1 7
< (&)Y | Y EIABP (39)
k=0
Since B(t) = (B'(t), B3(t), ..., B"(t))T, t > 0 is an m-dimensional standard Brownian motion, we have
1 UL .
EIAB*' = E (|AB;|2 +|ABH 4+ + |AB;"|2)” < mP'1 Z EIABL = m?' (2pl - IAY, (40)
i=1
where 2pl — 1)!l =1x 3 % --- x (2pl — 1). Substituting (40) into (39), we obtain
N-1 ]
E sup |ga (Xa(t-1), Xa (te1 = Ia [0(t1)1 A) ABea P < ((A)Y 2 mP'(2pl — HIAY!
1<k<N k=0
< m(T@pl - D)F (AP AT . 41)

Substituting (37), (38) and (41) into (34), bearing in mind that A € (0, 1), we get

1 qp-1 (3k)F
E sup [Xa(t) - XtV <[1+e7 ] EL a1 1pE sup X (60 - Xa () P
1<k<N € —M<ksN

1

w2 [T+t L mTpl - A | (rayy A

9k
1- ok

p-1
So, choosing € = [ ] , on the basis of (32) and the previous inequality, the application of (30) yields

E sup [Xa(t) — Xa(te—)l
—-M<k<N
1 or-1 P 1 pl-1
< CeA? +3k* 23+ In)fPE sup [Xa(t) — Xa(teo1)P + ———[1+ m2(T@pl - 1)I)2 | AT (h(A))
n —MSIFSN (1— VoRy—1 [ P ]
p-1
< C:AT+ VOKE sup  [Xa(h) = Xa(beo)f + ———
¢ i YR = ey

Thus, we find that

[1+mE(T@pt - 1) F | AT ().

E sup [Xa(h) - Xaltor)l < EAT +&AT (h(A)Y,
—M<k<N

where

=t ¢, 5=—2__ [1+m?(T@pl - 17|,
1- Vok (1 - oKy

which completes the proof. [
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Corollary 3.2. Let the conditions of Lemma 3.1 hold. Then, for any integer 1 > 1 and p > 2,

E sup |7a(t) - 2a()F < eAE + AT (WA)Y, (42)
—A<t<T
Elxa(t) — Za(OF < CAS + AT (h(A)Y, t€[0,T], (43)

where constants ¢, c’, ¢, c; > Oare independent of A and ¢, c; are dependent on 1.

Proof. Fix any A € (0,A*] and ¢ € [0, T]. There is unique k € {0,1, ..., N — 1}, such that ¢ € [#, t;11).
In order to prove (42), observe that, by (15)-(17) we have

[7a(t) = Za(OF = 1Xa(te = La[6(t)]A) = Zi ()P
= (1= S5 Xalt = TaI5E0IA) = Xatics = (I
< Xtk = 1a[0(t)]A) = Xa(teo1 = Ia[o(t-1)]A)P .
Therefore, using (36) we get

E sup [7a(t) —Za()F < B+ nl)VE sup [Xa(t) — Xa(te-1)P.
—A<t<T —M<k<N

So, on the basis of Lemma 3.1, the proof of (42) is completed with
c=Q@+1Inhre, a=@+Inlya.

In order to prove (43), note that, by (20), in a view of (15), we have
Elxa(t) — 2a()FF < 37 Elua(Zi()) — ua(Xa(ti-1 — Ia[6(t-1)]A)P (44)

4l [E‘ ft‘t JACRO) gA(S))ds’p + E| jj ga(xa(s), ?A(s))dB(S)’p]-

Using (22), (16) and (15), respectively, and then (37) and Lemma 3.1, we find that
Elua(Zk(t)) — ua(Xa(te-1 — Ia[6(t-1)IA))P < BK)PEIZi(t) — Xa(ti-1 — Ia[0(t-1)]A)P (45)
< Bk EIXa(tr — Ia[o(t)]A) = Xa(tk-1 — Ia[6(t-1) AP

< Bk@+[n]YE sup [Xa (t) — Xa (t-1) I
_M<ks<N

< BkP @+ Ln)P(eAf + @A’ (hA)Y).

Applying the Holder and Burkholder-Davis—Gundy inequalities, and then (11), we get

A P o P
E| f fuEas), a(s))ds| +E| f 97(%2(5), Ta()MBs)| (46)
t 15 , t
S(t_tk)p_lftk E|fA(3?A(S)r37A(S))|pdS+(@) (t—tk)z‘ljl; E|ga(@a(s), 7a(s))| ds
< N(H(A)Y + (@)2 Af(r(A)Y.

Substituting (45) and (46) into (44), since A € (0, 1), we obtain that

Elea(t) - Ta(HF <3 [(3k>ﬁ(3 Lyt +an ) + oy +(PE2) atiy

< AT+ AT (A, te[0,T],
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where

¢ =3 IEPG + Lnlye, ¢ = 371 (3K (3 + [(nPé+1+ (V(Pz— 1))2l .
O

Lemma 3.3. Let the assumptions of Lemma 2.1 hold. Then, forallt > 0and p > 2,

k
14 P —un(z 4
Os;}; Elxa(s)lF < % —igs}ZoElé(S)l + a—wr (t)%;};Ele(S) ua(Za(s))IP. 47)

Proof. Let e > 0 be arbitrary. On the basis of the elementary inequality (33), as well as (23) we have that, for
any t >0,

XA = |xa(t) — ua(Za(t)) + ua@a )P

< [1 + e,ﬁ]l’—l (|xA(t) —upaEa@®)F + _|uA(22(t))|p)

-1 (DI
< [1 + e;ﬁ]p (le(t) —up@a®)P + k”@).
Letting € = [ﬁ]p_l, we conclude from (21) that

Elxa()l < Wﬂxm — usGAB) + KEEA(DP

1
< ————Ela(t) — uaGa()P + k sup EIE()P +k sup Elxa(h)F.
(1 - k)}? —-1<s<0 0<s<t

Therefore, we get

1
4 4 - _ 5 P
(:)321; Elxa(s)lP < % _igs}ZOEIé(S)I + a—w g;}; Elxa(s) — ua(za(®))F,

which completes the proof. [
Lemma 3.4. Let the conditions of Lemma 3.1 hold together with Assumption H, + Then, for p >0,

sup sup Elxa(H)f <C, (48)
0<A<A* 0<I<T

where C is a positive real constant dependent on T, p,1, K, k, &, but independent of A.

