

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hilbert-Schmidt Numerical Radius of Block Operators

Satyajit Sahoo^a, Mohammad Sababheh^b

^aP.G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar-751004, India ^bDepartment of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan

Abstract. The main goal of this article is to present new inequalities for the recently defined generalized numerical radius of block operators.

1. Introduction

In the sequel, $\mathcal{L}(\mathcal{H})$ will denote the C^* -algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} , endowed with an inner product $\langle \cdot, \cdot \rangle$.

If $T \in \mathcal{L}(\mathcal{H})$, the numerical range W(T) of T is the complex set

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1 \}.$$

Among the most well studied norms on $\mathcal{L}(\mathcal{H})$ are the usual operator norm $\|\cdot\|$ and the numerical radius norm $w(\cdot)$. These two norms are defined respectively by

$$||T|| = \sup_{||x||=1} ||Tx|| \text{ and } w(T) = \sup\{|z| : z \in W(T)\}.$$

The most basic relation between $w(\cdot)$ and $\|\cdot\|$ is the well-known inequality

$$\frac{1}{2}||T|| \le w(T) \le ||T||,\tag{1}$$

for every $T \in \mathcal{L}(\mathcal{H})$. Thus, the two norms are equivalent.

Computing the numerical radius of an arbitrary $T \in \mathcal{L}(\mathcal{H})$ is not an easy task. However, the operator norm computations are much easier, in general. This urges the need to find bounds of $w(\cdot)$ in terms of $\|\cdot\|$.

We refer the reader to [3, 5–7, 10–12] as a recent list of papers dealing with the numerical radius; where new bounds, refinements and generalizations have been given. Let tr denote the trace functional and let $\|\cdot\|_2$ denote the Hilbert-Schmidt norm on $\mathcal{L}(\mathcal{H})$. We say that $A \in C_1$ (the trace class) if tr|A| is finite, and $A \in C_2$ (Hilbert-Schmidt class) if $\|A\|_2 = (trA^*A)^{\frac{1}{2}}$ is finite. The Cauchy-Schwartz inequality asserts

$$|\operatorname{tr} AB| \le ||A||_2 ||B||_2,\tag{2}$$

2020 Mathematics Subject Classification. Primary 47A12; Secondary 47A30, 15A60, 47A63.

Keywords. Numerical raidus, generalized numerical radius, block operators

Received: 05 July 2020; Revised: 09 November 2020; Accepted: 03 April 2021

Communicated by Dragan S. Djordjević

Email addresses: satyajitsahoo2010@gmail.com (Satyajit Sahoo), sababheh@psut.edu.jo;sababheh@yahoo.com (Mohammad Sababheh)

when $A, B \in C_2$, which in turns implies that $AB \in C_1$.

As one of the most recent advancements of the study of the numerical radius is the introduction of a new definition of the so called the generalized numerical radius [1]. The motivation of this definition is as follows: It is noted in [13] that

$$w(T) = \sup_{\theta \in \mathbb{R}} ||\Re(e^{i\theta}T)||; \ T \in \mathcal{L}(\mathcal{H}), \tag{3}$$

where the real and imaginary parts of an operator T are defined as $\Re(T) = \frac{T+T^*}{2}$ and $\Im(T) = \frac{T-T^*}{2i}$, respectively. In view of this, the authors in [1] introduced the following definition.

Definition 1.1. Let $T \in \mathcal{L}(\mathcal{H})$ and let N be any norm on $\mathcal{L}(\mathcal{H})$. Then the generalized numerical radius of T, induced by the norm N, is defined by $w_N(T) = \sup_{\theta \in \mathbb{R}} N(\Re(e^{i\theta}T))$.

When $N(\cdot)$ is the Hilbert-Schmidt norm $\|\cdot\|_2$, the norm $w_N(\cdot)$ is denoted by $w_2(\cdot)$. That is,

$$w_2(T) = \sup_{\theta \in \mathbb{R}} ||\mathfrak{R}(e^{i\theta}T)||_2. \tag{4}$$

The authors in [1] showed some properties of $w_N(\cdot)$ that come along with those of $w(\cdot)$. For example, they showed that if $N(\cdot)$ is weakly unitarily invariant, then so is $w_N(\cdot)$, in the sense that for every $A, U \in \mathcal{L}(\mathcal{H})$ such that U is unitary, we have

$$w_N(UAU^*) = w_N(A), \tag{5}$$

and self-adjoint, in the sense that $w_N(A^*) = w_N(A)$. Further, it is shown in the same reference that if $A \in C_2$, then

$$w_2(A) = \sqrt{\frac{1}{2}||A||_2^2 + \frac{1}{2}|trA^2|},\tag{6}$$

which implies

$$w_2(A) = \frac{1}{\sqrt{2}} ||A||_2, \quad \text{if } A^2 = 0.$$
 (7)

In 2012, Saddi [9] introduced the *A-numerical radius*, as follows. Let $A \in \mathcal{L}(\mathcal{H})$ be positive. Then *A* defines a positive semi-definite sesquilinear form

$$\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}; \langle x, y \rangle_A = \langle Ax, y \rangle.$$

Now, given $T \in \mathcal{L}(\mathcal{H})$, we define the *A*-numerical radius of *T* by

$$w_A(T) = \sup\{|\langle Tx, x \rangle_A| : x \in \mathcal{H}, ||x||_A = 1\},\tag{8}$$

By setting A = I in (8), we reach the usual definition of the numerical radius. In 2019, Zamani [14] came up with the following new formula for computing the A-numerical radius of $T \in \mathcal{L}_A(\mathcal{H})$:

$$w_A(T) = \sup_{\theta \in \mathbb{R}} \| \mathfrak{X}_A(e^{i\theta}T) \|_A = \sup_{\theta \in \mathbb{R}} \| \mathfrak{I}_A(e^{i\theta}T) \|_{A'}$$
(9)

where $\mathfrak{R}_A(T) = \frac{T + T^{\#_A}}{2}$ and $\mathfrak{I}_A(T) = \frac{T - T^{\#_A}}{2i}$ for $T \in \mathcal{L}_A(\mathcal{H})$. If we set A = I in (9), we get (3). Here the set of all operators which admit A-adjoints is denoted by $\mathcal{L}_A(\mathcal{H})$. Let \mathbb{A} be an $n \times n$ diagonal operator matrix whose diagonal entries are positive operator A. For n = 2, the operator matrix is of the form $\begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$. Throughout this paper, A is always assumed to be a positive operator, when we refer to $w_A(\cdot)$. In some cases

we also assume *A* be strictly positive. Zamani [14] extended the renowned inequality (1) to the context of *A*-numerical radius setting by showing

$$\frac{1}{2}||T||_A \le w_A(T) \le ||T||_A. \tag{10}$$

Furthermore, if T is A-selfadjoint, then $w_A(T) = ||T||_A$. For more details about A-numerical radius one may refer to [7, 8, 14].

