Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat # **Constructing Some Logical Algebras from** *EQ***-Algebras** Rajab Ali Borzooei^a, Narges Akhlaghinia^a, Xiao Long Xin^b, Mona Aaly Kologani^a ^aDepartment of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran ^bSchool of Mathematics, Northwest University, Xi'an, 710127, P.R. China **Abstract.** *EQ*-algebras were introduced by Novák in [16] as an algebraic structure of truth values for fuzzy type theory (FTT). Novák and De Baets in [18] introduced various kinds of *EQ*-algebras such as good, residuated, and lattice ordered *EQ*-algebras. In any logical algebraic structures, by using various kinds of filters, one can construct various kinds of other logical algebraic structures. With this inspirations, by means of fantastic filters of *EQ*-algebras we construct *MV*-algebras. Also, we study prelinear *EQ*-algebras and introduce a new kind of filter and named it prelinear filter. Then, we show that the quotient structure which is introduced by a prelinear filter is a distributive lattice-ordered *EQ*-algebras and under suitable conditions, is a De Morgan algebra, Stone algebra and Boolean algebra. #### 1. Introduction Fuzzy type theory was developed as a counterpart of the classical higher-order logic. Since the algebra of truth values is no longer a residuated lattice, a specific algebra called an EQ-algebra was proposed by Novák [16–18]. The main primitive operations of *EQ*-algebras are meet, multiplication, and fuzzy equality. Implication is derived from the fuzzy equality and it is not a residuation with respect to multiplication. Consequently, EQ-algebras overlap with residuated lattices but are not identical with them. Novák and De Baets in [18] introduced various kinds of EQ-algebras and they defined the concept of prefilter on EQalgebras which is the same as filter of other algebraic structures such as residuated lattices, MTL-algebras, and etc. But the binary relation has been introduced by prefilters is not a congruence relation. For solving this problem, they added another condition to the definition of prefilter so filter of EQ-algebras is defined. In studying logical algebras, filter theory or ideal theory is very important. In [2-4, 12, 19] different kinds of filters such as implicative, positive implicative and fantastic filters were introduced in various logical algebras. Liu and Zhang in [14], introduced positive implicative and implicative (pre)filters of EQ-algebras and showed that these two concepts are the same in IEQ-algebras. Xin et al. [20], have studied fantastic (pre)filters of good EQ-algebras. In this paper, we investigate properties of fantastic (pre)filters in more general form of EQ-algebras and by means of this properties we can construct an MV-algebra. El-Zekey in [8] introduced prelinear good EQ-algebras and proved that a prelinear good EQ-algebra is a distributive lattice. In Section 4, we introduce a new kind of filter, named prelinear filter and we will show that if an 2020 Mathematics Subject Classification. 06E15, 06F99 Keywords. EQ-algebras, filter, fantastic (positive implicative, implicative) filter, prelinear EQ-algebra, prelinear filter Received: 12 July 2020; Revised: 14 December 2020; Accepted: 29 December 2020 Communicated by Dijana Mosić This research is supported by a grant of National Natural Science Foundation of China (11971384). Email addresses: borzooei@sbu.ac.ir (Rajab Ali Borzooei), n_akhlaghinia@sbu.ac.ir (Narges Akhlaghinia), xlxin@nwu.edu.cn (Xiao Long Xin), mona4011@gmail.com (Mona Aaly Kologani) *EQ*-algebra is not good or prelinear, then the quotient structure can be distributive lattice. Also, we will see that if a prelinear filter is fantastic, positive implicative, or implicative, then we can construct a Demorgan algebra, Stone algebra or Boolean algebra, respectively. #### 2. Preliminaries In this section, we recollect some definitions and results which will be used in this paper [8, 9, 14]. An *EQ-algebra* is an algebraic structure $\mathcal{E}_{\mathrm{II}} = (E, \wedge, \otimes, \sim, 1)$ of type (2, 2, 2, 0), where for any $\alpha, \beta, \gamma, \delta \in E$, the following statements hold: - (E1) $(E, \land, 1)$ is a \land -semilattice with top element 1. - (E2) $(E, \otimes, 1)$ is a (commutative) monoid and \otimes is isotone with respect to \leq . - (E3) $\alpha \sim \alpha = 1$. - (E4) $((\alpha \land \beta) \sim \gamma) \otimes (\delta \sim \alpha) \leq (\gamma \sim (\delta \land \beta)).$ - (E5) $(\alpha \sim \beta) \otimes (\gamma \sim \delta) \leq (\alpha \sim \gamma) \sim (\beta \sim \delta)$. - (E6) $(\alpha \land \beta \land \gamma) \sim \alpha \leq (\alpha \land \beta) \sim \alpha$. - (E7) $\alpha \otimes \beta \leq \alpha \sim \beta$. The operations " \wedge ", " \otimes ", and " \sim " are called *meet*, *multiplication*, and *fuzzy equality*, respectively. For any $\alpha, \beta \in E$, we set $\alpha \leq \beta$ if and only if $\alpha \wedge \beta = \alpha$ and we defined the binary operation *implication* on E by, $\alpha \to \beta = (\alpha \wedge \beta) \sim \alpha$. Also, in particular $1 \to \alpha = 1 \sim \alpha = \tilde{\alpha}$. If E has a bottom element 0, we denote it by BEQ-algebra and then an unary operation \neg is defined on E by $\neg \alpha = \alpha \sim 0$. Let $\mathcal{E}_{\mathrm{II}} = (E, \wedge, \otimes, \sim, 1)$ be an EQ-algebra and $\alpha, \beta, \gamma \in E$ are arbitrary elements. Then $\mathcal{E}_{\mathrm{II}}$ is called - (i) separated if $\alpha \sim \beta = 1$, implies $\alpha = \beta$, - (ii) good if $\alpha \sim 1 = \alpha$, - (iii) an involutive (IEQ-algebra) if \mathcal{E}_{\coprod} is a BEQ-algebra and for any $\alpha \in E$, $\neg \neg \alpha = \alpha$, - (iv) residuated, where $(\alpha \otimes \beta) \wedge \gamma = \alpha \otimes \beta$ if and only if $\alpha \wedge ((\beta \wedge \gamma) \sim \beta) = \alpha$, - (v) lattice-ordered EQ-algebra if it has a lattice reduct¹⁾, - (vi) prelinear EQ-algebra if the set $\{(\alpha \to \beta), (\beta \to \alpha)\}\$ has the unique upper bound 1, - (vii) lattice EQ-algebra (or \(\ell \)EQ-algebra) if it is a lattice-ordered EQ-algebra and $$((\alpha \vee \beta) \sim \gamma) \otimes (\delta \sim \alpha) \leq ((\delta \vee \beta) \sim \gamma).