Proof. First, we consider the case when p > 2. Fix any A € (0,A"] and T > 0. By the Ito formula, we derive
from (19) that, for t € [0, T],

Elxa(t) — uaEa®)FP < EIE(0) — ua(Xa(=A = Ia[0(=A)]A)F
t
+ Efo plxa(s) — uaZa(s))P2(xa(s) — ua(Za(s)) fa(®a(s), Fa(s))ds

N P(Pz— 1)

E fo pla(s) — uaGa(o)P 2192 (Ea(s), Fa(E)Pds

t
+ Ef plxa(s) — ua@a@)P2(xa(s) — ua(Za(s))) ga(®a(s), 7a(s))dB(s).
0
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Furthermore, for any t € [0, T], we have that

Elxa(t) — uaZa ()P (49)
< EIE(0) — ua(Xa(=A = Ia[6(=A)]A)P

+PE£ lxa(s) — uaZa ()P 2 ((XA(S) — up(Za(9)))" fa(®A(5), Fa(s)) +
< EIE(0) — ua(Xa(=A = IA[6(=A)]A)F

+pE j; lxa(s) = uaEa(s)P? ((XA(S) — ua(Fa())" fa(®a(s), 7a(s)) +

p—
2

LI - 2
|ga(XA(S), Ta(5))] )ds

-1
i |gA<xA<s>,yA(s»|2)ds

+PEf lxa(s) = uaZa()P 2 (xa(s) = Ta(s) — ua(Za(5)) + ua(@a(s)" fa(Xa(s), Fa(s))ds.
0

In the sequel, we will estimate the summands on the right-hand of the last inequality separately.
Thus, on the basis of (23), we conclude that

E[£(0) — ua(Xa(=A = IA[6(=M)IADF < E(IEO)] + [ua(Xa(=A = Is[6(=A)]A)) (50)
< 2" HEIEQ)F +K EIXACA=1A[6(=A)]A)P)
<27' (1 + k) sup EIE(s)P.
—1<s<0
Let€,a,b > 0. Using the elementary inequality

a"b'" <ma+ (1 -m)b, mel0,1], (51)

we derive that, for any € > 0,

NI

2
. £y -2
ap—zb:(eap)”f( b )/2) P2 2 (52)

elr-2 p pe(P*z)/2

Furtheron, using Assumption H, and (52) for € = we find that

1
4R(p-2)T’

P s, 1)) 53
7 ga(Xa(s), Fa(s))|” | ds (53)

t
PEfO‘ lxa(s) — ua(Za ()P 2 ((XA(S) — un(Fa(8))" fa(@a(5), Ta(s)) +
< pRE [ 1xa(9) = usGaOI (1 + a9 + 7)) s
0

t -2 t 4
< %Ef [xa(s) — ua(2a(s))lPds + 2K[4K(p — 2)T] 7 E f (1 + 1Za@)P + |72 6)) 2ds
; 0

1

t 2 t
< EEIO xa(s) — ua(Za(s)Pds + 2K[4K(p — Z)T];}”3§_1Efo‘ (1 +12a@)F + [7a(s)l)ds.

Moreover, the application of (52) yields
23 f xa(5) = ua(Za@))P 2 (xa(5) — Ta(s) = ua(Za(9)) + ua(Fa())” fa(®a(s), Fa(s))ds (54)
0

t t
< (p - 2)¢E f xa(s) — a(Za(s)Pds + ﬁE fo A () = %a(5) — a(Ea(5)) + ur(TaG)IE Ifa(Ea(s), Ta(s)I2ds.
0
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By (11) and the Holder inequality, we get
t
E fo [ea(s) — a(6) — ua(2a(5)) + 1a(TaEFaEa(s), Fals)lFds
< (W(A))? fo (Elxa(s) = £a(5) = ua(za(5)) + ua(@a(s)P’) " ds

1 |4 ! %
<27 (W) fo [Elea() = 2@ + Elua(2a(s)) — ua(@als)P | ds.

Bearing in mind that p > 2 and applying (43), (22) and (42), respectively, we find that

t
E fo XA (5) — Ta(5) — ta(Za(9)) + ua(Fa()IE] fa(Fa(s), Fa(s))|2ds

NI=

<27 (W(A)* fo (A% + AT ()Y + GRVEEAE) - 7a@)F) ds

IN
Nl

2" (MA)T|(¢" + BhYPE)AT + (c] + BRYE)AT (h(A)Y)]

(7))

So, for €p € (0,1), we can find large enough [ > 1 such that [ > I%U' Then, the application of (9) and previous
estimate gives

IA

27T + (3k)PE)%(A%h(A))§ + (¢ + @hyra)

E fo [xa(6) = £a(5) — s (Za(6) + ua(TaNIEfs(Ea(®), Tas)lEds <

1 1
where C; = 2'7 T[(C’ + (3k)7’5)2 + (cl’ + (3k)”5,)2)]. Substituting the last inequality into (54) and choosing

— 1
G—Wweget

t
pE fo lxa(s) = ua(Za ()P (xa(s) = Xa(s) = ua(2a(5)) + ua(@a(s)" fa(Xa(s), Fa(s))ds (55)

. %Ej; [xa(s) — ua(Za(9))Pds + 2(4(p — Z)T)#Cl.

Since t € [0, T] is arbitrary, substituting (50), (53) and (55) into (49), we find that

sup Elxa(s) — ua(Za(s))F < 27711 + k) sup E|E(s)IP + % sup Elxa(s) — ua(Za(s))F

0<s<t —1<5<0 0<s<t

-2 p t p-2
+2K[4R(p - 2)T] 7 3% f (1+ EIZa(S)P + Elga(s)P)ds + 2(4(p — 2)T) = C..
0

So, on the basis of (15), we conclude that

sup Elx(s) — ua(Za()l’ (56)

0<s<t

-2 t .
<2(1+K) sup EIE(s)P +4K[4R(p — 2)T] 7 357! f (1+2 sup Elxa()P )dr + 4(4(p - TG
—1<s<0 0 0<u<r
< (1 +K) sup EEG) +4R[4R(p — 2)T]'7 3571T + 4(4(p - 2)T)' = G,
—1<s<0
- t
+ 8K[4K(p — 2)T]pﬂz3§‘1f sup Elxa(u)lPdr.