In this article, we further explore the properties of $w_2(\cdot)$, where we present several inequalities for $w_2(\cdot)$ for block operators, similar to some known inequalities about w_A . We remark that our analysis of w_2 is due to the fact that the Hilbert-Schmidt norm is one of easiest norms to deal with. In other words, looking at the Schatten norms $\|\cdot\|_p$, it is customary to investigate $\|\cdot\|_\infty$, $\|\cdot\|_2$ and $\|\cdot\|_1$. The first norm implies the usual numerical radius, while the second implies w_2 . Unfortunately, w_1 is not as easy to deal with as w_2 . This justifies our tendency to investigate w_2 , rather than any other norm.

The following lemmas will be needed to accomplish our results.

Lemma 1.1. ([1], Theorem 8) Let $A \in C_2$. Then

$$\frac{1}{\sqrt{2}}||A||_2 \le w_2(A) \le ||A||_2. \tag{11}$$

Lemma 1.2. ([2], Theorem 4)*Let* $A, B \in C_2$. *Then*

$$\frac{\max(w_2(A+B), w_2(A-B))}{\sqrt{2}} \le w_2 \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \le \frac{w_2(A+B) + w_2(A-B)}{\sqrt{2}}.$$
 (12)

Lemma 1.3. ([2], Lemma 2) *Let* $T_1, T_2 \in C_2$. *Then*

(i)
$$w_2\begin{pmatrix} 0 & T_1 \\ e^{i\theta}T_2 & 0 \end{pmatrix} = w_2\begin{pmatrix} 0 & T_1 \\ T_2 & 0 \end{pmatrix}$$
 for every $\theta \in \mathbb{R}$.

(ii)
$$w_2\begin{pmatrix} O & T_1 \\ T_2 & O \end{pmatrix} = w_2\begin{pmatrix} O & T_2 \\ T_1 & O \end{pmatrix}$$
.

(iii)
$$w_2\begin{pmatrix} O & T_2 \\ T_2 & O \end{pmatrix} = \sqrt{2}w_2(T_2).$$

(iv)
$$w_2\begin{pmatrix} T_1 & T_2 \\ T_2 & T_1 \end{pmatrix} \le \sqrt{w_2^2(T_1 + T_2) + w_2^2(T_1 - T_2)}$$
.

Lemma 1.4. ([2], Theorem 1) *Let* $T_1, T_2 \in C_2$. *Then*

$$w_2\begin{pmatrix} T_1 & 0\\ 0 & T_2 \end{pmatrix} \le \sqrt{w_2^2(T_1) + w_2^2(T_2)}.$$

2. Main Results

Due to the theme of the results, we will split our main results into two subsections. For the reader convenience, we will present the known results for w_A , then show our w_2 version. This should make it easier for the reader to follow and compare.

2.1. The Hilbert-Schmidt numerical radius of 2×2 block operators

The pinching inequalities is one of the most important inequalities of operator matrices. Very recently, Rout et al. [8] established some pinching type A-numerical radius inequalities (see Lemma 2.1). For usual pinching type numerical radius inequalities one may see [5, Lemma 3.1]. Our first aim of this section is to establish certain pinching type Hilbert-schmidt numerical radius inequalities for 2×2 operator matrices. Because of the similarity, we recall the following result about w_A , where we extend this to the context of w_2 next.

Lemma 2.1. [8, Lemma 2.2] *Let* $T_1, T_2, T_3, T_4 \in \mathcal{L}_A(\mathcal{H})$. *Then*

(i)
$$w_{\mathbb{A}} \begin{pmatrix} T_1 & O \\ O & T_4 \end{pmatrix} \le w_{\mathbb{A}} \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$$
.
(ii) $w_{\mathbb{A}} \begin{pmatrix} O & T_2 \\ T_3 & O \end{pmatrix} \le w_{\mathbb{A}} \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$.

We begin with the following lemma; where we show the w_2 version of Lemma 2.1.

Lemma 2.2. *Let* T_1 , T_2 , T_3 , $T_4 \in C_2$. *Then*

(i)
$$w_2 \begin{pmatrix} T_1 & O \\ O & T_4 \end{pmatrix} \le w_2 \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$$
.
(ii) $w_2 \begin{pmatrix} O & T_2 \\ T_3 & O \end{pmatrix} \le w_2 \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$.

Proof. Let $T = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}$ and $U = \begin{bmatrix} I & O \\ O & -I \end{bmatrix}$. Then U is a unitary operator on $\mathcal{H} \bigoplus \mathcal{H}$. Further,

$$T+U^*TU=\begin{bmatrix}T_1 & T_2\\T_3 & T_4\end{bmatrix}+\begin{bmatrix}I & O\\O & -I\end{bmatrix}\begin{bmatrix}T_1 & T_2\\T_3 & T_4\end{bmatrix}\begin{bmatrix}I & O\\O & -I\end{bmatrix}=\begin{bmatrix}2T_1 & O\\O & 2T_4\end{bmatrix}.$$

So, we have

(i)

$$\begin{split} w_2 \begin{pmatrix} \begin{bmatrix} T_1 & O \\ O & T_4 \end{bmatrix} \end{pmatrix} &= \frac{1}{2} w_2 (T + U^* T U) \\ &\leq \frac{1}{2} [w_2 (T) + w_2 (U^* T U)] \\ &= \frac{1}{2} [w_2 (T) + w_2 (T)] \quad \text{(by } w_2 (U^* T U) = w_2 (T)) \\ &= w_2 (T) = w_2 \begin{pmatrix} \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \end{pmatrix}. \end{split}$$

(ii)

$$w_{2}\begin{pmatrix} O & T_{2} \\ T_{3} & O \end{pmatrix} = \frac{1}{2}w_{2}(T - U^{*}TU)$$

$$\leq \frac{1}{2}[w_{2}(T) + w_{2}(U^{*}TU)]$$

$$= \frac{1}{2}[w_{2}(T) + w_{2}(T)]$$

$$= w_{2}(T) = w_{2}\begin{pmatrix} T_{1} & T_{2} \\ T_{3} & T_{4} \end{pmatrix}.$$

This completes the proof. \Box

The following result establishes upper and lower bounds for the \mathbb{A} -numerical radius of a particular type of 2×2 operator matrix.

