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Abstract. The main goal of this article is to present new inequalities for the recently defined generalized
numerical radius of block operators.
1. Introduction

In the sequel, L(H) will denote the C*-algebra of all bounded linear operators on a complex Hilbert
space H, endowed with an inner product (-, -).

If T € L(H), the numerical range W(T) of T is the complex set

W(T) = {{Tx,x) : x € H, ||x|| = 1}.

Among the most well studied norms on £L(#H) are the usual operator norm || - || and the numerical radius
norm w(-). These two norms are defined respectively by

IIT|| = sup ||Tx|| and w(T) = supflz| : z € W(T)}.
[lxll=1

The most basic relation between w(-) and || - || is the well-known inequality

1
SITI < w(@) < ITHl,

)
for every T € L(H). Thus, the two norms are equivalent.

Computing the numerical radius of an arbitrary T € L(H) is not an easy task. However, the operator
norm computations are much easier, in general. This urges the need to find bounds of w(-) in terms of || - ||.

We refer the reader to [3, 5-7, 10-12] as a recent list of papers dealing with the numerical radius; where
new bounds, refinements and generalizations have been given. Let tr denote the trace functional and let
Il - [l denote the Hilbert-Schmidt norm on L(H). We say that A € C; (the trace class) if tr|A| is finite, and
A € C, (Hilbert-Schmidt class) if [|All, = (trA*A)% is finite. The Cauchy-Schwartz inequality asserts

|trAB| < [|All2l1Bll2,

)
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when A, B € Cy, which in turns implies that AB € C;.

As one of the most recent advancements of the study of the numerical radius is the introduction of a new
definition of the so called the generalized numerical radius [1]. The motivation of this definition is as
follows: It is noted in [13] that

w(T) = sup [IR(ET)Il; T € LIH), 3)

OeR

where the real and imaginary parts of an operator T are defined as R(T) = T3 and 3(T) = 15, respectively.
In view of this, the authors in [1] introduced the following definition.

Definition 1.1. Let T € L(H)and let N be any norm on L(H). Then the generalized numerical radius of T, induced

by the norm N, is defined by wn(T) = sup N(R(e°T)).
OeR

When N(-) is the Hilbert-Schmidt norm || - ||, the norm wy(-) is denoted by w(-). That is,

wa(T) = sup RO, (4)
OeR

The authors in [1] showed some properties of wy(-) that come along with those of w(-). For example, they
showed that if N(-) is weakly unitarily invariant, then so is wn(:), in the sense that for every A, U € L(H)
such that U is unitary, we have

wn(UAU") = wn(A), (5)

and self-adjoint, in the sense that wn(A*) = wn(A). Further, it is shown in the same reference that if A € Cy,

then
1., 1 )
ws(A) = |3 IAIB + 342, ©)

which implies
1
V2

In 2012, Saddi [9] introduced the A-numerical radius, as follows. Let A € L(H) be positive. Then A
defines a positive semi-definite sesquilinear form

wy(A) = —=llAlb, if A>=0. (7)

CoaHXH = Cx,y), =(Ax, ).
Now, given T € L(H), we define the A-numerical radius of T by
wa(T) = sup{Tx, x)a| : x € H, |lxlla = 1}, (8)

By setting A = I in (8), we reach the usual definition of the numerical radius. In 2019, Zamani [14] came up
with the following new formula for computing the A-numerical radius of T € L4 (H):

wa(T) = sup||Ra(“T)|, = sup||TaD)|,, 9)
OelR OeR

where R, (T) = % and J4(T) = % for T € La(H). If we set A = [ in (9), we get (3). Here the set
of all operators which admit A-adjoints is denoted by L4(H). Let A be an n X n diagonal operator matrix

. . . . A 0
whose diagonal entries are positive operator A. For n = 2, the operator matrix is of the form [0 A}'

Throughout this paper, A is always assumed to be a positive operator, when we refer to w4 (-). In some cases
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we also assume A be strictly positive. Zamani [14] extended the renowned inequality (1) to the context of
A-numerical radius setting by showing

1
STl < wa(T) < [ITla. (10)

Furthermore, if T is A-selfadjoint, then wa(T) = ||T]|4a. For more details about A-numerical radius one may
refer to [7, 8, 14].

In this article, we further explore the properties of w(-), where we present several inequalities for w;(-)
for block operators, similar to some known inequalities about w,. We remark that our analysis of w; is due
to the fact that the Hilbert-Schmidt norm is one of easiest norms to deal with. In other words, looking at
the Schatten norms || - [|,, it is customary to investigate || - ||co, || - [l and || - [|1. The first norm implies the usual
numerical radius, while the second implies w,. Unfortunately, w; is not as easy to deal with as w,. This
justifies our tendency to investigate w,, rather than any other norm.