0 0<u<r
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Then, by Lemma 3.3, we have

k 2°P(1 + k”)) [t
sup E|EG)P+M;+N | sup Elxa(w)fdr,
(1 - k (1 - k)P —TSSIZO | ( )| : 0 OSLIEV | A( )l

sup Elxa(s)PP <
0<s<t

where o p2 2
q o 8R[4K(p — 2)T] # 377! M= 4R[4K(p —2)T] 7 377'T + 4(4(p — 2)T) 7 C,
B 1=k ©T (1-hy '

Therefore, we obtain that
t

sup Elxa(s)P < Qi+ N sup Elxa(u)lPdr,

0<s<t 0 O<u<r

where

o _( Kk, zv(1+kp))

sup E|E(s)IP + M.

—-7<5<0

“\1-k 1-ky
Applying the Gronwall-Bellman lemma we find that
sup Elxa(s)lP < Qe = 8. (57)

0<s<T

As this holds for any A € (0, A*] while S is independent of A, we see that

sup sup Elxa(s)f <S;.
0<A<A* 0<s<T

For p € (0,2), on the basis of the Holder inequality and previous part of the proof, we obtain that

Elxa(®F = (Ele(t)Iz)% <8, telo,Tl.

Thus, the proof is complete with C = 5; v Slg. O
Lemma 3.5. Let Assumptions Hy, Hy, Hz and Hy hold and let Ry be large enough integer such that

llxoll VI =IEll VT < Ro. (58)
For any real number R > Ry, define the stopping time
tr = inf{t > 0 : |x(t)| = R}, (59)
where inf @ = oo. Then, for any p > 2,
Pltg < T} < < (60)
RP

where C' is constant which dependsonp, k, K, T and &.
Proof. By the Ito formula and Assumptions H; and H,, we derive that for ¢ € [0, T],
Elx(t A Tr) — u(x(t A Tr — O(t A TR)))IP

tATR
< E|&(0) — u(&(=6(0))P” + pE j; lx(s) — u(x(s = 6(s))P"
(0(9) — (ats — ) F(x(5), 265 — 506 + £ lgtats), s - 6(s>>>|2) ds
< E|&(0) — u(&(=6(0)I" + pKE f ! Ix(s) — u(x(s = 61 + ()P + lx(s — 6(s)))ds
0

tATR
< EIE(0) — u(S(=5(0)F +pK (2°° v 1) E f [P + =2 lx(s = 5()P2|(1 + [x(9) + (s — 5(5))P)ds.
0
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Applying the elementary inequality (51), we obtain

Elx(t A Tr) — u(x(t A T — O(t A TR)))I

< EIE0) - u(E(=50)P + K(2"2 v 1)2(1+ k2T + K (22 v 1) [3p — 4 + 20| E f t lx(s A TR)Pds
0
t
+K (27 v 1) [2 +(@3p— 4)k”‘2] E f Ix(s A Tr — 6(s A TR))Pds
0

t
<C + C2f sup Elx(u A tg)IFds,
0

0<u<s

where
C1 = EIE(0) - w(&(-0(0)F + K (2P v 1) T[2+ (2 + (Bp - 4k 2) sup EEG)F],

—-7<5<0

and C; =K (2”‘3 % 1) (3p -2+@p- 2)k”‘2) . Therefore, we obtain that

¢
sup Elx(u A 1) —u(x(u A tg — 6(u A 1R)))P < C1 + sz sup Elx(u A Tg)IPds. (61)
0

0<u<t 0<u<s

Using the same arguments as in the proof of Lemma 3.3, we get

sup Elx(u A tR)IP < 1 fk sup E|E)lF + sup Elx(u A ) — u(x(u A tr — 0(u A TR))P.

0<u<t —1<u<0 (1 - k)p 0<u<t

Substituting (61) into the previous inequality, we find that

t
sup Elx(u A tR)lP < Cy + sz sup Elx(s A g)lPds,
0

O0<u<t 0<u<s
where ' c c
gl = — E P —1 o = —2 .
G=1% sup £ + a—r G a—pr
The Gronwall-Bellman inequality yields

sup Elx(u A )P < Cre™@ = C.
0<u<t

In particular, we have E[x(T A )P < C, such that R’P{tz < T} < C and the assertion follows. [J

Lemma 3.6. Let the conditions of Lemma 3.1 hold, together with Assumption H;. For any real number R > Ry,
where Ry satisfies (58) and A € (0, A*], define the stopping time

par = inf{t > 0 : [xA(H)] = R}. (62)
Then, for any p > 2, we have

P{ <T}< ¢ 63

PAR = = ﬁr ( )

where C" is a positive real constant which depends on p, k, 1, K, T and &.

Proof. Following the procedure of the proof of Lemma 3.4, analogously to the estimate (56), for t € [0, T],
we get

Elxa(t A par) — uaZa(t A par))lP < 2P(1 +k”) sup E[&(s)IP + 4K[4K(p — 2)T]p%;’23§_1T +44@p - 2)T)¥C1

—-1<s<0

_ t
+ 8K[4K(p — 2)]"];97232‘1 f sup Elxa(u A par)Pdr.
0

0<u<r
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Then, using the same arguments for obtaining the estimate (57), we conclude from the previous inequality
that

sup Elxa(t A par)f < S = c’.
0<t<T

In particular, we have that Elxa(T A pag)P < C”, such that RPP{par < T} < C” and the desired assertion
follows. O

Now, we are in a position to prove the main result. From now on, we will fix an arbitrary T > 0 and
show that

: TV = ey g
lim Elxa(T) —x(DI =0, lim E[xA(T) - x(T)I" = 0,

for every q > 2.
Theorem 3.7. Let Assumptions Hi—Hs hold, together with condition (30). Then, for any q € [2,p),
lim Elxa(T) = x(DIT =0, lim Elxa(T) - x(T)" = 0. (64)

Proof. Let g and pa r be the stopping times defined by (59) and (62), respectively and define
Oar = TR Apar,  ea(T) = xa(T) — x(T).
Obviously, we have that

Elea(DI = E (lea(DI" 0, >11) + E (lea(T) o<1 ) - (65)
Let € > 0 be arbitrary, and a,b > 0. Using the elementary inequality (51), we see that
1-1

b

P » _
a’b < (ea”’)% (—] < fa” + qbﬁ.