Theorem 2.1. [8, Theorem 2.6] Let $T_1, T_2 \in \mathcal{L}_A(\mathcal{H})$. Then

$$\max\{w_A(T_1), w_A(T_2)\} \le w_A \begin{pmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{pmatrix} \le w_A(T_1) + w_A(T_2). \tag{13}$$

Extending this to the context of w_2 , we have the following result.

Theorem 2.2. *Let* $T_1, T_2 \in C_2$. *Then*

$$\sqrt{2}\max\{w_2(T_1), w_2(T_2)\} \le w_2 \begin{pmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{pmatrix} \le \sqrt{2} (w_2(T_1) + w_2(T_2)). \tag{14}$$

Proof. Using Lemma 1.3 and Lemma 2.2, we obtain

$$\sqrt{2}w_2(T_1) = w_2\left(\begin{bmatrix} T_1 & O \\ O & -T_1 \end{bmatrix}\right) \leq w_2\left(\begin{bmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{bmatrix}\right),$$

and

$$\sqrt{2}w_2(T_2) = w_2\left(\begin{bmatrix}O & T_2\\ -T_2 & O\end{bmatrix}\right) \le w_2\left(\begin{bmatrix}T_1 & T_2\\ -T_2 & -T_1\end{bmatrix}\right).$$

Therefore,

$$\sqrt{2} \max\{w_2(T_1), w_2(T_2)\} \le w_2 \begin{pmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{pmatrix}$$
.

On the other hand Lemma 1.3 implies

$$w_2\left(\begin{bmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{bmatrix}\right) \le w_2\left(\begin{bmatrix} T_1 & O \\ O & -T_1 \end{bmatrix}\right) + w_2\left(\begin{bmatrix} O & T_2 \\ -T_2 & O \end{bmatrix}\right) = \sqrt{2}w_2(T_1) + \sqrt{2}w_2(T_2),$$

which completes the proof. \Box

The reader is encouraged to look at the usual numerical radius version of the inequality (14) [5, Theorem 3.2]), which reads as follows.

Corollary 2.1. Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Then

$$\max\{w(T_1), w(T_2)\} \le w\left(\begin{bmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{bmatrix}\right) \le w(T_1) + w(T_2). \tag{15}$$

A particular case of the inequality (14) is the following.

Remark 2.1. *If we choose* $T_2 = T_1$ *in inequality* (14), *then*

$$\sqrt{2}w_2(T_1) \le w_2 \begin{pmatrix} T_1 & T_1 \\ -T_1 & -T_1 \end{pmatrix} \le 2\sqrt{2}w_2(T_1).$$

The following identity is proved by Rout et al. for A-numerical radius setting.

Proposition 2.1. [8, Lemma 2.9] Let $T_1, T_2 \in \mathcal{L}_A(\mathcal{H})$. Then

$$w_{\mathbb{A}}\left(\begin{bmatrix} T_2 & -T_1 \\ T_1 & T_2 \end{bmatrix}\right) = \max\{w_A(T_1 + iT_2), w_A(T_1 - iT_2)\}.$$

The following result provides the w_2 version of Proposition 2.1.

Proposition 2.2. *Let* $T_1, T_2 \in C_2$. *Then*

$$w_2\left(\begin{bmatrix} T_2 & -T_1 \\ T_1 & T_2 \end{bmatrix}\right) \le \sqrt{w_2^2(T_1 + iT_2) + w_2^2(T_1 - iT_2)}.$$

Proof. Let $T = \begin{bmatrix} iT_2 & -T_1 \\ T_1 & iT_2 \end{bmatrix}$ and $U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & iI \\ iI & I \end{bmatrix}$. So, $U^* = \frac{1}{\sqrt{2}} \begin{bmatrix} I & -iI \\ -iI & I \end{bmatrix}$. It is not difficult to show that U is a unitary operator on $\mathcal{H} \bigoplus \mathcal{H}$.

Then, $U^*TU = \begin{bmatrix} -i(T_1 - T_2) & O \\ O & i(T_1 + T_2) \end{bmatrix}$. Using the fact that $w_2(T) = w_2(U^*TU)$, we get

$$w_2(T) = w_2(U^*TU) = w_2 \left(\begin{bmatrix} -i(T_1 - T_2) & O \\ O & i(T_1 + T_2) \end{bmatrix} \right)$$

$$\leq \sqrt{w_2^2(-i(T_1 - T_2)) + w_2^2(i(T_1 + T_2))} \text{ (by Lemma 1.4)}$$

$$= \sqrt{w_2^2(T_1 - T_2) + w_2^2(T_1 + T_2)}.$$

Replacing T_2 by $-iT_2$ in the identity, we have

$$w_2\left(\begin{bmatrix} T_2 & -T_1 \\ T_1 & T_2 \end{bmatrix}\right) \le \sqrt{w_2^2(T_1 + iT_2) + w_2^2(T_1 - iT_2)}$$

For the purpose of insight to the next result, we present the following inequality for w_A .

Theorem 2.3. [8, Theorem 2.11] *Let* $T_1, T_2, T_3, T_4 \in \mathcal{L}_A(\mathcal{H})$. *Then*

$$\begin{split} w_{\mathbb{A}}\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) &\leq \frac{1}{2} \max\left\{w_A(T_1 + T_4 + i(T_2 - T_3)), w_A(T_1 + T_4 - i(T_2 - T_3))\right\} \\ &\qquad \qquad + \frac{1}{2}(w_A(T_4 - T_1) + w_A(T_2 + T_3)). \end{split}$$

The following theorem provides an upper bound for the Hilbert-Schmidt numerical radius of a block operator matrix of the form $\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}$; as the w_2 version of Theorem 2.3.