$$ **Proposition 2.1.** [9] *Let* \mathcal{E}_{II} *be an EQ-algebra. Then, for all* α , β , $\gamma \in E$, *the following properties hold:* ``` (i) \alpha \sim \beta = \beta \sim \alpha. ``` - (ii) $\beta \leq \alpha \rightarrow \beta$. - (iii) $\alpha \to \beta = \alpha \to (\alpha \land \beta)$. - (iv) $\alpha \to \beta \le (\beta \to \gamma) \to (\alpha \to \gamma)$. - (v) $\alpha \to \beta \le (\gamma \to \alpha) \to (\gamma \to \beta)$. - (vi) If $\alpha \leq \beta$, then $\gamma \to \alpha \leq \gamma \to \beta$ and $\beta \to \gamma \leq \alpha \to \gamma$. - (vii) If \mathcal{E}_{II} is separated, then $\alpha \to \beta = 1$ if and only if $\alpha \leq \beta$. - (viii) If \mathcal{E}_{\coprod} is a BEQ-algebra, then $\neg 0 = 1$ and $\neg \alpha = \alpha \rightarrow 0$. - (ix) If \mathcal{E}_{\coprod} is a BEQ-algebra, then $\alpha \to \beta \leqslant \neg \beta \to \neg \alpha$ and if \mathcal{E}_{\coprod} is involutive, then $\alpha \to \beta = \neg \beta \to \neg \alpha$. An EQ-algebra \mathcal{E}_{II} has exchange principle condition if for any $\alpha, \beta, \gamma \in E$, $\alpha \to (\beta \to \gamma) = \beta \to (\alpha \to \gamma)$. **Proposition 2.2.** [9, 17] Let \mathcal{E}_{II} be an EQ-algebra with exchange principle condition. Then, for all indexed families $\{\alpha_i\}_{i\in I}\subseteq E$ and $\gamma\in E$, we have, $(\bigvee_{i\in I}\alpha_i)\to\gamma=\bigwedge_{i\in I}(\alpha_i\to\gamma)$. **Proposition 2.3.** [14] Let \mathcal{E}_{II} be an EQ-algebra. Then, for all $\alpha, \beta, \gamma \in E$, the following statements are equivalent: (i) \mathcal{E}_{II} is good, ¹⁾Given an algebra < E, F >, where F is a set of operations on E and F' ⊆ F, then the algebra < E, F' > is called the F'-reduct of < E, F >. - (ii) \mathcal{E}_{LI} is separated and satisfies exchange principle condition, - (iii) \mathcal{E}_{\coprod} is separated and has $\alpha \leq (\alpha \rightarrow \beta) \rightarrow \beta$. **Proposition 2.4.** [8] Let \mathcal{E}_{II} be a prelinear and separated EQ-algebra. Then, for any $\alpha, \beta \in E$, $\alpha \vee \beta = 1$ if and only if $\alpha \to \beta = \beta$ and $\beta \to \alpha = \alpha$. Let \mathcal{E}_{II} be an EQ-algebra, $\alpha, \beta, \gamma \in E$ and $\emptyset \neq F \subseteq E$. Then; - (i) *F* is called a *prefilter* of \mathcal{E}_{\coprod} if $1 \in F$ and if $\alpha \in F$ and $\alpha \to \beta \in F$, then $\beta \in F$. - (ii) F is called an *implicative prefilter* of \mathcal{E}_{\coprod} if $1 \in F$ and if $\gamma \to ((\alpha \to \beta) \to \alpha) \in F$ and $\gamma \in F$, then $\alpha \in F$. - (iii) a prefilter F of \mathcal{E}_{II} is called a *filter* of \mathcal{E}_{II} if $\alpha \to \beta \in F$, implies $(\alpha \otimes \gamma) \to (\beta \otimes \gamma) \in F$. - (iv) a (pre)filter F of \mathcal{E}_{\coprod} is called a *positive implicative* (pre)filter of \mathcal{E}_{\coprod} if $\alpha \to (\beta \to \gamma) \in F$ and $\alpha \to \beta \in F$, imply $\alpha \to \gamma \in F$. **Remark 2.5.** [18] Let F be a prefilter of EQ-algebra \mathcal{E}_{II} . If $\alpha \in F$ and $\alpha \leqslant \beta$, then $\beta \in F$. **Remark 2.6.** [9] Let \mathcal{E}_{II} be a separated EQ-algebra. The singleton subset $\{1\} \subseteq E$ is a filter of \mathcal{E}_{II} . **Theorem 2.7.** [9] Let F be a filter of EQ-algebra \mathcal{E}_{\coprod} . A binary relation \approx_F on E which is defined by $\alpha \approx_F \beta$ if and only if
$\alpha \sim \beta \in F$, is a congruence relation on \mathcal{E}_{\coprod} and $\mathcal{E}_{\coprod}/F = (E/F, \wedge_F, \otimes_F, \sim_F, F)$ is a separated EQ-algebra, where, for any $\alpha, \beta \in E$, we have, $$[\alpha] \wedge_F [\beta] = [\alpha \wedge \beta] , \ [\alpha] \otimes_F [\beta] = [\alpha \otimes \beta] , \ [\alpha] \sim_F [\beta] = [\alpha \sim \beta] , \ [\alpha] \to_F [\beta] = [\alpha \to \beta]$$ A binary relation \leq_F on E/F which is defined by $[\alpha] \leq_F [\beta]$ if and only if $[\alpha] \wedge_F [\beta] = [\alpha]$ is a partial order on E/F and for any $[\alpha], [\beta] \in E/F, [\alpha] \leq_F [\beta]$ if and only if $\alpha \to \beta \in F$ if and only if $[\alpha] \to_F [\beta] = [1]$. **Corollary 2.8.** If an EQ-algebra \mathcal{E}_{II} has exchange principle condition, then \mathcal{E}_{II}/F is a good EQ-algebra. **Theorem 2.9.** [14] Let \mathcal{E}_{II} be an EQ-algebra and F be a prefilter of \mathcal{E}_{II} . Then, for any $\alpha, \beta \in E$, the following statements are equivalent: - (i) F is a positive implicative prefilter of $\mathcal{E}_{\mathrm{LL}}$, - $(ii)\ (\alpha \wedge (\alpha \to \beta)) \to \beta \in F.$ **Theorem 2.10.** [14] Let \mathcal{E}_{II} be an EQ-algebra. Then the following statements hold: - (i) Every implicative (pre)filter of \mathcal{E}_{II} is a (pre)filter of \mathcal{E}_{II} . - (ii) Every implicative (pre)filter of \mathcal{E}_{\amalg} is a positive implicative (pre)filter of \mathcal{E}_{\amalg} . **Corollary 2.11.