The following lemmas will be needed to accomplish our results.

Lemma 1.1. ([1], Theorem 8) Let A € C,. Then

%IlAllz < wa(A) < [IAll2. (11)

Lemma 1.2. ([2], Theorem 4)Let A,B € C,. Then

max(wa(A + B), wa(A — B)) _ wz( [o A] ) L W(A+B)+wy(A-B) 12)
B 0|/~ :

V2 - V2
Lemma 1.3. ([2], Lemma 2) Let Tq, T, € C,. Then
. [0 T 0 T
(i) wo (_eiQTZ 01]) = w, ([Tz 01]) for every 6 € R.
.. [0 T\ _ O T,
@ (|2 S)-=(7 3

(iii) wz(g2 22): V2w (To).

. [T, T
(iv) wz( T ) < \/wg(Tl +To) + wX(Ty - T).

N

Lemma 1.4. ([2], Theorem 1) Let T1, T, € C,. Then
T: O [
wy ([ 0 TZ]) < w%(Tl) + w%(Tz)

2. Main Results

Due to the theme of the results, we will split our main results into two subsections. For the reader
convenience, we will present the known results for wp, then show our w, version. This should make it
easier for the reader to follow and compare.
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2.1. The Hilbert-Schmidt numerical radius of 2 X 2 block operators

The pinching inequalities is one of the most important inequalities of operator matrices. Very recently,
Rout et al. [8] established some pinching type A-numerical radius inequalities (see Lemma 2.1). For usual
pinching type numerical radius inequalities one may see [5, Lemma 3.1]. Our first aim of this section is to
establish certain pinching type Hilbert-schmidt numerical radius inequalities for 2 X 2 operator matrices.
Because of the similarity, we recall the following result about w,, where we extend this to the context of w,
next.

Lemma 2.1. [8, Lemma 2.2] Let Ty, T, T3, T4 € La(H). Then
) . O I T
o urllg ) <on(7 7

o7 8=z 7))

We begin with the following lemma; where we show the w, version of Lemma 2.1.

Lemma 2.2. Let T1, TQ_, T3, T4 S C2. Then
. T, O T, T;
ow(o 7)==(r &)

0w G (r )

H

53
S—
IA
S
N
_
S43
~ =

Proof. LetT = [% ;i] and U = [ (I) ?I] . Then U is a unitary operator on ‘H P H. Further,
[T ][I O] T][I o] _[21w O
T+UuTU = [T3 n] * [o —1] [T3 n] [o —1] = [ 0 2T4]'
So, we have
6]
T, O\ _1 .
wy ([O T4]) = EZUZ(T + U'TU)
< STwa(T) + wa(U'TU)]
1
= E[wz(T) +wo(T)]  (by wo(U'TU) = w(T))
T, T
R
(ii)
O T 1
w, ([T3 OZ]) = 5(T - U'TU)
< 21w (T) + (U TU)]
1
= E[wz(T) + wy(T)]

=7 )

This completes the proof. [
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The following result establishes upper and lower bounds for the A-numerical radius of a particular type of
2 X 2 operator matrix.

Theorem 2.1. [8, Theorem 2.6] Let Ty, T € La(H). Then

max{wa(T1), wa(T2)} < wa ([_T%Z —le"l]) S wp(Tr) + wa(Ty). (13)

Extending this to the context of w,, we have the following result.

Theorem 2.2. Let Ty, T, € Cy. Then
Ty, T
V2max{wa(Th), wy(T2)} < w2 ([_TZ _Tl]) < V2(ws(Ty) + ws(T)). (14)

Proof. Using Lemma 1.3 and Lemma 2.2, we obtain

e =ul5 9 ))wl% %))
=% )

Y (] |

and

IA

V2wy(T,) = w, ([_(;2 %D

Therefore,

On the other hand Lemma 1.3 implies

woy ([_T%z _T%l]) < wy ([’1(;1 _?1]) + Wy ([_(])-.2 %jl) = \/EZU2(T1) + \/sz(Tg),

which completes the proof. [

The reader is encouraged to look at the usual numerical radius version of the inequality (14) [5, Theorem
3.2]), which reads as follows.