Theorem 2.4. $T_1, T_2, T_3, T_4 \in C_2$. Then

$$w_2\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) \le \frac{1}{2} \left\{ \sqrt{w_2^2((T_3 - T_2) + i(T_1 + T_4)) + w_2^2((T_3 - T_2) - i(T_1 + T_4))} + \sqrt{2} \left(w_2(T_2 + T_3) + w_2(T_4 - T_1)\right) \right\}.$$

Proof. Let $U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & -I \\ I & I \end{bmatrix}$. It can be shown that U is a unitary operator on $\mathcal{H} \bigoplus \mathcal{H}$. Using the identity

 $w_2(T) = w_2(U^*TU)$, we have

$$\begin{split} w_2\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) &= w_2\left(U^*\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}U\right) \\ &= \frac{1}{2}w_2\left(\begin{bmatrix} T_1 + T_2 + T_3 + T_4 & -T_1 + T_2 - T_3 + T_4 \\ -T_1 - T_2 + T_3 + T_4 & T_1 - T_2 - T_3 + T_4 \end{bmatrix}\right) \\ &= \frac{1}{2}w_2\left(\begin{bmatrix} T_1 + T_4 & T_2 - T_3 \\ T_3 - T_2 & T_1 + T_4 \end{bmatrix} + \begin{bmatrix} T_2 + T_3 & T_4 - T_1 \\ T_4 - T_1 & -T_3 - T_2 \end{bmatrix}\right) \\ &\leq \frac{1}{2}\left\{w_2\left(\begin{bmatrix} T_1 + T_4 & -(T_3 - T_2) \\ T_3 - T_2 & T_1 + T_4 \end{bmatrix}\right) + w_2\left(\begin{bmatrix} T_2 + T_3 & T_4 - T_1 \\ T_4 - T_1 & -(T_3 + T_2) \end{bmatrix}\right)\right\} \\ &\leq \frac{1}{2}\left\{\sqrt{w_2^2((T_3 - T_2) + i(T_1 + T_4)) + w_2^2((T_3 - T_2) - i(T_1 + T_4))} + \sqrt{2}(w_2(T_2 + T_3) + w_2(T_4 - T_1))\right\}, \end{split}$$

where we have used Lemma 2.2 and Lemma 1.3 to obtain the last inequality. This completes the proof. \Box Further, we have the following result for w_A , whose w_2 version is shown next.

Theorem 2.5. [Theorem 2.13, [8]] *Let* $T_1, T_2, T_3, T_4 \in \mathcal{L}_A(\mathcal{H})$. *Then*

$$w_{\mathbb{A}}\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) \le \max\{w_A(T_1), w_A(T_4)\} + \frac{w_A(T_2 + T_3) + w_A(T_2 - T_3)}{2}.$$

Theorem 2.6. *Let* $T_1, T_2, T_3, T_4 \in C_2$. *Then*

$$w_2\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) \le \sqrt{w_2^2(T_1) + w_2^2(T_4)} + \frac{w_2(T_2 + T_3) + w_2(T_2 - T_3)}{\sqrt{2}}.$$

Proof. Using similar argument to the proof of Theorem 2.4, we have

$$\begin{split} w_2\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) &= \frac{1}{2}w_2\left(\begin{bmatrix} T_1 + T_4 & T_4 - T_1 \\ T_4 - T_1 & T_1 + T_4 \end{bmatrix} + \begin{bmatrix} T_2 + T_3 & T_2 - T_3 \\ T_3 - T_2 & -T_3 - T_2 \end{bmatrix}\right) \\ &\leq \frac{1}{2}\left[w_2\left(\begin{bmatrix} T_1 + T_4 & T_4 - T_1 \\ T_4 - T_1 & T_1 + T_4 \end{bmatrix}\right) + w_2\left(\begin{bmatrix} T_2 + T_3 & T_2 - T_3 \\ -(T_2 - T_3) & -(T_2 + T_3) \end{bmatrix}\right)\right] \\ &\leq \frac{1}{2}\left\{\sqrt{w_2^2(T_1 + T_4 + T_4 - T_1) + w_2^2(T_1 + T_4 - T_4 + T_1)} \\ &+ \sqrt{2}(w_2(T_2 + T_3) + w_2(T_2 - T_3))\right\} \text{ (by Lemma 1.3 and Theorem 2.2)} \\ &= \sqrt{w_2^2(T_1) + w_2^2(T_4)} + \frac{w_2(T_2 + T_3) + w_2(T_2 - T_3)}{\sqrt{2}}. \end{split}$$

This completes the proof. \Box

A refinement of (10) was shown in [8], as follows.

Proposition 2.3. [8, Theorem 3.2] Let $T_1, T_2 \in \mathcal{L}_A(\mathcal{H})$. Then

$$w_{\mathbb{A}}\left(\begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix}\right) \le w_A(T_1) + w_A(T_2) - \frac{1}{2}|w_A(T_1 + T_2) - w_A(T_1 - T_2)|.$$

In particular,

$$\frac{\|T_1\|_A}{2} + \frac{\|\mathfrak{R}_A(T_1)\|_A - \|\mathfrak{I}_A(T_1)\|_A}{2} \le w_A(T_1).$$

Now, we present two Hilbert-Schmidt numerical radius inequalities simulating Proposition 2.3. For these results we need the following identity that for any two real numbers a and b, we have

$$\frac{a+b}{2} = \max(a,b) - \frac{|a-b|}{2}.$$
 (16)

The following result is our first lower bound for $w_2(\cdot)$ of equation (11). For usual numerical radius, related bounds can be found in [5].