S

4 1
eri p per

So, we can conclude that
pP—q

A
pe r=q

€
E (lea(Dl" o, p<m) < %EIeA(T)I” + P pig, e < ). (66)

By Theorem 1.1 and Lemma 3.4, there exists a positive constant C, such that

Elea(T)P < 2" (Elxa(T)F + E(T)P) < C, (67)
while by Lemmas 3.5 and 3.6, we obtain
PlOax < T) < Pltx < T) + Ploag < T) <~ (68)
Hence, on the basis of (65)-(68), we have that
Cge p-qC +C"
Elea(T)I" < E (lea(T)" g, >1)) + -t (69)

4
per

Now, let ¢ > 0 be arbitrary. Choose € sufficiently small for Cge/p < ¢/3 and then choose R sufficiently large
for
p—qC +C <

&
pep‘—lq RP 3

So, from (69) we see that for this particularly chosen R,

2¢
Elea(TF < E (lea(Dllig,om) + -
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If we can show that for all sufficiently small A,

e
E (lea(Ml"Tio,om) < 5, (70)
we can conclude that

. q_
lim Elea(T)I" =0,

and then by (43), we also have that
lim Elx(T) - (" =0,

and the proof of the theorem would be complete.
In order to complete the proof, we need to show (70). Therefore, we define the truncated functions

Y - x A - A
(Il /\R)M), Gr(x,y) !J((le A R) le,(Iyl AR)M), Ur(x, y) u((lyl AR)I]/I)'

for x,y € R?. Without loss of any generality, we may assume that A* is already sufficiently small for
g~ (h(A%) > R. Hence, for all A € (0, A*], we have that

X
Jx|”

Fr(x,y) = f((lxl AR)

fal, ) =Fr(x,y), galx,y) =Grx,y), ualx,y)=Ur(x,y),

for those x, y € R? with |x| V |y| < R. Now, we consider the following neutral stochastic differential equation
with time-dependent delay

dlz(t) — Ur(z(t — 6(t)))] = Fr(z(t), z(t — 6(t)))dt + Gr(z(t), z(t — 6(t)))dB(t), t=0, (71)

with the initial data z(1) = &(u), u € [-7,0]. By Assumption H; we see that both Fr(x, y) and Ggr(x, y) are
globally Lipschitz continuous with the Lipschitz constant Kz, while, on the basis of Lemma 2.1, the function

Ur(y) is contractive mapping with constant 3k for k € (0, %) Thus, Eq. (71) has a unique global solution
{z(t),t = —7} (see Theorem 4.1 in Appendix, which can be found in [6]). It is straightforward to see that

P{x(t Atr) =z(t ATR), t€[0,T]} = 1. (72)

On the other hand, for each step size A € (0, A*], we can apply the classical Euler-Maruyama method to Eq.
(71) and we denote by z(t) the continuous-time Euler-Maruyama solution. So, we obtain that

Plxa(t A pag) = za(t A pag), t€[0,T]} = 1. (73)

However, from Theorem 4.5 (see Appendix), we have

E sup [z(H) - za()l < SOA'T,

—1<t<T

where S(J) is a positive constant independent of A. Consequently, we see that

E sup |z(t A Oag) — za(t A Oag)l? < SOA'T .

—1<t<T

Using (72) and (73), we have

E sup |x(t A Oar) — xa(t A Osp)l” < SOA'T,

—T<t<T
which implies
EIX(T A Oar) — xa(T A Op )" < SOHA'T .
Finally, we can conclude that

E(lea(Dio,5m) = E (lea(T A O p) Lo, o) < EIx(T A 05 %) = xa(T A Opp)l < S(AT,
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For example, if we fix [ = 2, we can choose small enough A, such that (70) holds, which completes the
proof. [

In order to illustrate the previous theoretical results, we provide the following example.

Example 3.8. Consider the following one-dimensional neutral stochastic differential equation with time-dependent
delay

dlx() + 2l7 sinx(t — 6(t)) ] = f(x(t), x(t — O(t)))dt + g(x(t), x(t — 0(t)))dB(t), t=0, (74)

with the initial condition £(0) = 1, 0 € [-1,0], T = 2, where the delay function is defined as 6(t) = 1 - % sint, t >0
and

F,y) = a1 + aglyl® — asx®,

and ay,--- ,a5 € Rwith az > 0. Clearly, the coefficients f and g are locally Lipschitz continuous, namely, they satisfy
Assumption Hy, while u(x) = —1/27 sinx satisfies Assumption H, for k = 1/27. Since 6'(t) < + = 5, Assumption
H3 holds. Moreover, for any p > 2 and any a € (0, 1], we have

g, y) = aslx® +asy, x,y€ER,

ala
(x = au() £, )+ E2 Mgt 9 < el + il — et + D) A2
+ Elxl5 +(p- 1)51421|x|5 + (- 1){1%]/2. (75)
Now, by the Young inequality (51) we obtain
2 5 3 2 3
llyl® < i+ 2y, alas|lyl® < < Zalar| + Zalaly” (76)

Substituting (76) into (75) we get

(x — au(y)) f(x, _1/)+—|g(x yIF < > [|a1|+ |ﬂ2|] [ Iazl(1+ )+(p 1)a5]y

il + | 22+ (= D8] P + il - a

<K +2% +ay?),

where ) 113
_4a < 112 a 12|y s
K= > [|a1| + 5|a2|] \Y p [5|a2| (1 + —27) +(p 1)a5] Vi

and

2
i= S;,lig {Iallu + [ > +(p- 1)aﬁ] ud + glazlu% - a3u6} < 0.

Thus, Assumption H; holds for any p > 2 and any a € (0, 1]. Particularly, for a = 1 we find that Assumption Hy is
fulfilled as well. The initial condition £(6) = 1, O € [, 0] satisfies Assumption Hs. Noting that

56~ 56 < glt —sl, 520,

we find that He holds with n = 1/4. Also, since k(3 + |n])* = 1/3 < 1, the condition (30) holds. To apply Theorem
3.7, we still need to design functions u and h satisfying (7), (8) and (9). Note that, for every r > 1, the inequality (7)
is satisfied with u(r) = ar’, where a = (lay| + laa| + az) V (|aal + las|) and p='(r) = asrs forr>1.Forey€(0,1) we
can choose € € [eo, 1) and define h(A) = A=179 for A € (0, A*]. Letting A* € (0, 1) be sufficiently small, we can make
(8) and (9) hold.