** [14] Let \mathcal{E}_{II} be a BEQ-algebra and F be a prefilter of \mathcal{E}_{II} . If \mathcal{E}_{II} has exchange principle condition, then for any $\alpha, \beta \in E$, the following statments are equivalent: - (i) F is an implicative prefilter of \mathcal{E}_{\coprod} , - (ii) F is a positive implicative prefilter of \mathcal{E}_{\coprod} , and $(\alpha \to \beta) \to \beta \in F$ implies $(\beta \to \alpha) \to \alpha \in F$, - (iii) $(\alpha \to \beta) \to \alpha \in F$ implies $\alpha \in F$. **Notation 2.12.** From now on, in this paper, $\mathcal{E}_{\coprod} = (E, \wedge, \otimes, \sim, 1)$ or simply \mathcal{E}_{\coprod} is an EQ-algebra, unless otherwise state. ## 3. Fantastic (pre)filter of EQ-algebras In [21], Zebardast et al. showed that every good EQ-algebra is an equality algebra. On the other hand, in [1], it is proved that one can define another binary operation on any equality algebra which the equality algebra with this new operation become a good EQ-algebra. Thus the properties of (pre)filters in good EQ-algebras are the same as properties of filters in equality algebras. In [20] Xin, Ma, and Fu introduced the notions of fantastic (pre)filter of EQ-algebras and studied it in good EQ-algebras. They proved that the quotient structure of good EQ-algebra is an EQ-algebra. In this section, we investigate some properties of fantasitc (pre)filters of EQ-algebras such as every implicative (pre)filter of EQ-algebra is a fantastic (pre)filter of EQ-algebra and the quotient structure which is introduced by a fantastic filter is a lattice-ordered EQ-algebra. Also, we prove that the quotient structure of EQ-algebra with exchange principle condition is an EQ-algebra. **Definition 3.1.** [20] Let F be a (pre)filter of \mathcal{E}_{\coprod} . Then F is called a fantasic (pre)filter of \mathcal{E}_{\coprod} , if for any $\alpha, \beta \in E$, $\beta \to \alpha \in F$ implies $((\alpha \to \beta) \to \beta) \to \alpha \in F$. **Proposition 3.2.** Let F be a (pre)filter of \mathcal{E}_{\coprod} . Then, for any $\alpha, \beta, \gamma \in E$, the following conditions are equivalent, (i) F is a fantastic (pre)filter of \mathcal{E}_{\coprod} , - (ii) if $\alpha \to \gamma \in F$ and $\beta \to \gamma \in F$, then $((\alpha \to \beta) \to \beta) \to \gamma \in F$, - (iii) if \mathcal{E}_{II} has exchange principle condition, then $$((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha) \in F.$$ *Proof.* $(i \Rightarrow ii)$ Suppose that, for $\alpha, \beta, \gamma \in E$, $\alpha \to \gamma \in F$ and $\beta \to \gamma \in F$. Since F is a fantastic (pre)filter of \mathcal{E}_{II} , $((\gamma \to \beta) \to \beta) \to \gamma \in F$. On the other hand, by Proposition 2.1(iii), we have, $$\alpha \to \gamma \le (\gamma \to \beta) \to (\alpha \to \beta)$$ $$\le ((\alpha \to \beta) \to \beta) \to ((\gamma \to \beta) \to \beta)$$ $$\le (((\gamma \to \beta) \to \beta) \to \gamma) \to (((\alpha \to \beta) \to \beta) \to \gamma).$$ Since *F* is a (pre)filter of \mathcal{E}_{II} and $\alpha \to \gamma \in F$, by Remark 2.5, we get $$(((\gamma \to \beta) \to \beta) \to \gamma) \to (((\alpha \to \beta) \to \beta) \to \gamma) \in F.$$ Moreover, since *F* is a fantastic (pre)filter of \mathcal{E}_{IJ} and $((\gamma \to \beta) \to \beta) \to \gamma \in F$, we get $((\alpha \to \beta) \to \beta) \to \gamma \in F$. ($ii \Rightarrow i$) Let $\gamma = \alpha$ in (ii). Then the proof is clear. $(i \Rightarrow iii)$ Since \mathcal{E}_{II} has exchange principle condition, for any $\alpha, \beta \in E$, $$\beta \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (\beta \to \alpha) = 1 \in F.$$ Moreover, since *F* is a fantastic (pre)filter of \mathcal{E}_{\coprod} and $\beta \to ((\beta \to \alpha) \to \alpha) \in F$, we get $$(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \beta) \to \alpha) = ((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in F.$$ Also, by Proposition 2.1(ii) and (vi), $\alpha \leq (\beta \rightarrow \alpha) \rightarrow \alpha$ and so $((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \beta \leq \alpha \rightarrow \beta$. Hence $(\alpha \rightarrow \beta) \rightarrow \beta \leq (((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \beta) \rightarrow \beta$. Then $$((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha \leqslant ((\alpha \to \beta) \to \beta) \to \alpha$$ which implies that, $$(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \leqslant (\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha).$$ Since \mathcal{E}_{II} has exchange principle condition, we get, $$((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha).$$ Since $(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \in F$, and F is a (pre)filter of \mathcal{E}_{II} , by Remark 2.5, we have $(\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha) \in F$. ($iii \Rightarrow i$) Let $\alpha, \beta \in E$ such that $\beta \to \alpha \in F$. By (ii), ($\beta \to \alpha$) \to ((($\alpha \to \beta$) $\to \beta$) $\to \alpha$) $\in F$. Then by definition of (pre)filter, (($\alpha \to \beta$) $\to \beta$) $\to \alpha \in F$. Hence, F is a fantastic (pre)filter of \mathcal{E}_{II} . \square **Note.** By Proposition 2.3, every good *EQ*-algebra has exchange principle condition. So there exist a lot of examples of *EQ*-algebras where have exchange principle condition. **Corollary 3.3.** Let \mathcal{E}_{II} be a BEQ-algebra. If F is a fantastic (pre)filter of \mathcal{E}_{II} , then for any $\alpha \in E$, $\neg \neg \alpha \to \alpha \in F$. *Proof.* By Proposition 2.1(viii), the proof is clear. \Box In the next example we can see that the converse of Corollary 3.3, may not be true, generally. **Example 3.4.