Theorem 2.7. *Let* A, $B \in C_2$. *Then*

$$w_2\left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}\right) + \frac{|w_2(A+B) - w_2(A-B)|}{\sqrt{2}} \le \sqrt{2}(w_2(A) + w_2(B)). \tag{17}$$

In particular if $B = A^*$ *, then*

$$\frac{\|A\|_2}{2} + \frac{\|\Re(A)\|_2 - \|\Im(A)\|_2}{2} \le w_2(A). \tag{18}$$

Proof. By using inequality (12), we have

$$w_{2}\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \leq \frac{w_{2}(A+B) + w_{2}(A-B)}{\sqrt{2}}$$

$$= \sqrt{2}\left(\frac{w_{2}(A+B) + w_{2}(A-B)}{2}\right) \text{ (now use(16))}$$

$$= \sqrt{2}\left[\max\left(w_{2}(A+B), w_{2}(A-B)\right) - \frac{|w_{2}(A+B) - w_{2}(A-B)|}{2}\right]$$

$$\leq \sqrt{2}\left[w_{2}(A) + w_{2}(B) - \frac{|w_{2}(A+B) - w_{2}(A-B)|}{2}\right].$$

Thus, we get

$$w_2\left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}\right) + \frac{|w_2(A+B) - w_2(A-B)|}{\sqrt{2}} \le \sqrt{2}\left(w_2(A) + w_2(B)\right). \tag{19}$$

Letting $B = A^*$ in inequality (19), we have

$$\begin{split} \sqrt{2}||A||_2 &= w_2 \left(\begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} \right) \\ &\leq \sqrt{2} \left[w_2(A) + w_2(A^*) - \frac{|w_2(A + A^*) - w_2(A - A^*)|}{2} \right] \\ &= \sqrt{2} \left[2w_2(A) - \left| ||\Re(A)||_2 - ||\Im(A)||_2 \right| \right]. \end{split}$$

Thus, we have shown

$$\frac{\|A\|_2}{2} + \frac{\left|\|\Re(A)\|_2 - \|\Im(A)\|_2\right|}{2} \le w_2(A),$$

which completes the proof. \Box

The usual numerical radius version Theorem 2.7 can be stated as follows.

Corollary 2.2. [5, Theorem 4.1] Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Then

$$w\left(\begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix}\right) \le w(T_1) + w(T_2) - \frac{1}{2}|w(T_1 + T_2) - w(T_1 - T_2)|.$$

In particular,

$$\frac{\|T_1\|}{2} + \frac{\|\Re(T_1)\| - \|\Im(T_1)\|}{2} \le w(T_1).$$

It should be mentioned here that the inequalities in Corollary 2.2 provide a refinement of (1). Another refinement of (10) proved in [8] can be stated as follows.

Proposition 2.4. [8, Theorem 3.3] Let $T_1, T_2 \in \mathcal{L}_A(\mathcal{H})$. Then

$$w_{A}\left(\begin{bmatrix} O & T_{1} \\ T_{2} & O \end{bmatrix}\right) + \frac{\|T_{1}\|_{A} + \|T_{2}\|_{A}}{2} + \frac{1}{2}\left|w_{A}(T_{1} + T_{2}) - \frac{\|T_{1}\|_{A} + \|T_{2}\|_{A}}{2}\right| + \frac{1}{2}\left|w_{A}(T_{1} - T_{2}) - \frac{\|T_{1}\|_{A} + \|T_{2}\|_{A}}{2}\right| \leq 2(w_{A}(T_{1}) + w_{A}(T_{2})).$$

In particular,

$$\frac{\|T_1\|_A}{2} + \frac{1}{4} \left| \|\Re(T_1)\|_A - \frac{\|T_1\|_A}{2} \right| + \frac{1}{4} \left| \|\Im(T_1)\|_A - \frac{\|T_1\|_A}{2} \right| \le w_A(T_1).$$

The $w_2(\cdot)$ version of Proposition 2.4 is shown next.

Theorem 2.8. *Let* A, $B \in C_2$. *Then*

$$w_{2}\begin{pmatrix} \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \frac{\|A\|_{2} + \|B\|_{2}}{2} \end{pmatrix} + \frac{|\sqrt{2}w_{2}(A+B) - \frac{\|A\|_{2} + \|B\|_{2}}{2}|}{2} + \frac{|\sqrt{2}w_{2}(A-B) - \frac{\|A\|_{2} + \|B\|_{2}}{2}|}{2} \\ \leq 2\sqrt{2}(w_{2}(A) + w_{2}(B)). \tag{20}$$

In particular, if $B = A^*$ *, then*

$$\frac{(\sqrt{2}+1)||A||_2}{4\sqrt{2}} + \frac{\left|\sqrt{2}||\Re(A)||_2 - \frac{||A||_2}{2}\right|}{4\sqrt{2}} + \frac{\left|\sqrt{2}||\Im(A)||_2 - \frac{||A||_2}{2}\right|}{4\sqrt{2}} \le w_2(A).$$

Proof. By using inequality (12) and identity (16), we have

$$\begin{split} &w_2\Big(\begin{bmatrix}0 & A\\ B & 0\end{bmatrix}\Big) + \Big(\frac{||A||_2 + ||B||_2}{2}\Big) \\ &\leq \frac{w_2(A+B) + w_2(A-B)}{\sqrt{2}} + \Big(\frac{||A||_2 + ||B||_2}{2}\Big) \\ &= \sqrt{2}\Big(\frac{w_2(A+B) + w_2(A-B)}{2}\Big) + \Big(\frac{||A||_2 + ||B||_2}{2}\Big) \\ &= \frac{\sqrt{2}w_2(A+B) + \frac{||A||_2 + ||B||_2}{2}}{2} + \frac{\sqrt{2}w_2(A-B) + \frac{||A||_2 + ||B||_2}{2}}{2} \\ &= \max\Big(\sqrt{2}w_2(A+B), \frac{||A||_2 + ||B||_2}{2}\Big) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}|}{2} \\ &+ \max\Big(\sqrt{2}w_2(A-B), \frac{||A||_2 + ||B||_2}{2}\Big) - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}{2}|}{2} \\ &\leq \max\Big(\sqrt{2}(w_2(A) + w_2(B)), \frac{||A||_2 + ||B||_2}{2}\Big) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}|}{2} \\ &+ \max\Big(\sqrt{2}(w_2(A) + w_2(B)), \frac{||A||_2 + ||B||_2}{2}\Big) - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}{2}|}{2} \\ &= 2\sqrt{2}(w_2(A) + w_2(B)) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}|}{2} - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}{2}|}{2} \\ &= 2\sqrt{2}(w_2(A) + w_2(B)) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}|}{2} - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}{2}|}{2} \\ &= 2\sqrt{2}(w_2(A) + w_2(B)) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}}{2} - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}{2}}{2} \\ &= 2\sqrt{2}(w_2(A) + w_2(B)) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}}{2} - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}{2}}{2} \\ &= 2\sqrt{2}(w_2(A) + w_2(B)) - \frac{|\sqrt{2}w_2(A+B) - \frac{||A||_2 + ||B||_2}{2}}{2}}{2} - \frac{|\sqrt{2}w_2(A-B) - \frac{||A||_2 + ||B||_2}}{2}}{2} \\ &= \frac{||A||_2 + ||B||_2}{2} + \frac{||A||_2 + ||B||_2}{2} + \frac{||A||_2 + ||B||_2}{2}}{2} - \frac{||A||_2 + ||A||_2}{2} - \frac{||A||_2 + ||A||_2}{2}}{2} - \frac{||A||_2 + ||A||_2}{2} - \frac{||A||_2 + ||A||_2}{2}}{2} - \frac{||A||_2 + ||A||_2}{2} - \frac{||A||_2$$