Corollary 2.1. Let T1, T, € L(H). Then

max{w(Ty), w(T>)} < w([ TTl TT2 ]) < w(Ty) + w(T»). (15)
—12 —11

A particular case of the inequality (14) is the following.
Remark 2.1. If we choose T, = Ty in inequality (14), then
n Ty
V2w, (Ty) < w; < 2V2wy(Th).
- -Th

The following identity is proved by Rout et al. for A-numerical radius setting.

Proposition 2.1. [8, Lemma 2.9] Let T1, Ty € La(H). Then

wa ([;2 _TTl]) = max{wa(Ty + iTy), wa(Ty — iTy)}.
1 T
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The following result provides the w, version of Proposition 2.1.

Proposition 2.2. Let T1, T € Cy. Then

T, -T . )
wy ([T1 T, ]) < \/W§(T1 + ZTZ) + w%(Tl - ITQ).

Proof. LetT = [1%"12 ;1]:2 1] and U = % [111 lII] .So, U* = Lz [—Iil _III] . It is not difficult to show that U is a
unitary operator on H P H.
Then, U'TU = [_i(Tl -T2) . 0 ] . Using the fact that w,(T) = w,(U*TU), we get
’ O (T +T3) ’

wo(T) = wo(U'TU) = w, ([_i(Tlo_ ) i(Tlc-‘:)- Tz)])

< \Jwd(-i(T) — T2)) + w3((T) + T2)) (by Lemma 1.4

= \J03(Ts — To) + wi(Ty + T)

Replacing T, by —iT5 in the identity, we have

T, -Th . .
wy ([Tl T, ]) < \/wg(Tl + 1T2) + w%(T1 - sz).
O
For the purpose of insight to the next result, we present the following inequality for wa.

Theorem 2.3. [8, Theorem 2.11] Let T+, T, T3, T4 € La(H). Then
T, T, 1 . .
Wa < = max {wA(Tl + Ty +i(Ty = T3)), wa(T1+Ts — i(T> — T3))}
T; Ty 2
1
+ E(WA(TAL = T1) + wa(T2 + T3)).

The following theorem provides an upper bound for the Hilbert-Schmidt numerical radius of a block

operator matrix of the form [% ;i] ; as the w, version of Theorem 2.3.

Theorem 2.4. Ty,T>,T5,T4 € Co. Then

s ([2 ;ﬂ) < S{ BT =T +i(Ty + T) + 03(T5 — T - i(T: + T)

+ \/E(WZ(TZ + T3) + ZUz(T4 - Tl))}

I -1

= L
Proof. Let U = \/E[I I

]. It can be shown that U is a unitary operator on H 5 H. Using the identity
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wo(T) = wo(U*TU), we have
T: Tof) _ AT T
el )l [n 1)
1 T1+Tr+T5+ Ty T+ Ty —Ts5+ Ty
2 “T1—-Tr+T3+Ty, T1-Tr—-T3+ T4
1 T1+ Ty Tr—Ts3 T, + T3 Ty—T;
T2\ -T AT - -T5-T,
1 T1+ Ty —(Tg - Tz) Ty, + T3 Ty—T,
—qW> + Wy
=3 Ts-T, Ti+T;4 Ts—T1 —(T3+T2)
1
2

{ 3T = o) + Ty + T + (T3 = To) = T2 + To)

+ V2(wa(Ty + Ts) + wa(Ty — Tl))}/

where we have used Lemma 2.2 and Lemma 1.3 to obtain the last inequality. This completes the proof. [

Further, we have the following result for wa, whose w, version is shown next.
Theorem 2.5. [Theorem 2.13, [8]] Let T, T, T3, Ty € La(H). Then

wa(Ty + T3) + wa(To — T3)
5 )

wa ([2 %]) < max{wa (Ty), wa(T)} +

Theorem 2.6. Let Tq,T,,T3,T4 € Cs. Then

W, ([% %D w(Th) + w2(Ty) + wy(T> + T3)\J/r§w2(T2 - T3).

Proof. Using similar argument to the proof of Theorem 2.4, we have

T, T, _ 1 Ti+Ty T4—1T; T, + T3 Ty, —T;s
wo T T +
3 4

T2\ -1y T+ Ty I3-T, -T3-T

1 Ti+Ty T4—1T; + 1w Ty + T3 T, —T;s
=3 Ts—T1 Ti+Ts \[~(T2=Ts) —(T2+Ts)
1

<§{\/ 2(Ty + Ty + Ty — Ty) + wl(Ty + Ty — Ty + T)

+ V2(wo (T, + Ts) + wa (T, — T3))} (by Lemma 1.3 and Theorem 2.2)

= Jwi(T1) + wi(Ty) + wa(T2 + T3)\-/|-§w2(T2 — TB).