So, by Theorem 3.7, we can conclude that the truncated Euler—Maruyama solutions will converge to the exact
solution x(t) of Eq. (74) in the sense (64) for every g € [2, p).
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4. Appendix: The Euler-Maruyama method under the global Lipschitz condition

For the purpose of the following consideration we impose the following hypothesis.
7-(1’ : (The global Lipschitz condition) There exists a constant K; > 0 such that, for all x, y, %, 7 € R4,

[f(e, ) — F& DI V19(x, v) - 9%, PIF < Kilx — yl> + 1% = 71°).

In this section we introduce the following existence and uniqueness theorem. The proof of this result
can be found in [6].

Theorem 4.1. Let Assumption H, be satisfied and let f and g satisfy the local Lipschitz condition, that is, there
exists a constant R, > 0 such that, for all x,y,x, 7§ € R4, with |x| v lyl V1%l V |7l < n,

If(x, y) = f& )PV g(x, y) — 9@ DI* < Ra(lx — 2 + |y — 71°). (77)

Assume also that both f and g satisfy the linear growth condition, i.e. there exists a constant K > 0 such that, for all
x,y € RY,

|f(x, PV g, P < KA+ xP + [yl?). (78)

Then, for any initial condition & € C%([—T, 0]; RY), there exists a unique global solution x = {x(t),t > —t} of Eq. (1).

Now, we see that if Assumption 7—(1’ holds, then for any x,y € R?, the condition (78) is fulfilled with
K =2(K1 V|f(0,0)1* V [9(0, 0)]%). Clearly, Assumptions, H; and H, guarantee the existence and uniqueness
of solution to Eq. (1).

In the sequel we will establish the convergence of the Euler-Maruyama approximate solution y corre-
sponding to Eq. (1) in the L”-sense on the finite time interval [0, T].

Primarily, we define the discrete-time Euler-Maruyama approximate solution Y of Eq. (1) on the
equidistant partition #; = kA, fork € {-(M +1),-M,...,-1,0,1,..., N} of the interval [0, T]. In order for this
solution to be well defined, set

O0(=A) = 6(0), Y(—(M + 1)A) = E&(—MA). (79)
Then, define

Y(t) = E(t), k=-M,-(M-1),...,0, (80)

Y(tir1) = Y(t) + u(Y (tx — [a[0(t0)]A)) — u(Y (f-1 — Ia[6(t-1)]A)) (81)

+ (Y)Y (b= In [0(E)] A) A + g (Y(E), Y (B — Ia [6(t)] A) ABy,  k€{0,1,...,N}.

Let us introduce the step-processes

N-1 N-1
2= Y Y n®, 20 = Y Yt = AN p.(®), t€10,T] (82)
k=0 k=—1
and define the linear combination of Y(t;_1 — IA[0(fx_1)]A) and Y (£, — Ix[0(t;)]A) as
_ t—t
Zi(t) = zo(te-1) + A “(za(te) — 22(t-1)),  tE [t bean), k= 0,1,2,...,N =1, (83)

For convenience, denote that

t—t
A

2t) = (1= =5 )attio) + ), (84)

A

N-1
23(t) = ) Zi(Olig ) (- (85)
k=0
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Then, we define the continuous-time Euler-Maruyama approximate solution {y(f), t > —t} such that y(t) =
&(t), t € [-1,0], while, for t € [0, T], we have that

t t
y(t) = &(0) + u (z3(t)) — u(Y(=A = IA[6(=A)]A)) + fo f(z1(5), 22(s))ds + fo 9(z1(s), z2(5))dB(s). (86)

Clearly, for t € [ty, tx1), Eq. (86) can be written as

Y = Y(t) + u(Zal0) — u(Y (s — Ia[6(t1)IA)) + f Fz1(),za(s))ds + f 9(21(), 22(5))B(S). (87)
e t

It is useful to observe that y(tx) = Y(t) for every k > —M, namely the discrete and continuous-time Euler—
Maruyama solutions coincide at the grid points f,. Now, bearing in mind that, for ¢ € [0, T], there exist a
unique integer k > 0 such that t € [f, 1), we see from (82), (84) and (85) that, forp > 1,

lza(F < sup [y(s)P. (88)

—T<s<t
Now, we are in position to establish the p-th moment boundedness of the Euler-Maruyama solution.
Lemma 4.2. If Assumptions ‘H{ and H; hold, together with E sup_, .o 1E(8)IP < oo, then, foranyp > 2,
E sup |y(t)F <H, T>0, (89)

—7<t<T
where H is a positive constant independent of A.
Proof. Lete > 0and t € [0, T] be arbitrary. For any integer R > Ry, define the stopping time
pr =inf{t > 0 : [y(®)| V z1(#)| V z3() = R}, info@ =0, (90)

where R satisfies (58). Then, the sequence of stopping times {pr, R > Ro} is increasing and limg_, +« pr = +00
a.s. On the basis of the elementary inequality (33) and assumption (4), we have that

ly(t A pr)P = ly(t A pr) — u(zs(t A pr)) + u(zs(t A pr))F

1P tA P
<[1+er]” (Iy(t A pr) = u(zs(t A pr)V + k”M :

Letting € = [%{]p_l and using (88) we obtain

1
ly(t A pr)P < le(t A pr) — u(z3(t A pr))IP +k sup [y(s A pr)l’.

—T<s<t

Therefore, we have that

1
E sup |y(s A pr)IP < ——E sup [E(s)IF + E sup |y(s A pr) — u(zs(s A pr))P. (91)
—T<s<t 1-k —1<s<0 (1 - k)p 0<s<t

Applying the Holder inequality on (86), for t € [0, T], we observe that
Esup ly(s A pr) = u(z3(s A pr))P

0<s<t

t
< 3 EIE0)~u(YCA-LA[o(-A)] AP +37 TP f EIf(z1(s A pr), 225 A pr))Pds
0

P
+377'E sup

0<s<t

: (92)

SAPR
fo 9(z1(1), () AB(P)

Using the assumption (4) and bearing in mind (79) and (80), we get
EIE(0) — u(Y(=A = IA[6(=M)]A)P < E(IE0)] + kY (=A = IA[6(=A)]A)Y < (1 + kY’E sup [E()F. (93)

—-1<5<0
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On the other hand, from Assumption 7—(1’, that is, from (78), we have
Elf(z1(s), z2())F V Elg(z1(5), 22(8))F < Ka(1 + Elz1(s)’ + Elz2(5)FF), s € [0,£ A pr],
where K, = 3271K2. Now, by the Burkholder-Davis-Gandy inequality we find that