So,

$$w_{2}\begin{pmatrix} \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \frac{\|A\|_{2} + \|B\|_{2}}{2} \end{pmatrix} + \frac{|\sqrt{2}w_{2}(A+B) - \frac{\|A\|_{2} + \|B\|_{2}}{2}|}{2} + \frac{|\sqrt{2}w_{2}(A-B) - \frac{\|A\|_{2} + \|B\|_{2}}{2}|}{2} \\ \leq 2\sqrt{2}(w_{2}(A) + w_{2}(B)). \tag{21}$$

Letting $B = A^*$ in (21), we obtain

$$\begin{split} \sqrt{2}||A||_2 &= w_2 \bigg(\begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} \bigg) \\ &\leq 2 \sqrt{2} (w_2(A) + w_2(A^*)) - \bigg(\frac{||A||_2 + ||A^*||_2}{2} \bigg) \\ &- \frac{|\sqrt{2} w_2(A + A^*) - \frac{||A||_2 + ||A^*||_2}{2}|}{2} - \frac{|\sqrt{2} w_2(A - A^*) - \frac{||A||_2 + ||A^*||_2}{2}|}{2} \\ &= 4 \sqrt{2} w_2(A) - ||A||_2 - \bigg|\sqrt{2} ||\Re(A)||_2 - \frac{||A||_2}{2} \bigg| - \bigg|\sqrt{2} ||\Im(A)||_2 - \frac{||A||_2}{2} \bigg|. \end{split}$$

So,

$$\frac{(\sqrt{2}+1)||A||_2}{4\sqrt{2}} + \frac{\left|\sqrt{2}||\Re(A)||_2 - \frac{||A||_2}{2}\right|}{4\sqrt{2}} + \frac{\left|\sqrt{2}||\Im(A)||_2 - \frac{||A||_2}{2}\right|}{4\sqrt{2}} \le w_2(A).$$

The reader should compare Theorem 2.8 with the usual numerical radius version [5, Theorem 4.2], which reads as follows.

Corollary 2.3. [5, Theorem 4.2] Let $T_1, T_2 \in \mathcal{L}(\mathcal{H})$. Then

$$w\left(\begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix}\right) + \frac{\|T_1\| + \|T_2\|}{2} + \frac{1}{2} \left| w(T_1 + T_2) - \frac{\|T_1\| + \|T_2\|}{2} \right| + \frac{1}{2} \left| w(T_1 - T_2) - \frac{\|T_1\| + \|T_2\|}{2} \right| \le 2(w(T_1) + w(T_2)).$$

In particular,

$$\frac{\|T_1\|}{2} + \frac{1}{4} \left| \|\Re(T_1)\| - \frac{\|T_1\|}{2} \right| + \frac{1}{4} \left| \|\Im(T_1)\| - \frac{\|T_1\|}{2} \right| \le w(T_1).$$

2.2. Some bounds for $n \times n$ block operators

In the rest of this paper, motivated by some methods from [10] we present several inequalities for the Hilbert-Schmidt numerical radius for $n \times n$ block operators.

The following identity is proved by Rout et al. [7]. By setting $\mathbb{A} = I$ in Theorem 2.9, one may get the usual version of numerical radius equality.

Theorem 2.9. [7, Theorem 3.5] *Let* $X_i \in \mathcal{L}_A(\mathcal{H})$, i = 1, 2, ..., n. *Then*

$$w_{\mathbb{A}}\begin{pmatrix} \begin{bmatrix} X_1 & \cdots & O \\ O & X_2 & & O \\ \vdots & & \ddots & \vdots \\ O & & \cdots & X_n \end{bmatrix} = \max\{w_A(X_1), \dots, w_A(X_n)\},\$$

where \mathbb{A} is an $n \times n$ diagonal operator matrix whose diagonal entries are positive operator A.

Lemma 2.3 provides an estimate for Hilbert-Schmidt numerical radius of an $n \times n$ diagonal operator matrix, in a way similar to Theorem 2.9

Lemma 2.3. Let $A_{ii} \in C_2$, $1 \le i \le n$. Then

$$w_{2}\begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{pmatrix} \leq \sqrt{\sum_{i=1}^{n} w_{2}^{2}(A_{ii})}.$$

Proof. Calculation shows that

and

$$\left| tr \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix}^{2} \right| = |trA_{11}^{2} + trA_{22}^{2} + \cdots + trA_{nn}^{2}| \le |trA_{11}^{2}| + |trA_{22}^{2}| + \cdots + |trA_{nn}^{2}|.$$

It follows from (6) that

$$w_{2} \begin{pmatrix} \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix} \end{pmatrix} = \sqrt{\frac{1}{2}} \begin{bmatrix} \begin{vmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix} \end{bmatrix}^{2}_{2} + \frac{1}{2}} \operatorname{tr} \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix}^{2}_{2}$$

$$\leq \sqrt{\frac{1}{2}} \left(\sum_{i=1}^{n} ||A_{ii}||_{2}^{2} \right) + \frac{1}{2} \sum_{i=1}^{n} |\operatorname{tr}A_{ii}^{2}| = \sqrt{\sum_{i=1}^{n} w_{2}^{2}(A_{ii})}.$$

The following result is an upper bound for the \mathbb{A} -numerical radius of a general $n \times n$ operator matrix which was proved by Rout et al.[7]. By setting $\mathbb{A} = I$, one may get the usual version of numerical radius inequality.