This completes the proof. O

A refinement of (10) was shown in [8], as follows.

Proposition 2.3. [8, Theorem 3.2] Let T1, T> € La(H). Then

([7? O]) < wa(T1) + wa(T2) - —IwA(Tl +T2) —wa(Ty — T2)l

In purticular,
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Now, we present two Hilbert-Schmidt numerical radius inequalities simulating Proposition 2.3. For these
results we need the following identity that for any two real numbers a and b, we have

# = max(a, b) — la ; b'. (16)
The following result is our first lower bound for w»(-) of equation (11). For usual numerical radius, related
bounds can be found in [5].
Theorem 2.7. Let A,B € C,. Then

0 A |wa(A + B) — wy(A — B)|
”’2([3 0] ) V2

< V2(wz(A) + ws(B)). (17)

In particular if B = A*, then
1Al TR A2 = I5(A)lk] <w
2 2
Proof. By using inequality (12), we have
0 A wy(A + B) + wa(A - B)
“(|p o) V2

_ \/E(ZUZ(A + B) ;— ZUZ(A - B)

2(A). (18)

) (now use(16))

= 2[ max (wz(A + B), wo (A — B)) _ |w2(A +B) ; WA - B)|]

lwa(A + B) — wy(A — B)|]
5 )

< x/E[wZ(A) +w(B) —

Thus, we get

W2( [g zg] ) . [wo (A + B)\;sz(A - B)| <2

Letting B = A" in inequality (19), we have
0 A
V2JIAl = wz([ - ol)

0
< «/E[wz(A) T wy(A") -

(w2(4) + wa(B)). (19)

|wa(A + A") — wy(A — A*)I]
2

= V2[202(4) - IR = I3 |

Thus, we have shown

1AL |, IR~ 19 _
S Wy

: 5 @),

which completes the proof. [

The usual numerical radius version Theorem 2.7 can be stated as follows.
Corollary 2.2. [5, Theorem 4.1] Let Ty, T> € L(H). Then

w([g g]) < w(Ty) + w(Tp) — %W(Tl +T2) —w(Ty = T2)l.

In particular,
(| T| N IR(T)I = IS(T)Il
2 2
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It should be mentioned here that the inequalities in Corollary 2.2 provide a refinement of (1).
Another refinement of (10) proved in [8] can be stated as follows.

Proposition 2.4. [8, Theorem 3.3] Let Ty, To € La(H). Then

O Th IT1lla + [IT2lla IT1]la + IT2lla
wA([Tz O])+—2 ’ A(Ty + 1) - — 5
1 Tilla +IT
#3 o = 1) - A < 00, 4 02,
In particular,
T T
Ty g - M0 i - 2208 <,

The w,(-) version of Proposition 2.4 is shown next.

Theorem 2.8. Let A,B € C,. Then

_ Al +IBIl2 IIAHz+IIBIIz
wz([o A])+(||A||2+||B||2)+I\/sz(AJrB) e |\/_w2(A B) - |

B 0 2 2 2
< 2V2(wa(A) + wa(B)). (20)
In particular, if B = A*, then
_ 1Al _ LAl
+ + < ZUQ(A).
442 42 442
Proof. By using inequality (12) and identity (16), we have
0 A llAll2 + 11Bll>
“’2([3 0])*( 2 )
woA+B)+waA-B) (IIAIIz + ||B||2)
< 7 5
_ wy(A + B) + w(A — B) llAll2 + 11Bll>
- \/E( 2 )+( 2 )
_ fw2<A+B)+w , Vaws(A - B) + Uik
2
P A+B) - LAz +1Bll2
- max (Vaun(4 + ), Al + ||B||2)_ | V2wy(A + B) — L7
2 2
A — B) — lAL#1Bl:
. max(\fw A, Mkt ||B||2) | V2wa( 2) S
P A+ B) - LAl +1Bll2
ma (VE(r(A) + (), A, + ||B||2) _ IN2w(A + 2) S|
A — B) — [Al+1Bl:
+ max(\/i(u&(A) + w2(B)), Al -2'- ”B”2) V2 2) -

| V2w»(A + B) — ||A||z;r||B||z| | V2ws(A - B) — ||A||2;r||B||2|

= 2V2(wy(A) + wa(B)) - 5 2
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So,
0 A Al + [IBll» | \/sz(A +B) - ||AH2+HB\|2| | \/sz(A -B)- ||A\|2+||B||2|
wz([B 0])+( 2 )+ — S
< 2V2(wy(A) + ws(B)). (21)
Letting B = A* in (21), we obtain
V2l = [ " /g])
< 2VE(nt) + o) - (1AL IATe)
B | \/EZUz(A +AY) - HA||2;||A*||2| B | \/sz(A —AY - ||A||22||A*H2|
2 2
= 4w () - 1Al - [VEIR (), - L2 |- Vi an, - 12|
So,
1Al 1Al
(Nae il | VIR -] |Vais i, - 4 o
42 42 42 B '
O