E sup

0<s<t

P t
< c,,T’Tle f (1 + Elz1(s A pr)IP + Elza(s A pr)IF)ds, (94)
0

SAPR
fo 919, 22(M)B()

where ¢, is a universal constant which depends only on p. Therefore, substituting (93) and (94) into (92)
and using the definition (82) of the step-processes z; and z,, we have

E sup |y(s A pr) — u(z3(s A pr))F (95)

0<s<t

t
<37 Y1 +kVE sup |E@P +3 7' T2 Y(T? +¢,)K, f (1 + Elz1(s A pr)I’ + Elza(s A pr)IP)ds
0

-1<5<0

t
<545, f E sup |y(r A pr)Pds,
0

—T<r<s

where

—1<5<0

Sy =31 [(1 +KkVE sup &) +T3(T? + cp)Kz], Sy = 32T (T* + ¢,)K,.
Now, substituting (95) into (91) we obtain

t
E sup |y(s A pr)P < S|+, f E sup |y(r A pr)lPds,
0

—T1<s<t —T<r<s

where

, 1 S , Sy
- p _
517 7¢E S KON+ T 5= oy

Applying the Gronwall-Bellman lemma, we find that

E sup ly(s A pr)l < S,e%" = H.

—T<s<t

Letting R — +o0, we conclude from the previous inequality that (89) holds. [
Lemma 4.3. If Assumptions H, Ha, Hs, Hs and H hold, together with the assumptions (30) and

E sup [E(s) < oo,

-1<5<0

then, for any integer 1 > 1 and p > 2,

E sup |Y(t) - Y(ty)V < HOAT, (96)
—-M<k<N

where H(1) is a positive constant, which is dependent on 1, but independent of A.
Proof. On the basis of (79), (80) and Assumption Hs, we observe that

E sup [Y(t) = Y(h)l =E sup |E(t) - E(tbi)l < CeA.
~-M<k<0 ~M+1<k<0

Whenk € {1,2,...,N}, from (81), we have

Y(tr) = Y(tr-1) = u(Y (ko1 = Ia[6(t-1)]1A)) — u(Y (B2 — Ia[6(t-2)]1A))
+ f(Y(tro1), Y (o1 = In [0(t-1)] A) A + g (Y(tr-1), Y (Fx—1 — Ia [0(t-1)] A)) ABy—1.
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Applying the elementary inequality (33) and Assumption H, we get

E sup V() = Yt < [1+67 | B sup 1Y (ter—Ialo(ti)]A-Y (o= Ta[o(ti2)A) P

1<k<N € 1<k<N
_ -1
+ 27 [1+emT]| E sup |f (Y(ta), Y (br = In [5(61)] A)) AP
1<k<N
_ a1
+ 27 [1+emT]| E sup |g(Y(te), Y (b1 — Ia [5(t1)] A)) ABi P 97)
1<k<N

In the sequel, we will deal with these three terms separately.
Applying the same arguments which are used for the estimate (37), we get

E sup Y (ti1 — Ia[0(ti—1)]A) = Y (2 = Ia[0(t—2)IA) P < B+ [IVPE sup Y (t) =Y (k1) [P (98)
1<k<N+1 ~M<k<N

On the basis of Assumption 7—(1’, that is (78), and Lemma 4.2, we see that

E sup [f (Y(te1), Y (b1 — In [6(te1)] A) [P < 327 'KZE sup [1+ [Y(t)P + [Y(to1 — In [6(tc1)] A
1<k<N 1<k<N

<327K5(1+2E sup [y(HlF)

—1<t<T

1+ 2H). 99)

By the Holder inequality, (78) and Lemma 4.2, for any integer / > 1,

E sup |g (Y(t=1), Y (t1 — Ia [6(f-1)] A)) ABy—a P
1<k<N

< E( sup g (Y(t-1), Y (te1 = Ia [0(t-1)] A)) P sup |ABk—1|p)

1<k<N 1<k<N
21-1 1
3 \| 7 2
< [E ( sup g (Y(t-1), Y (-1 — Ia [06(tr-1)] A) |21p‘)] [E( sup |ABk|2pl)]
1<k<N 0<k<N-1
N-1 %
< BK)I(1+2H)T Z E|AB¥! (100)
k=0

Substituting (40) into (100), we obtain

N-1 21
E sup |7 (Y(to), Y (bier = Ia [0(t-1)] A) ABeal < BK)E(1+2H) T [Z m(2pl - DUAY| < MI(DA'T, (101)

1<k<N k=0

2[-1

where M(l) = (3K)2(1 + 2H) = m(T(2pl — 1)!1)7. Now, substituting (98), (99) and (101) into (97), we get

-1 kP
E sup |Y(t) = Y(b)P <[1+e7T|  —@+nVE sup [Y () =Y (bl
1<k<N € ~M<ks<N

1 p-1 _ -
H[14ert] 2 (3§-11<§(1 +2H)AP + M(l)A%).
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p-1
Choosing € = [1_—%] , recalling that A € (0,1) and applying Assumption Hs, we have

E sup [Y(t)-Y(ho)l < CeAT+KS G+ 1n)E sup [Y(H) =Y ()
—M<k<N —M<k<N
-1

’ (1 - Vi1

Therefore, bearing in mind (30), we obtain (96), where

(357KE(1 +2H) + M()) AT .

_ Ce o1
A = —=
O 1—%+(1—@)P

which completes the proof. 0O

(3271K5 (1 + 2H) + M(D),

2479

Lemma 4.4. Let the conditions of Lemmas 4.2 and 4.3 hold. Then, for any integer | > 1 and p > 2, we have that

E sup ly(t - () - z3()F < DOA'T,
0<t<T

where D(]) is a positive constant, which is dependent on I, but independent of A.