** Let $E = \{0, \alpha, \beta, \gamma, \delta, \theta, \kappa, 1\}$ be a lattice with a Hesse diagram as Figure 1. For any $x, y \in E$, we define the operations \otimes and \sim as Table 1 and Table 2. | | | | | | | θ | | | |----------|---|---|---|---|---|----------|---|----------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | α | 0 | 0 | 0 | 0 | 0 | 0 | 0 | α | | β | 0 | 0 | 0 | 0 | 0 | 0 | 0 | β | | γ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | γ | | | | | | | | δ | | | | θ | 0 | 0 | 0 | 0 | δ | θ | δ | θ | | κ | 0 | 0 | 0 | 0 | δ | δ | δ | κ | | 1 | 0 | | | | | θ | | | | | ' | | _ | | | | | | | 0 | 1 | θ | κ | δ | γ | α | β | 0 | |----------|----------|----------|--------------------|----------|----------|----------|----------|----------| | α | θ | 1 | δ | κ | γ | α | γ | α | | β | κ | δ | $\frac{1}{\theta}$ | θ | γ | γ | β | β | | γ | δ | κ | θ | 1 | γ | γ | γ | γ | | δ | γ | γ | γ | γ | 1 | κ | θ | δ | | θ | α | α | $\gamma \\ \gamma$ | γ | κ | 1 | δ | θ | | κ | β | γ | β | γ | θ | δ | 1 | ĸ | | 1 | 0 | α | β | γ | δ | θ | κ | 1 | Table 1 Table 2 | \rightarrow | | 0 | α | β | γ | δ | θ | κ | 1 | |---------------|---|----------|----------|----------|---|----------|----------|--------------------------------------|---| | 0 | Т | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | α | | θ | 1 | θ | 1 | 1 | 1 | 1 | 1 | | β | | κ | κ | 1 | 1 | 1 | 1 | 1
1
1
1
1
1
1
1 | 1 | | γ | | δ | κ | θ | 1 | 1 | 1 | 1 | 1 | | δ | | γ | γ | γ | γ | 1 | 1 | 1 | 1 | | θ | | α | α | γ | γ | κ | 1 | к | 1 | | κ | | β | γ | β | γ | θ | θ | 1 | 1 | | 1 | | 0 | α | β | γ | δ | θ | 1
κ | 1 | | | | | | | | | | | | Table 3 Figure 1 Then $\mathcal{E}_{II} = (E, \wedge, \otimes, \sim, 1)$ is an IEQ-algebra [18] and operation \rightarrow is as Table 3. Hence for any $\alpha \in E$, $\neg \neg \alpha = \alpha$ then $\neg \neg \alpha \rightarrow \alpha = 1$. But $G = \{1\}$ is not a fantastic (pre)filter of \mathcal{E}_{II} . Because $\gamma \rightarrow \delta = 1 \in G$ but $((\delta \rightarrow \gamma) \rightarrow
\gamma) \rightarrow \delta = 1 \rightarrow \delta = \delta \notin G$. **Corollary 3.5.** Let \mathcal{E}_{II} be a BEQ-algebra with exchange principle condition. If F is a fantastic filter of \mathcal{E}_{II} , then \mathcal{E}_{II}/F is an IEQ-algebra. *Proof.* By Theorem 2.7 and Corollary 3.3, for any $\alpha \in E$, $[\neg \neg \alpha] \leq [\alpha]$. On the other hand, since \mathcal{E}_{\coprod} has exchange principle condition, for any $\alpha \in E$ we have, $\alpha \to \neg \neg \alpha = (\alpha \to 0) \to (\alpha \to 0) = 1 \in F$. Hence, $[\alpha] \leq [\neg \neg \alpha]$ and so $[\alpha] = [\neg \neg \alpha]$. Therefore, \mathcal{E}_{\coprod}/F is an *IEQ*-algebra. \square In the following theorem, we show that extended of every fantastic (pre)filter of an *EQ*-algebra is also a fantastic (pre)filter. **Theorem 3.6.** Suppose \mathcal{E}_{Π} has exchange principle condition and F and G are two (pre)filters of \mathcal{E}_{Π} such that $F \subseteq G$. If F is a fantastic (pre)filter of \mathcal{E}_{Π} , then G is a fantastic (pre)filter of \mathcal{E}_{Π} . *Proof.* Let $\alpha, \beta \in E$ such that $\beta \to \alpha \in G$. Since $\beta \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (\beta \to \alpha) = 1 \in F$ and F is a fantastic (pre)filter of \mathcal{E}_{IJ} , we have $$((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in F \subseteq G.$$ Since $\mathcal{E}_{\mathrm{II}}$ has exchange principle condition, we have $$(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \in G.$$ Moreover, since *G* is a (pre)filter of \mathcal{E}_{II} and $\beta \to \alpha \in G$, then $(((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \in G$. By Proposition 2.1(*ii*), $\alpha \le (\beta \to \alpha) \to \alpha$. Then $\alpha \to ((\beta \to \alpha) \to \alpha) = 1$. Hence, by Proposition 2.1(*iv*), $$\begin{split} \alpha \to ((\beta \to \alpha) \to \alpha) \leqslant &(((\beta \to \alpha) \to \alpha) \to \beta) \to (\alpha \to \beta) \\ \leqslant &((\alpha \to \beta) \to \beta) \to ((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \\ \leqslant &(((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha). \end{split}$$ Since $\alpha \to ((\beta \to \alpha) \to \alpha) = 1$, we get $$(((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha) = 1.$$ Also, since $((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha \in G$ and G is a (pre)filter of \mathcal{E}_{II} , by definition of (pre)filter, $((\alpha \to \beta) \to \beta) \to \alpha \in G$. Hence, G is a fantastic (pre)filter of \mathcal{E}_{II} . \square **Corollary 3.7.** Consider \mathcal{E}_{II} has exchange principle condition. If $\{1\}$ is a fantastic prefilter of \mathcal{E}_{II} , then any prefilter of \mathcal{E}_{II} is a fantastic prefilter of \mathcal{E}_{II} . **Theorem 3.8.** Consider \mathcal{E}_{II} has exchange principle condition. Then, - (i) any implicative (pre)filter of \mathcal{E}_{II} is a fantastic (pre)filter of \mathcal{E}_{II} . - (ii) F is a fantastic and positive implicative prefilter of \mathcal{E}_{II} if and only if F is an implicative prefilter of \mathcal{E}_{II} . *Proof.* (*i*) Let *F* be an implicative (pre)filter of \mathcal{E}_{II} and for α , $\beta \in E$, $\beta \to \alpha \in F$. By Proposition 2.1(*ii*), $\alpha \leq ((\alpha \to \beta) \to \beta) \to \alpha$. Then by Proposition 2.1(*vi*), $(((\alpha \to \beta) \to \beta) \to \alpha) \to \beta \leq \alpha \to \beta$. Let $\alpha = ((\alpha \to \beta) \to \beta) \to \alpha$. Then $\alpha \to \beta \leq \alpha \to \beta$ and so $\alpha \to \beta \to \alpha = \alpha \to \beta$. On the other hand, by Proposition 2.1(*v*), $\alpha \to \alpha \leq ((\alpha \to \beta) \to \beta) \to \alpha$. Then by exchange principle condition, $$(\alpha \to \beta) \to x = (\alpha \to \beta) \to (((\alpha \to \beta) \to \beta) \to \alpha) = ((\alpha \to \beta) \to \beta) \to ((\alpha \to \beta) \to \alpha) \in F.