The reader should compare Theorem 2.8 with the usual numerical radius version [5, Theorem 4.2],
which reads as follows.

Corollary 2.3. [5, Theorem 4.2] Let Ty, T, € L(H). Then

T T 1 T T
w([o Tl])+ AT L+ 7y - AT

T, O 2 2
1 Tyl + T
+§ ’ZU(T1 — Tz) — MHZM < Z(T,U(Tl) + T/U(Tz))
In particular,
T T T
Tl ]nmn)n -l ‘uﬂ(n)u - Bl <oy,

2.2. Some bounds for n X n block operators

In the rest of this paper, motivated by some methods from [10] we present several inequalities for the
Hilbert-Schmidt numerical radius for n X n block operators.

The following identity is proved by Rout et al. [7]. By setting A = I in Theorem 2.9, one may get the
usual version of numerical radius equality.

Theorem 2.9. [7, Theorem 3.5] Let X; € La(H), i=1,2,...,n. Then

X1 e 0
O X O

wal| . L || = maxtwa ), wa X)),
o) e X,

where A is an n X n diagonal operator matrix whose diagonal entries are positive operator A.
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Lemma 2.3 provides an estimate for Hilbert-Schmidt numerical radius of an n X n diagonal operator matrix,
in a way similar to Theorem 2.9

Lemma 2.3. Let A;; € C;,1 <i<n. Then

Ay 0 - 0
0 Apy - 0 n
Y | I | E- D R0 7 )
: : . par
0 0 - Ay
Proof. Calculation shows that
Ay 0 - 0P
0 Apm - 0 5
S = Y Al
: : .o pr
0 0 - Auwll,
and )
Ay 0 -+ 0
0 An -+ 0 2 2 2 2 2 2
tr : : . : = [trA7, + trAY, + - +trA; | < trAf | + [trAS, | + - + [trA, L
0 0 - A,
It follows from (6) that
An 0 - 0 An 0 - 0 Ay 0 07
0 Apy - 0 Mo Ap - 0 11 1o Ap o 0
wy || . . . . = |z . . . . + = tr| . . . .
0 0 - Aul) N Lo o - ALl 0 0 - Aum
1 n 1 n n
“\z Z||Aﬁ||§]+ 5 2wl = | ) wddi).
i=1 i=1 i=1

O

The following result is an upper bound for the A-numerical radius of a general n X nn operator matrix which
was proved by Rout et al.[7]. By setting A = I, one may get the usual version of numerical radius inequality.

Theorem 2.10. [7, Theorem 3.6] Let A;; € La(H), 1 <i,j<nand T = [A;j]. Then

: 1y
wa(T) < max{wa(Ai) : 1< i< n}+ 5 ) IA;la,
ij=1
i#]
where A is an n X n diagonal operator matrix whose diagonal entries are strictly positive operator A.

Extending Theorem 2.10 to the Hilbert-Schmidt numerical radius, we have the following.

Theorem 2.11. Let Ajj € Cy fori,j=1,2,...,n,and let T = [A;;]. Then

n

2
E 1A il13-
i=1

J#i

n 1 n
wy (T) < ; w5(Ai) + 7 ]:21
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Proof.
A A Aty
Ay Ap Az
(4%) . . .
Anl An2 Ann
A1 O 0 0 Ap A Atn
0 Ap 0 0 0 0 0
<wy . . . +wal]. . . .
| 0 0 A 0 0 0 0
r0 0 O 0 0 0 0 0
Ay 0 Ay Asp 0 0 0 0
+ w2 . . . . +-o Wy . . .
L 0 0 0 0 Anl An2 Ann—l 0
Noting that
0 Ap A AT 0 0 O 07
0 0 0 0 A21 0 A23 A2n
0 0 0 0 0O 0 O 0
0 0 0 0o [0 0
0 0 0 0 0 0
An Ap Apr O 0 0
Using Lemma 2.3 and (7) we have
0 A12 A13 Aln
n 0 0 0 0
wa (T) <4 wiAa)+—|I|. . . .
;‘ 2 V2 Il : : :
0 0 0 0 1f},
0o 0 O 0 0 0
1 l1A21 0 A Ay, 1 0 0
+—ll .. R
Va2l V2
0 0