(102)

Proof. Fixany t € (0,T]. Letk € {0,1,...,N -1} and letk; € {-M,-M +1,...,N — 1}, such that f € [#, ts1)

and t— 6(t) € [tkf/ tkf+1)‘
Observe that, for t_1 — In[6(tk-1)]A < i, <t — 6(t), on the basis of Hs, we have that

ltk, — tio1 + Ia[6(t-1)]Al < |t = O(F) — ti—1 + Ia[0(t-1)]Al < (4 + [21])A.
On the other hand, if t, <t —6(t) < t_1 — IA[6(tk-1)]A, in a view of Hs, we get
It — bt + Ta[6(t1)IAT < 5 + [2n])A,
From (103) and (104) we obtain
Ikt — (k =1 = IA[6(te-1)DI < 5 + [21].
By the definition (85) of the step-process z3, we see that

E sup |y(t — 6(t)) — zs()P < 2P71E sup |y(t — 6(t)) — Y(t, )P + 2P7'E sup [Y(t,) — Zi()F.
0<t<T 0<t<T 0<t<T

In order to estimate E sup,,_,_r [y(t — 6(t)) — Y(t,)IF, we discuss the following two cases.
Case 1: If k; < 0 then, on the basis of Assumption H5, we obtain

E sup |y(t—06(f)— Y, <E sup &) = &) < CgAg.
0<t<Tk;<0 0<s,t<T,|s—t|<A

Case 2: If k; > 0, then, from (87), we have that

E sup |y(t—o(t) — Y(t,)F

0<t<Tk;>0
<3TE sup  |u(Zy, (= 0(0) = u(Y (b1 — Ia[6(t,-1)]A)P

0<t<Tk;>0
£-5(t) P £-5(t) P
+3'E sup f f(z1(5), z2(s))ds| +3°'E  sup f 9(z1(s), z2(s))dB(s)| -
0<t<T k20 | ty, 0<t<T k>0 [V 1y,

(103)

(104)

(105)

(106)

(107)

(108)
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Thus, using Assumption H, and definitions (82) and (83), we get
E sup |u(Zy(t = 0(t)) — u(Y(te-1 — Ia[6(ti-1)1A))F

0<t<Tk;>0
t—o(t) — ty, P
SKWE sup | ———"(alt) - za(t1))
0<t<T k>0
<K'E sup |Y(fk, = IA[6(t)1A) = Y(t-1 — IA[é(tkr—l)]A)r‘
0<t<T k>0

By the estimate (98) and Lemma 4.3, we conclude that

E sup [u(Zy(t = 6(t) — u(Y(te-1 — Ialo(ti-1)IA)P < K'G + [n)’E sup [Y(t) — Y(tia)l
0<t<T k0 ~Msks<N

<K@+ n)HOAT .

Applying the Holder inequality, (78) and Lemma 4.2 we see that

P t—0(f)
<35 KEAIE sup A+ [216) + |z2(s)P)ds
0<t<Tk20 Vi,

T
0

—1<t<T

E sup
0<t<T k>0

£—5(8)
f F(za(s), 22(s))ds

b

<317 IKIT(1 + 2H)AP .

On the other hand, for any integer [ > 1, applying the Holder inequality we find that

p

E sup
0<t<T k>0

£-5(t)
f 9(21(6), 22(6)ABS)
tkf

21-1 1

S(E sup (Q(Y(tkf),Y(fk,—IA[é(tkf)]A))ﬁ:] (E sup |B(t_6(t))_B(kt)|2pl]~

0<t—5(H)<T k>0 0<t—5(H<T k>0

From the Doob martingale inequality, we have

E  sup |B(t-o(t) - B(k) <E sup sup  |B(t = 8(t) = Bk
0<t—6(t)<T k>0 0<k <N-1 ke A<t—5(t)<(ki+1)A
N-1
<) E  sup  [B(t=0(t) - Bkl

ko0 kAst=5(O<(k+1)A

2771 2pl N-1
< (Zpl — 1) Y EIB(t,1) - Bt ).
ki=0

Substituting (112) into (111) and using the same procedure as in obtaining (101), we get

p

E sup
0<t<T k0

£-5(t)
f 9(21(9), 22()B()

by,

1
21

21-1

2pl )p( 27 (v 2pl

< E su (Y(ty,), Y(tx, — Ia[0(t)1A))| ™ E|B(tx,+1) — B(te)I
(ZPZ -1 ogfa(t)fm,zo |g | kZ‘:o *

Zpl P _ pl-1
S(Zpl—l) MDA T .

2480

(109)

(110)

(111)

(112)

(113)
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Moreover, substituting (109), (110) and (113) into (108) and recalling that A € (0, 1), we obtain

E sup |y(t—o(t) - Y(t)P < Ri(DA'T, (114)
OStST,IQZO

where

P
Ri(l) = 3" (K3 + )P H() + 37 'K>T(1 + 2H) + (%) M(l)) .

Consequently, from (107) and (114), we find that

E sup [y(t — 5(H)) - Y(t)P < M)A,
0<t<T

where M(Il) = C¢ V Ri(l). Therefore, (106) becomes

E sup [y(t — 5(8)) — z3()P < 2P MOAT + 2P-1E sup [Y(k,) — Zx(b)]. (115)
0<t<T 0<t<T

In order to estimate the expression E sup_, 1 |Y(t,) — Zi(H)P from (115), we will use the definition (83). Thus,
we have that

i _Atk (z2(te) — z2(tr-1)),  t € [t ter)-

Y(t) = Zi(t) = Y(t,) — 22(tk—1) —

On the basis of (82), (98), (105) and Lemma 4.3, we obtain

E sup [Y(t,) — Ze(t)l (116)
0<t<T
< 2"7'E sup [Y(t) = Y(teo1 — Ia[6(t-)]A)P +2P7'E sup [Y(t — Ia[6(t)]A) = Y(tie1 — Ia[6(te-1)IA)P
0<t<T 1<k<N
<2H(G+ 120 + B+ ))E sup Y(t) — Ykl
—M<k<N

<G+ 200 + B+ Lnly) ADA™T .
Finally, on the basis of (115) and (116), together with (106), we get (102), where
D() = 27'M(1) + 47 (5 + [2n)) +B+Lnly) HO),
which completes the proof. [

Theorem 4.5. Let the conditions of Lemmas 4.2, 4.3 and 4.4 hold. Then, for any integer I > 1 and p > 0,

E sup |x(t) - y(B)P < SHA'T,

—1<t<T

where S(I) is a positive constant, which is dependent on I, but independent of A.