Theorem 2.10. [7, Theorem 3.6] Let $A_{ij} \in \mathcal{L}_A(\mathcal{H})$, $1 \le i, j \le n$ and $T = [A_{ij}]$. Then

$$w_{\mathbb{A}}(T) \leq \max\{w_A(A_{ii}) : 1 \leq i \leq n\} + \frac{1}{2} \sum_{\substack{i,j=1\\i \neq j}}^n ||A_{ij}||_A,$$

where \mathbb{A} is an $n \times n$ diagonal operator matrix whose diagonal entries are strictly positive operator A.

Extending Theorem 2.10 to the Hilbert-Schmidt numerical radius, we have the following.

Theorem 2.11. Let $A_{ij} \in C_2$ for i, j = 1, 2, ..., n, and let $T = [A_{ij}]$. Then

$$w_2(T) \le \sqrt{\sum_{i=1}^n w_2^2(A_{ii})} + \frac{1}{\sqrt{2}} \sum_{j=1}^n \sqrt{\sum_{\substack{i=1,\\i \ne i}}^n ||A_{ji}||_2^2}.$$

Proof.

$$w_{2} \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

$$\leq w_{2} \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix} + w_{2} \begin{bmatrix} 0 & A_{12} & A_{13} & \cdots & A_{1n} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$+ w_{2} \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ A_{21} & 0 & A_{23} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} + \cdots + w_{2} \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn-1} & 0 \end{bmatrix}$$

Noting that

$$\begin{bmatrix} 0 & A_{12} & A_{13} & \cdots & A_{1n} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ A_{21} & 0 & A_{23} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}^2$$

$$= \cdots = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn-1} & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Using Lemma 2.3 and (7) we have

$$\begin{split} w_2\left(T\right) &\leq \sqrt{\sum_{i=1}^n w_2^2(A_{ii})} + \frac{1}{\sqrt{2}} \left\| \begin{bmatrix} 0 & A_{12} & A_{13} & \cdots & A_{1n} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \right\|_2 \\ &+ \frac{1}{\sqrt{2}} \left\| \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ A_{21} & 0 & A_{23} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \right\|_2 + \cdots + \frac{1}{\sqrt{2}} \left\| \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn-1} & 0 \end{bmatrix} \right\|_2 \\ &= \sqrt{\sum_{i=1}^n w_2^2(A_{ii})} + \frac{1}{\sqrt{2}} \sqrt{\sum_{i=2}^n ||A_{1i}||_2^2} + \frac{1}{\sqrt{2}} \sqrt{\sum_{i=1,i}^n ||A_{2i}||_2^2} + \cdots + \frac{1}{\sqrt{2}} \sqrt{\sum_{i=1,i+1}^n ||A_{ni}||_2^2} \\ &= \sqrt{\sum_{i=1}^n w_2^2(A_{ii})} + \frac{1}{\sqrt{2}} \sum_{j=1}^n \sqrt{\sum_{i=1,i+1}^n ||A_{ji}||_2^2}. \end{split}$$

This completes the proof. \Box

On the other hand, the following result presents an upper bound of the usual numerical radius of an arbitrary block operator.

Proposition 2.5. [4, Theorem 2.9] Let $A_{ij} \in \mathcal{L}(\mathcal{H})$, $1 \le i, j \le n$ and $T = [A_{ij}]$. Then

$$w(T) \le \max\{w(A_{ii}): 1 \le i \le n\} + \frac{1}{2} \sum_{j=1}^{n} \sqrt{\left\| \sum_{\substack{i=1,\\j \neq i}}^{n} A_{ji} A_{ji}^* \right\|}.$$

Theorem 2.12 below provides the Hilbert-Schmidt numerical radius version of this result.

Theorem 2.12. Let $A_{ij} \in C_2$ for i, j = 1, 2, ..., n, and let $T = [A_{ij}]$. Then

$$w_2(T) \le \sum_{i=1}^n \left(\sqrt{w_2^2(A_{ii}) + \frac{1}{2} \sum_{\substack{j=1, \ j \ne i}}^n ||A_{ij}||_2^2} \right).$$

Proof. Let

$$U_k = \begin{bmatrix} J_{k \times k} & 0_{k \times n - k} \\ 0_{n - k \times k} & I_{n - k \times n - k} \end{bmatrix},$$

where

$$J_{k \times k} = \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & & I & 0 \\ 0 & \cdots & & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix}.$$

Then U_k is unitary and

$$w_{2}(T) \leq w_{2} \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} + w_{2} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\ + \cdots + w_{2} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} \\ = w_{2} \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} + w_{2} \begin{pmatrix} U_{2}^{*} \begin{pmatrix} A_{22} & A_{21} & \cdots & A_{2n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\ U_{2} \end{pmatrix} \\ + \cdots + w_{2} \begin{pmatrix} U_{n}^{*} \begin{pmatrix} A_{nn} & A_{nn-1} & \cdots & A_{n1} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \\ U_{n} \end{pmatrix}.$$

Since $w_2(\cdot)$ is weak unitary, then

$$\begin{split} w_2(T) &\leq w_2 \left(\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right) + w_2 \left(\begin{bmatrix} A_{22} & A_{21} & \cdots & A_{2n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right) \\ & + \cdots + w_2 \left(\begin{bmatrix} A_{nn} & A_{nn-1} & \cdots & A_{n1} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right) \\ & = \sqrt{w_2^2(A_{11}) + \frac{1}{2} \sum_{j=2}^n ||A_{1j}||_2^2} + \sqrt{w_2^2(A_{22}) + \frac{1}{2} \sum_{j=1, j \neq 2}^n ||A_{2j}||_2^2} + \cdots + \sqrt{w_2^2(A_{nn}) + \frac{1}{2} \sum_{j=1, j \neq n}^n ||A_{nj}||_2^2} \\ & = \sum_{i=1}^n \left(\sqrt{w_2^2(A_{ii}) + \frac{1}{2} \sum_{j=1, j \neq i}^n ||A_{ij}||_2^2} \right). \end{split}$$

This completes the proof. \Box

For comparison, we refer the reader to [4, 10] for the usual numerical radius version of such results:

Proposition 2.6. [4, Corollary 2.6] Let $A_{ij} \in \mathcal{L}(\mathcal{H})$ where $1 \le i, j \le n$ and $T = [A_{ij}]$. Then

$$w(T) \leq \frac{1}{2} \sum_{i=1}^{n} \left(w(A_{ii}) + \sqrt{w^2(A_{ii}) + \sum_{\substack{j=1, \ j \neq i}}^{n} ||A_{ij}||^2} \right).$$

We conclude this article with Hilbert-Schmidt numerical radius of an off-diagonal block operator matrix. The \mathbb{A} -numerical radius inequality for an $n \times n$ off-diagonal matrix which can be stated as follows.