-\

This completes the proof. O

2674

0

o

0

0

Ann—l

Y A3

i-1,
i#n

2

On the other hand, the following result presents an upper bound of the usual numerical radius of an

arbitrary block operator.
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Proposition 2.5. [4, Theorem 2.9] Let A;; € L(H), 1 <i,j<nand T = [A;j]. Then

n
H Zl, A]'iA;i

j#i

. 1v
) e < _
w(T) < max{w(A;):1<i<n}+ ]Ezl

Theorem 2.12 below provides the Hilbert-Schmidt numerical radius version of this result.

Theorem 2.12. Let Ajj € Cy fori, j=1,2,...,n,and let T = [A;;]. Then

n n
1
wa (D) <) | |wddi) +5 ) IAB .
i=1 j=1

j#i

Proof. Let
Jixk | Okscn—k
Uy = ,
« [Onkxk Lnkxn-k
where
0 0 I
I O
Jixk = )
0o ...
I O 0
Then U is unitary and
An A - A 0 o - 0
0 O M 0 Azl A22 N AZTL
wy (T) <w, || . . . | +wal] . . . .
0 0 0 0 0 0
0 0 0
0 0 0
+ -+ Wy .
Anl An2 Ann
Aun A - A Ay Ay - Ay
0 0 --- 0 0 0 -~ 0
=w21) . : : [ | W : : .| U2
0 0 0 0 0 0
Ann Ann—l Anl
0 0 0
+--+wn | U, u,
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Since w;(-) is weak unitary, then

An Ap At Axn Ax Agy
0 0 --- 0 0 0 --- 0
wz(T) < wy + Wy .
0 0 0 0 0 0
Ann Ann—l Anl
0 0 0
R o)) .

0 0 0

2676

IRy IRy 1y
=Jw§<An> 5 ) AR+ (wd(Ae) + 5 3 A+ + @A) + 5 ) IAulh
j:2 j=1 j=1

j#2

=

1 n
w3 (Ai) + 5 ) A2
j=1

j#i

Il
—_

This completes the proof. [J

j#n

For comparison, we refer the reader to [4, 10] for the usual numerical radius version of such results:

Proposition 2.6. [4, Corollary 2.6] Let A;; € L(H) where1 <i,j <nand T = [A;;]. Then

n

w(T) < %Z w(Ay) +

i=1

n
W (Ai) + ) IAIR |-
j=1

j#i

We conclude this article with Hilbert-Schmidt numerical radius of an off-diagonal block operator matrix.
The A-numerical radius inequality for an n X n off-diagonal matrix which can be stated as follows.

O
Proposition 2.7. [7, Theorem 3.4] Let A; € La(H), i =1,2,...,nand T =
O
Ay
then
1 n
wa(T) < 5 Z; 1Aila,
i=
and if n is odd, then
1 n
wa(T) < Z/UA(AVITH) 3 ; lAilla,
il

O A

Az O . If n is even,

o --- O

where A is an n X n diagonal operator matrix whose diagonal entries are strictly positive operator A.
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0 -~ 0 A
. : Ay 0 .
Theorem 2.13. Let A; € Cy, i=1,2,...,nand T = .If nis even, then
0 ... :
A, 0 0

On the other hand, if n is odd, then

1

i
Proof. LetT =T+ T2+ T3+ -+ + T, where
0 -~ 0 A 0 --- 0 0 0o --- 0 0
T, = 0 o0 T, = A, 0, T, = 0 0
0 0 ... 0
0 0 0 0 0 0 A, 0 0

Then Tl.2 =0foralli=1,2,...,n. If nis an even number then

wo(T) = wZ(Zn: Ti) < Zn: wy(Ty) = % Zn: ITill, = % Zn: 1Al (22)
=1 i=1 P

i=1
On the other hand, we have

n

w0 = Y1) s wn(Tes )+ Y aT) = )+ 5 Y, WAl 23)

i=1 il il
if nis an odd number. [

Remark 2.2. Forn =2,A; = A, A; = B, we get

| [2 /g] )< (1t + 1s1z) 4)

The usual numerical radius version of the inequality (24)(one can see [5, Theorem 2.3]) is

ol o<t
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