$$ Since F is a prefilter of \mathcal{E}_{\coprod} and $(\alpha \to \beta) \to x \in F$, by Remark 2.5, $(x \to \beta) \to x \in F$. Moreover, since F is an implicative prefilter of \mathcal{E}_{\coprod} , by Corollary 2.11(*iii*), $x \in F$, and so $((\alpha \to \beta) \to \beta) \to \alpha \in F$. Therefore, F is a fantastic filter of \mathcal{E}_{\coprod} . (*ii*) If F is an implicative prefilter of \mathcal{E}_{\coprod} , then by Theorem 3.8, F is a fantistic prefilter of \mathcal{E}_{\coprod} , and by Theorem 2.10(*ii*), F is a positive implicative prefilter of \mathcal{E}_{\coprod} . Conversely, suppose F is a fantastic and positive implicative prefilter of \mathcal{E}_{IJ} such that, for $\alpha, \beta \in E$, $(\alpha \to \beta) \to \beta \in F$. Since F is a fantastic prefilter of \mathcal{E}_{IJ} , by Proposition 3.2(*iii*), $(\beta \to \alpha) \to \alpha \in F$. Moreover, since F is a positive implicative prefilter of \mathcal{E}_{IJ} , by Corollary 2.11(*ii*), F is an implicative prefilter of \mathcal{E}_{IJ} . \square In the next example, we can see that the converse of Theorem 3.8(i), is generally not correct. **Example 3.9.** Let $E = \{0, \alpha, \beta, \gamma, \delta, 1\}$ be a lattice with a Hesse diagram as Figure 2. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 4 and Table 5: Figure 2 | \otimes | 0 | α | β | γ | δ | 1 | ~ | 0 | α | β | γ | δ | 1 | | \rightarrow | 0 | α | β | γ | δ | 1 | |-----------|---|----------|-----|----------|---|----------|--|---|----------|----------|----------|----------|----------|--|---------------|---|----------|----------|----------|----------|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | δ | γ | β | α | 0 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | α | 0 | β | β | δ | 0 | α | α | δ | 1 | α | δ | γ | α | | α | δ | 1 | α | γ | γ | 1 | | β | 0 | β | β | 0 | 0 | β | β | γ | α | 1 | 0 | δ | β | | β | γ | 1 | 1 | γ | γ | 1 | | γ | 0 | δ | 0 | γ | δ | γ | γ | β | δ | 0 | 1 | α | γ | | γ | β | α | β | 1 | α | 1 | | δ | 0 | 0 | 0 | δ | 0 | δ | δ | α | γ | δ | α | 1 | δ | | δ | α | 1 | α | 1 | 1 | 1 | | 1 | 0 | α | β | γ | δ | 1 | 1 | 0 | α | β | γ | δ | 1 | | 1 | 0 | α | β | γ | δ | 1 | | | | | · | | | | $1 \mid 0 \alpha \beta \gamma \delta 1$ Table 5 | | | | | | | | | | | | | | | | | | | Tab | le 4 | | | | | | Tabl | e 5 | | | | | | | Iable | ? 6 | | | Then $\mathcal{E}_{IJ} = (E, \wedge, \otimes, \sim, 1)$ is a good EQ-algebra and operation \rightarrow is as Table 6. It is easy to see that $H = \{1\}$ is a fantastic filter of \mathcal{E}_{IJ} , but H is not an implicative filter of \mathcal{E}_{IJ} . Because $(\alpha \rightarrow 0) \rightarrow \alpha = \delta \rightarrow \alpha = 1 \in H$ but $\alpha \notin H$. Also, H is not a positive implicative filter of \mathcal{E}_{IJ} . Because $(\alpha \wedge (\alpha \rightarrow 0)) \rightarrow 0 = \alpha \notin H$. **Theorem 3.10.** Let \mathcal{E}_{\coprod} has exchange principle condition. If F is a fantastic filter of \mathcal{E}_{\coprod} , then $\mathcal{E}_{\coprod}/F = (E/F, \otimes_F, \wedge_F, \sim_F, (1))$ is a lattice-ordered EQ-algebra. *Proof.* By Theorem 2.7, \mathcal{E}_{II}/F is an EQ-algebra. Now, for any $\alpha, \beta \in E$, we define $[\alpha] \vee_f [\beta] = [(\alpha \to \beta) \to \beta]$. We claim that " \vee_f " is a join operation on \mathcal{E}_{II} . By Proposition 2.1(ii), $[\beta] \leq [(\alpha \to \beta) \to \beta]$. Since \mathcal{E}_{II} has exchange principle condition, by Proposition 2.3 and Corollary 2.8, \mathcal{E}_{II}/F is a good EQ-algebra and so by Proposition 2.1(vii), we have $[\alpha] \leq [(\alpha \to \beta) \to \beta]$. Thus, $[\alpha] \vee [\beta] \leq [(\alpha \to \beta) \to \beta]$. Suppose that there exists $\delta \in E$ such that $[\alpha] \leq [\delta]$ and $[\beta] \leq [\delta]$. By Theorem 2.7, we obtain $\alpha \to \delta \in F$ and $\beta \to \delta \in F$. Since F is a fantastic filter of \mathcal{E}_{II} , by Proposition 3.2(iii), we have $((\alpha \to \beta) \to \beta) \to \delta \in F$, which means $[(\alpha \to \beta) \to \beta] \leq [\delta]$. Therefore, " \vee_f " is the join operation. \square The next example shows that the quotient structure induced by fantastic filter is not an ℓEQ -algebra, in general. **Example 3.11.** Let \mathcal{E}_{Π} be an EQ-algebra as in Example 3.9. By some calculations, we can see that $\{1\}$ is a fantastic prefilter of \mathcal{E}_{Π} , but \mathcal{E}_{Π} is not an ℓ EQ-algebra. Because $((\beta \lor \gamma) \sim 1) \otimes (\gamma \sim \delta) = 1 \otimes \alpha = \alpha$ and $(\gamma \lor \gamma) \sim 1 = \gamma$, but α and γ are not comparable. An MV-algebra [6] is an algebraic structure $(M, \oplus, ^*, 0)$ of type (2, 1, 0) which for any $\alpha, \beta \in M$, satisfies the following conditions: (MV1) $(M, \oplus, 0)$ is a commutative monoid. (MV2) $(\alpha^*)^* = \alpha$. (MV3) $0^* \oplus \alpha = 0^*$. (MV4) $(\alpha^* \oplus \beta)^* \oplus \beta = (\beta^* \oplus \alpha)^* \oplus \alpha$. **Theorem 3.12.** Let \mathcal{E}_{II} be an BEQ-algebra with exchange principle condition. Let F be a filter of \mathcal{E}_{II} and for any $\alpha, \beta \in E$, binary operation \oplus on \mathcal{E}_{II}/F is defined by $[\alpha] \oplus [\beta] = \neg[\alpha] \to [\beta]$, where $\neg \alpha = \alpha \sim 0$. Then $\mathcal{E}_{II}/F = (E/F, \oplus, \neg, [0])$ is an MV-algebra if and only if F is a fantastic filter of