Proof. First, we consider the case when p > 2. Let 1 and pr be the stopping times defined by (59) and (90),
respectively. Now, for any integer R > Ry, define the stopping time

Or = TR A PR,
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where Ry satisfies (58). Then the sequence of stopping times {0, R > Ry} is increasing and limg_, oo Og = +00
a.s. Forany t € [0, T] and € € (0, 1), from the elementary inequality (33), we have

[x(t A Or) — y(t A Or)I

<1+ €] Zlutelt A B~ 50t A 61) ~ u(es(t A 61) ~ u(EDO)) + u(Y(~A ~ [B(-A) ATA

tAOR P

f(x(s),x(s = 6(5))) = f(z1(s), 22(s))ds

+ [1 + ev%l]pfl 2r-1

1 p_l -1 g
+[14erT] 2 . (117)

tAOR
fo g(x(s), x(s = 8(s))) = g(z1(5), 22(5))dB(s)

On the basis of Assumption H;, we obtain

u(x(t A Or — 6(t A OR)) — u(za(t A Or)) — u(E(=0(0))) + u(Y(—A — [6(=A)/A]A)
<[1+ e/fl]” - %lu(x(t A Or = 5(t A OR))) — u(zs(t A OR))

[1+ e ] YA - L[6(=A)1A) — w(E=S O
<[1+ eﬁ]z”_z 61—2k”|x(t A Or = 0(t A OR)) — y(t A Or = 6(t A OR))I
2921
+[1+er] KIY(E A Or = 6(t A OR) — za(t A OR)P
+[1+ erﬁ]p_l K1Y (=A = IA[6(=A)]A)) = E(=5(0))P

Note that £(—0(0)) = y(—6(0)) by the definition of the continuous-time Euler-Maruyama solution y and also
that Y(—A — IA[6(=A)]A)) = z3(0). So,

sup [u(x(s A Or — 0(s A Or)) — u(za(s A Or)) — u(E(=6(0))) + u(Y(=A - Ia[6(=A)]A)P

O<s<t

a2 1
< [1 + ev-l] ! e—zk” sup |x(s A Or) — y(s A Or)F

—1<s<t

+[1+er’%1]p_1k” [1+en%l]p_11+l [y(s A Or — 6(s A OR)) — z3(s A OR)IP
- sup |y R R z3(s R

0<s<t

Since the solutions x and y satisfy the same initial condition, on the basis of (117) we find that

E sup |x(s A Or) — y(s A Or)F

—T<s<t

1L 13p-3
< [1 + eﬂj] ’ lk”E sup |x(s A Or) — y(s A Or)F
€ —1<s<t

19202 kP a1
i[1eer]” . ([1 ver] ~+ 1)15 sup [y(s A Ox — 5(s A 6R)) — z3(s A BR)P

0<s<t

_ t
+ [1 + e;ﬁ]” Lop- [w—l f E|f(x(s A OR), x(s A O = 5(s A OR))) = f(z1(s A OR), z2(5 A Or))| ds
0

t
+ cpTg_1 f Elg(x(s A Or), x(s A Or = (s A Or))) — g(z1(s A Or), z2(s A QR))I”ds] , (118)
0

3 \P1
where ¢, is a universal constant which depends only on p. Using Lemma 4.4, choosing € = (17W ) and
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applying Assumption HJ, the expression (118) becomes
E sup |x(s A Or) — y(s A Or)IF

—T<s<t

(Vop2[1+ (VR DO e 232T51(TE + K
< AT + !

1 -k - Vi 1 -k - vy
X f (Elx(s A Og) — z1(s A OR)I + Elx(s A Og — (s A OR)) — z2(s A Or)IF)ds. (119)
0

For u € [0,t A Og], let k, be an integer such that u € [k,A, (k, + 1)A A Or). Recalling the definition (82) of the
step-process z; and using the procedure which gave the estimate (114), we obtain, for s € [0, A Or],

Elx(s) — z1(s)F < 21 sup |x(u) — y(u)P + 271 sup |y(u) = Y(k,A)P

—T<u<s 0<u<s,k,>0
<27E sup [x(u) -y + 2 R (DAT (120)
—T<uU<s

Using the definitions (83) and (85) we have that

s—t
23(s) — 22(6) = 2(t1) + T (@a(te) — 2a(ti1)) — 22(ke), (121)
whenever s € [, t11), k= 0,1,...,N — 1. This fact, together with (82), (98) and Lemma 4.3, implies that
_ -1
Elz3(s) = 22)P < E sup [Y(tor — Ial6(t-1)1A) = Ytz — Ia[6(t-2)IAP < B + Ly’ HDAT . (122)
1<k<N+1

On the other hand, using Lemma 4.4 and the estimate (122), we get
Elx(s — (s)) — z2(s)" < 3" "Elx(s — 8(s)) — y(s — 6(s))I” + 3" Ely(s — 6(s)) — z3(s) + 3" Elza(s) — z2(s)I"
< 3P 1Elx(s — 6(s)) — y(s — O(s))lP + 3P HD(l) + (3 + I_TIJ)”H(Z))APIT_Il. (123)
Now, substituting (120) and (123) into (119), we obtain
E sup [x(s A Og) — y(s A OR)I

—T<s<t
(Vey+2[1+ (V| DO)
< AT
(1= k)1 = Vi

¥ 2TH(TS + K (@1 + 31t
" (1 -k)(1 - Ve fo
2¥-2TH(T% + cp)Klg (2" 1Ry(1) + 3 1(D() + (3 + Ln J)PH(Z)))AE
' (1= - Ny '

The application of the Gronwall-Bellman lemma yields

E sup |x(u A Or) — y(u A Or)lFds

—T<u<s

Esup [x(sAOr)—y(sAOR)FP < SO(Z)A’”’T?l,

—T<s<t

where
2¥2TH(TS + o )KI (2 + 31)
(1-k)(1 - Viy!
(V2 [1+ (et D) . 2¥2TH(TH + ¢ )K? (2r71Ry()) + 3 1(DQ) + (3 + L) H(1)))
(1=K - Vir! (1= - V! '

So(l) = S()e™, S =

5()
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Consequently, we have that

E sup |x(sABk) — y(sABR)P < SoDA'T .

—1<s<T

Letting R — +o00 we conclude from the previous inequality that

E sup [x(s) = y(s)F < SoDA'T .

—1<s<T

Now, for p € (0, 2), on the basis of the Holder inequality and previous part of the proof, we obtain

P
2 ) 4 -1
E sup [x(t)—y(t) <|E sup Ix(t)—y(t)lz) gsg(zm”z*?l% <5§(1)A”’T.

—1<t<T —-1<t<T

Thus, the proof is complete with S(I) = So(l) V Sg 0. O
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