Proposition 2.7. [7, Theorem 3.4] Let
$$A_i \in \mathcal{L}_A(\mathcal{H})$$
, $i = 1, 2, ..., n$ and $T = \begin{bmatrix} O & \cdots & O & A_1 \\ \vdots & & A_2 & O \\ O & \cdots & & \vdots \\ A_n & O & \cdots & O \end{bmatrix}$. If n is even,

then

$$w_{\mathbb{A}}(T) \leq \frac{1}{2} \sum_{i=1}^{n} ||A_i||_A,$$

and if n is odd, then

$$w_{\mathbb{A}}(T) \le w_A\left(A_{\frac{n+1}{2}}\right) + \frac{1}{2} \sum_{\substack{i=1\\i \ne \frac{n+1}{2}}}^n ||A_i||_A,$$

where \mathbb{A} is an $n \times n$ diagonal operator matrix whose diagonal entries are strictly positive operator A.

Theorem 2.13. Let
$$A_i \in C_2$$
, $i = 1, 2, ..., n$ and $T = \begin{bmatrix} 0 & \cdots & 0 & A_1 \\ \vdots & & A_2 & 0 \\ 0 & \cdots & & \vdots \\ A_n & 0 & \cdots & 0 \end{bmatrix}$. If n is even, then

$$w_2(T) \le \frac{1}{\sqrt{2}} \sum_{i=1}^n ||A_i||_2.$$

On the other hand, if n is odd, then

$$w_2(T) \le w_2\left(A_{\frac{n+1}{2}}\right) + \frac{1}{\sqrt{2}} \sum_{i \ne \frac{n+1}{2}}^n ||A_i||_2.$$

Proof. Let $T = T_1 + T_2 + T_3 + \cdots + T_n$, where

$$T_{1} = \begin{bmatrix} 0 & \cdots & 0 & A_{1} \\ \vdots & & 0 & 0 \\ 0 & \cdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, T_{2} = \begin{bmatrix} 0 & \cdots & 0 & 0 \\ \vdots & & A_{2} & 0 \\ 0 & \cdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \dots, T_{n} = \begin{bmatrix} 0 & \cdots & 0 & 0 \\ \vdots & & 0 & 0 \\ 0 & \cdots & & \vdots \\ A_{n} & 0 & \cdots & 0 \end{bmatrix}.$$

Then $T_i^2 = 0$ for all i = 1, 2, ..., n. If n is an even number then

$$w_2(T) = w_2\left(\sum_{i=1}^n T_i\right) \le \sum_{i=1}^n w_2(T_i) = \frac{1}{\sqrt{2}} \sum_{i=1}^n ||T_i||_2 = \frac{1}{\sqrt{2}} \sum_{i=1}^n ||A_i||_2.$$
(22)

On the other hand, we have

$$w_2(T) = w_2\left(\sum_{i=1}^n T_i\right) \le w_2\left(T_{\frac{n+1}{2}}\right) + \sum_{i \ne \frac{n+1}{2}}^n w_2(T_i) = w_2\left(A_{\frac{n+1}{2}}\right) + \frac{1}{\sqrt{2}} \sum_{i \ne \frac{n+1}{2}}^n ||A_i||_2,\tag{23}$$

if n is an odd number. \square

Remark 2.2. *For* n = 2, $A_1 = A$, $A_2 = B$, we get

$$w_2\left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}\right) \le \frac{1}{\sqrt{2}} \left(||A||_2 + ||B||_2 \right). \tag{24}$$

The usual numerical radius version of the inequality (24)(one can see [5, Theorem 2.3]) is

$$w\left(\begin{bmatrix}0 & A\\ B & 0\end{bmatrix}\right) \le \frac{\|A\| + \|B\|}{2}.$$

References

- [1] A. Abu-Omar and F. Kittaneh, A generalization of the numerical radius, Linear Algebra Appl. 569 (2019) 323–334.
- [2] A. Aldalabih and F. Kittaneh, Hilbert-Schmidt numerical radius inequalities for operator matrices, Linear Algebra Appl. 581 (2019) 72–84.
- [3] M. Bakherad, K. Shebrawi, Upper bounds for numerical radius inequalities involving off-diagonal operator matrices, Ann. Funct. Anal. 9 (2018) 297–309.
- [4] H. Gulelfen, F. Kittaneh, On numerical radius inequalities for operator matrices, Numer. Funct. Anal. Optim. 40 (2019) 1231-1241.

- [5] O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for certain 2 × 2 operator matrices, Integral Equations Operator Theory 71 (2011) 129–147.
- [6] O. Hirzallah, F. Kittaneh and K. Shebrawi, Numerical radius inequalities for 2 × 2 operator matrices, Studia Mathematica 210 (2012) 99–115.
- [7] N. C. Rout, S. Sahoo, D. Mishra, Some *A*-numerical radius inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra 69 (2021), 980-996.
- [8] N. C. Rout, S. Sahoo, D. Mishra, On A-numerical radius inequalities for 2 × 2 operator matrices, Linear Multilinear Algebra (2020) https://doi.org/10.1080/03081087.2020.1810201
- [9] A. Saddi, A-normal operators in semi Hilbertian spaces, AJMAA 9 (2012) 1–12.
- [10] S. Sahoo, N. Das, and D. Mishra, Numerical radius inequalities for operator matrices, Adv. Oper. Theory 4 (2019) 197–214.
- [11] S. Sahoo, N. C. Rout, M. Sababheh, Some extended numerical radius inequalities, Linear Multilinear Algebra 69 (2021), 907-920.
- [12] S. Sahoo, N. Das, and D. Mishra, Berezin number and numerical radius inequalities for operators on Hilbert spaces, Adv. Oper. Theory 5 (2020), 714-727.
- [13] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178(1) (2007) 83-89.
- [14] A. Zamani, A-Numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019) 159–183.