\mathcal{E}_{II} . *Proof.* Let F be a fantastic filter of \mathcal{E}_{II} . Then by Corollary 3.5, \mathcal{E}_{II}/F is an IEQ-algebra. Hence for any $[\alpha] \in \mathcal{E}_{II}/F$, $\neg(\neg[\alpha]) = [\alpha]$ and so (MV2) holds. Now, we show that the binary operation \oplus is associative. From Proposition 2.1(ix) and exchange principle condition, we have $$[\alpha] \oplus ([\beta] \oplus [\gamma]) = \neg[\alpha] \to (\neg[\beta] \to [\gamma]) = \neg[\alpha] \to (\neg[\gamma] \to [\beta])$$ $$= \neg[\gamma] \to (\neg[\alpha] \to [\beta]) = \neg(\neg[\alpha] \to [\beta]) \to \neg\neg[\gamma]$$ $$= \neg(\neg[\alpha] \to [\beta]) \to [\gamma]$$ $$= ([\alpha] \oplus [\beta]) \oplus [\gamma].$$ By Proposition 2.1(*ix*), for any $[\alpha]$, $[\beta] \in \mathcal{E}_{\text{II}}/F$, we have $[\alpha] \oplus [\beta] = \neg[\alpha] \to [\beta] = \neg[\beta] \to [\alpha] = [\beta] \oplus [\alpha]$ and $[\alpha] \oplus [0] = \neg[\alpha] \to [0] = ([\alpha] \to [0]) \to [0] = [\alpha]$. Hence, $(E/F, \oplus, 0)$ is a commutative monoid and so (MV1) holds. Also, (MV3) is satisfied, because for any $\alpha \in E$, we have, $$\neg [0] \oplus [\alpha] = ([0] \to [0]) \oplus [\alpha] = [1] \oplus [\alpha] = [\neg 1 \to \alpha] = [0 \to \alpha] = [1].$$ Now, we show that (MV4) holds. Since \mathcal{E}_{II}/F is an *IEQ*-algebra, for any $\alpha, \beta \in E$, we get $$\neg(\neg[\alpha] \oplus [\beta]) \oplus [\beta] = (\neg[\alpha] \oplus [\beta]) \to [\beta] = ([\alpha] \to [\beta]) \to [\beta] = [(\alpha \to \beta) \to \beta].$$ and $$\neg(\neg[\beta] \oplus [\alpha]) \oplus [\alpha] = (\neg[\beta] \oplus [\alpha]) \to [\alpha] = ([\beta] \to [\alpha]) \to [\alpha] = [(\beta \to \alpha) \to \alpha].$$ Since \mathcal{E}_{II} has exchange principle condition and F is a fantastic filter of \mathcal{E}_{II} , by Proposition 3.2(*iii*), $[(\alpha \to \beta) \to \beta] = [(\beta \to \alpha) \to \alpha]$. Hence, $\neg(\neg[\alpha] \oplus [\beta]) \oplus [\beta] = \neg(\neg[\beta] \oplus [\alpha]) \oplus [\alpha]$. Therefore, $\mathcal{E}_{\text{II}}/F = (E/F, \oplus, \neg, 0)$ is an MV-algebra. Conversely, let $\mathcal{E}_{II}/F = (E/F, \oplus, \neg, 0)$ be an MV-algebra. Then by (MV4), for any $\alpha, \beta \in E$, we have, $$[(\alpha \to \beta) \to \beta] = \neg(\neg[\alpha] \oplus [\beta]) \oplus [\beta] = \neg(\neg[\beta] \oplus [\alpha]) \oplus [\alpha] = [(\beta \to \alpha) \to \alpha].$$ Then, for any $\alpha, \beta \in E$, $((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in F$. Thus by Proposition 3.2(*iii*), *F* is a fantastic filter of \mathcal{E}_{II} . **Example 3.13.** Let $E = \{0, \alpha, \beta, \gamma, \delta, \theta, \kappa, \mu, \nu, 1\}$ be a lattice with the following Hasse digram (Figure 3) and the operations \otimes and \sim are defined on E as Table 7 and Table 8. | \otimes | 0 | ν | α | β | γ | δ | θ | κ | μ | 1 | |-----------|---|---|----------|---|----------|---|----------|---|----------|----------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ν | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ν | | α | 0 | 0 | α | 0 | α | 0 | α | 0 | | | | β | 0 | 0 | 0 | 0 | 0 | 0 | 0 | β | β | β | | γ | 0 | 0 | | | α | 0 | α | | γ | γ | | δ | 0 | 0 | 0 | 0 | 0 | β | β | δ | δ | δ | | θ | 0 | 0 | α | | α | β | γ | δ | θ | θ | | κ | 0 | 0 | 0 | β | β | δ | δ | κ | κ | κ | | μ | 0 | | α | β | γ | | θ | κ | μ | μ | | 1 | 0 | ν | α | | γ | | | κ | μ | 1 | | ~ | 0 | ν | α | β | γ | δ | θ | κ | μ | 1 | |----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | 0 | 1 | μ | κ | θ | δ | γ | β | α | ν | 0 | | ν | μ | 1 | κ | θ | δ | γ | β | α | ν | ν | | α | κ | | 1 | δ | θ | β | γ | | α | α | | β | θ | θ | δ | 1 | | | δ | γ | β | β | | γ | δ | δ | | | 1 | δ | θ | β | γ | γ | | δ | γ | γ | β | θ | δ | 1 | κ | θ | | δ | | θ | β | β | γ | δ | θ | κ | 1 | δ | θ | θ | | κ | α | α | ν | γ | β | θ | | 1 | κ | | | μ | ν | ν | α | β | γ | | θ | κ | 1 | μ | | 1 | 0 | ν | α | β | γ | δ | θ | κ | μ | 1 | Table 8 | | 0 | | 21 | 0 | | s | 0 | | | 1 | |---------------|----------|----------|----------|----------|----------|----------|----------|---|---|---| | \rightarrow | U | ν | α | β | γ | δ | θ | к | μ | 1 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ν | μ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | α | κ | κ | 1 | κ | 1 | κ | 1 | κ | 1 | 1 | | β | θ | θ | θ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | γ | δ | δ | θ | κ | 1 | κ | 1 | κ | 1 | 1 | | δ | γ | γ | γ | θ | θ | 1 | 1 | 1 | 1 | 1 | | θ | β | β | γ | δ | θ | κ | 1 | κ | 1 | 1 | | κ | α | α | α | γ | γ | θ | θ | 1 | 1 | 1 | | μ | ν | ν | α | β | γ | δ | θ | κ | 1 | 1 | | 1 | 0 | ν | α | β | γ | δ | θ | κ | μ | 1 | | | | | | Τι | ıble 9 |) | | | | | Figure 3 Then $\mathcal{E}_{II} = (E, \wedge, \otimes, \sim, 1)$ is an EQ-algebra and the operation \to is as Table 9. By some routine calculations, we can see that $F = \{\mu, 1\}$ is a fantastic filter of \mathcal{E}_{II} and $\mathcal{E}_{II}/F = \{[0], [\alpha], [\beta], [\gamma], [\delta], [\theta], [\kappa], [1]\}$ is an MV-algebra. But F is not a positive implicative filter of \mathcal{E} . Because, $(\beta \wedge (\beta \to \nu)) \to \nu = \theta \notin F$. Thus, by Theorem 2.10(ii), F is not an implicative filter of \mathcal{E}_{II} . ### 4. Prelinear filters of EQ-algebras Every finite EQ-algebra is a lattice-ordered EQ-algebra [8]. But in which condition an EQ-algebra is a (\land, \lor) -distributive lattice-ordered EQ-algebra? In [8], Elzekey proved that one can define a join operation on a prelinear EQ-algebra and then the EQ-algebra will be (\land, \lor) -distributive lattice-ordered EQ-algebra. In this section, we introduce a new kind of (pre)filter, named *prelinear (pre)filter*. In the rest of this section, we show that the quotient structure induced by a prelinear filter, is a (\land, \lor) -distributive lattice-ordered EQ-algebra. Also, we will show that if this prelinear filter is fantastic, positive implicative, or implicative, then we can construct a De Morgan algebra, Stone algebra or Boolean algebra, respectively. **Definition 4.1.** Let F be a (pre)filter of \mathcal{E}_{II} . Then F is called a prelinear (pre)filter of \mathcal{E}_{II} if for any $\alpha, \beta, \gamma \in E$, $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) \in F$. **Example 4.2.** Let \mathcal{E}_{\coprod} be an EQ-algebra as in Example 3.9. Then $F = \{\alpha, \beta, 1\}$ is a prelinear filter of \mathcal{E}_{\coprod} . **Remark 4.3.** If \mathcal{E}_{II} is a prelinear EQ-algebra with exchange principle condition, then every (pre)filter of \mathcal{E}_{II} is a prelinear (pre)filter. In the following examples, we show that the concept of prelinear (pre)filter is not the same as fantastic or (positive)implicative (pre)filter. **Example 4.4.** (*i*) Let $E = \{0, \alpha, \gamma, \delta, \mu, 1\}$ be a lattice with a Hesse diagram as Figure 3. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 10 and Table 11: | \otimes | 0 | α | γ | δ | μ | 1 | ~ | 0 | α | γ | δ | μ | 1 | \rightarrow | 0 | α | γ | δ | μ | 1 | |-----------|---|----------|------|----|----------|----------|----------|---|----------|-------|------|----------|----------|---------------|---|----------|------|----|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | δ | α | α | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | α | 0 | α | 0 | 0 | α | α | α | δ | 1 | 0 | 0 | α | α | α | δ | 1 | δ | δ | 1 | 1 | | γ | 0 | 0 | γ | γ | γ | γ | γ | α | 0 | 1 | μ | δ | γ | γ | α | α | 1 | 1 | 1 | 1 | | δ | 0 | 0 | γ | γ | γ | δ | δ | α | 0 | μ | 1 | δ | δ | δ | α | α | μ | 1 | 1 | 1 | | μ | 0 | α | γ | γ | μ | μ | μ | 0 | α | δ | δ | 1 | μ | μ | 0 | α | δ | δ | 1 | 1 | | 1 | 0 | α | γ | δ | μ | 1 | 1 | 0 | α | γ | δ | μ | 1 | 1 | 0 | α | γ | δ | μ | 1 | | | | Т | able | 10 | | | | | | Table | e 11 | | | | | 7 | able | 12 | | | Figure 4 Then $\mathcal{E}_{\coprod} = (\mathcal{E}, \wedge, \otimes, \sim, 1)$ is an EQ-algebra and operation \rightarrow is as Table 12. We can see that \mathcal{E}_{\coprod} is not prelinear because, $\alpha \rightarrow \delta = \delta$ and $\delta \rightarrow \alpha = \alpha$ but $\alpha \vee \delta = \mu \neq 1$. Since \mathcal{E}_{\coprod} is good, $G = \{1\}$ is a filter of \mathcal{E}_{\coprod} . But G is not a prelinear filter of \mathcal{E}_{\coprod} . Because, $((\alpha \rightarrow \delta) \rightarrow \mu) \rightarrow (((\delta \rightarrow \alpha) \rightarrow \mu) \rightarrow \mu = \mu \notin G$. (ii) Let \mathcal{E}_{\coprod} be an EQ-algebra as in Example 3.4. It is obvious that \mathcal{E}_{\coprod} is a prelinear good EQ-algebra. By Remark 2.6, we obtain $G = \{1\}$ is a prelinear filter of \mathcal{E}_{\coprod} . But G is not a fantastic filter of \mathcal{E}_{\coprod} . Because, $\alpha \to \delta = 1 \in G$ and $((\delta \to \alpha) \to \alpha) \to \delta = \theta \notin G$. (iii) Let $E = \{0, \alpha, \beta, 1\}$ be a chain where $0 \le \alpha \le \beta \le 1$. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 13 and Table 14: | \otimes | 0 | α | β | 1 | | ~ | 0 | α | β | 1 | | | \rightarrow | 0 | α | β | 1 | |-----------|---|----------|------|----------|---|----------|---
----------|----------|----------|---|---|---------------|---|----------|-------|---| | 0 | 0 | 0 | 0 | 0 | • | 0 | 1 | а | 0 | 0 | - | _ | 0 | 1 | 1 | 1 | 1 | | α | 0 | 0 | 0 | α | | α | α | 1 | α | α | | | α | | | | | | β | 0 | 0 | 0 | β | | β | 0 | α | 1 | β | | | β | 0 | α | 1 | 1 | | 1 | 0 | α | β | 1 | | 1 | 0 | α | β | 1 | | | 1 | 0 | α | β | 1 | | | | Т | able | 13 | | | | Ta | ible 1 | 14 | | | | | Tab | le 15 | 5 | Then $\mathcal{E}_{\coprod} = (E, \wedge, \otimes, \sim, 1)$ is an EQ-algebra and operation \to is as Table 15. Since \mathcal{E}_{\coprod} is a linearly ordered EQ-algebra, we can see that $F = \{1, \beta\}$ is a prelinear filter of \mathcal{E}_{\coprod} but by Theorem 2.9(ii), it is not a positive implicative filter of \mathcal{E}_{\coprod} . Because, $(\alpha \wedge (\alpha \to 0)) \to 0 = \alpha \notin F$ and then by Proposition 2.10, F is not an implicative filter of \mathcal{E}_{\coprod} , either. **Theorem 4.5.** [8] Let \mathcal{E}_{II} be prelinear and good. If, for any $\alpha, \beta \in E$, $$\alpha \vee \beta = ((\alpha \to \beta) \to \beta) \wedge ((\beta \to \alpha) \to \alpha),$$ then \mathcal{E}_{\coprod} is a (\land, \lor) -distributive ℓ EQ-algebra. **Theorem 4.6.** [8] A lattice-ordered separated EQ-algebra \mathcal{E}_{Π} is prelinear if and only if, for any $\alpha, \beta, \gamma \in E$: $$(\alpha \land \beta) \rightarrow \gamma = (\alpha \rightarrow \gamma) \lor (\beta \rightarrow \gamma).$$ **Lemma 4.7.** Let \mathcal{E}_{II} be good. Then \mathcal{E}_{II} is prelinear if and only if, for any $\alpha, \beta, \gamma \in E$, $$(\alpha \to \beta) \to \gamma \leqslant ((\beta \to \alpha) \to \gamma) \to \gamma$$. *Proof.* Suppose \mathcal{E}_{II} is prelinear and good. Then for any $\alpha, \beta \in E$, 1 is the unique upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$ in E. By Proposition 2.1(ii) and (iv), we have $$\alpha \to \beta \leqslant ((\beta \to \alpha) \to \gamma) \to (\alpha \to \beta) \leqslant ((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma).$$ On the other hand, since \mathcal{E}_{II} is good, by Proposition 2.3(ii), \mathcal{E}_{II} satisfies the exchange principle condition. Then by Proposition 2.1(ii) and (iv), $$\beta \to \alpha \le ((\alpha \to \beta) \to \gamma) \to (\beta \to \alpha)$$ $$\le ((\beta \to \alpha) \to \gamma) \to (((\alpha \to \beta) \to \gamma) \to \gamma)$$ $$= ((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma).$$ Hence $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma)$ is an upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$. Since \mathcal{E}_{II} is prelinear and separated, we have $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1$ and so, $$(\alpha \to \beta) \to \gamma \le (((\beta \to \alpha) \to \gamma) \to \gamma.$$ Conversely, suppose that for any $\alpha, \beta, \gamma \in E$, $(\alpha \to \beta) \to \gamma \leq ((\beta \to \alpha) \to \gamma) \to \gamma$. Since 1 is the greatest element of \mathcal{E}_{II} , it is clear that $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1$ is an upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$. We show $\{\alpha \to \beta, \beta \to \alpha\}$ dose not have another upper bound. For this, suppose that there exists $\delta \in E$ such that $\alpha \to \beta \leq \delta$ and $\beta \to \alpha \leq \delta$. Thus, by Proposition 2.1(vi), we have $\delta \to \gamma \leq (\alpha \to \beta) \to \gamma$. By the similar way, $\delta \to \gamma \le (\beta \to \alpha) \to \gamma$. Then $((\beta \to \alpha) \to \gamma) \to \gamma \le (\delta \to \gamma) \to \gamma$. Now, by Proposition 2.1(vi), we have $$\begin{split} 1 = & ((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) \\ \leq & ((\alpha \to \beta) \to \gamma) \to ((\delta \to \gamma) \to \gamma) \\ \leq & (\delta \to \gamma) \to ((\delta \to \gamma) \to \gamma). \end{split}$$ Since $\mathcal{E}_{\mathrm{II}}$ is separated, by Proposition 2.1(vii), for any $\gamma \in E$, we have $\delta \to \gamma \leqslant (\delta \to \gamma) \to \gamma$. Let $\gamma = \delta$. Then $1 \leqslant \delta$ and so $\delta = 1$. Hence, the upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$ is equal to 1. Therefore, $\mathcal{E}_{\mathrm{II}}$ is a prelinear EQ-algebra. \square **Corollary 4.8.** Let \mathcal{E}_{II} be prelinear with exchange principle condition. Then for any $\alpha, \beta, \gamma \in E$, $$((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1.$$ *Proof.* By considering the proof of Lemma 4.7 and Proposition 2.3, the separated condition only use to obtain the nonequality from $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1$. An algebra $(D, \vee, \wedge, \neg, 0, 1)$ of type (2, 2, 1, 0, 0) is called a *De Morgan algebra* [15], if for any $\gamma, \delta \in D$, the following conditions hold: - (D1) $(D, \vee, \wedge, 0, 1)$ is a bounded distributive lattice. - (D2) $\neg \neg \gamma = \gamma$. - (D3) $\neg (\gamma \lor \delta) = \neg \gamma \land \neg \delta$, and $\neg (\gamma \land \delta) = \neg \gamma \lor \neg \delta$. **Proposition 4.9.** *Let* \mathcal{E}_{II} *has exchange principle condition. If* F *is a prelinear filter of* \mathcal{E}_{II} *, then:* - (i) \mathcal{E}_{\coprod}/F is good and prelinear. - (ii) If for any $\alpha, \beta \in E$, we define $$[\alpha] \vee_F [\beta] = [((\alpha \to \beta) \to \beta) \land ((\beta \to \alpha) \to \alpha)],$$ then $\mathcal{E}_{II}/F = (E/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a distributive lattice which satisfies the De Morgan Laws. (iii) If F is a fantastic filter of \mathcal{E}_{II} , then \mathcal{E}_{II}/F is a De Morgan algebra. *Proof.* (*i*) By Theorem 2.7, for any filter F of \mathcal{E}_{II} , \mathcal{E}_{II}/F is separated. Since \mathcal{E}_{II} has exchange principle condition, for any $\alpha, \beta, \gamma \in E$, we have $$[\alpha] \to ([\beta] \to [\gamma]) = [\alpha \to (\beta \to \gamma)] = [\beta \to (\alpha \to \gamma)] = [\beta] \to ([\alpha] \to [\gamma]).$$ Then, \mathcal{E}_{\coprod}/F has exchange principle condition and so by Proposition 2.3(*ii*), \mathcal{E}_{\coprod}/F is a good *EQ*-algebra. Since *F* is a prelinear filter of \mathcal{E}_{\coprod} , for any $\alpha, \beta, \gamma \in E$, $$((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) \in F.$$ Then $[(\alpha \to \beta) \to \gamma] \le [((\beta \to \alpha) \to \gamma) \to \gamma]$. Hence, by Lemma 4.7, \mathcal{E}_{II}/F is a prelinear *EQ*-algebra. - (ii) By Theorems 2.7, 4.5 and (i), \mathcal{E}_{\coprod}/F is a (\wedge_F, \vee_F) -distributive lattice-ordered EQ-algebra. Since every good EQ-algebra is separated, by Theorem 4.6, for any $\alpha, \beta \in E$, we have $\neg([\alpha] \wedge_F [\beta]) = \neg[\alpha] \vee_F \neg[\beta]$. Since \mathcal{E}_{\coprod}/F has exchange principle condition, from Proposition 2.2, for any $\alpha, \beta \in E$, $\neg([\alpha] \vee_F [\beta]) = \neg[\alpha] \wedge_F \neg[\beta]$. Therefore, \mathcal{E}_{\coprod}/F satisfies the De Morgan Laws. - (iii) Since F is a prelinear filter of \mathcal{E}_{\coprod} , by Proposition 4.9, \mathcal{E}_{\coprod}/F is a (\vee_F, \wedge_F) -distributive lattice which satisfies the De Morgan Laws. Also, F is a fantastic filter of \mathcal{E}_{\coprod} , then by Corollary 3.5, \mathcal{E}_{\coprod}/F is an involutive EQ-algebra and (D2) is satisfied. \square **Example 4.10.** (i) According to Example 3.4, we can see that \mathcal{E}_{II} is a prelinear and involutive EQ-algebra and so it is a De Morgan algebra. (ii) Let $E = \{0, \alpha, \beta, 1\}$ be a chain where $0 \le \alpha \le \beta \le 1$. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 16 and Table 17: | \otimes | 0 | α | β | 1 | | ~ | 0 | α | β | 1 | | \rightarrow | 0 | α | β | 1 | |-----------|---|----------|----------|----------|---|----------|---|----------|----------|----------|---|---------------|---|----------|------|---| | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | 0 | - | | l | 1 | | | | α | 0 | α | α | α | | α | 0 | 1 | α | α | | α | 0 | 1 | 1 | 1 | | β | 0 | α | β | β | | β | 0 | α | 1 | 1 | | β | 0 | α | 1 | 1 | | 1 | 0 | α | β | 1 | | 1 | 0 | α | 1 | 1 | | 1 | 0 | α | 1 | 1 | | | | - | Table | 16 | | | | Та | ble 1 | 7 | | | | Tabl | e 18 | | By routine calculations, we can see that $\mathcal{E}_{\coprod} = (E, \wedge, \otimes, \sim, 1)$ is a prelinear EQ-algebra and operation \to is as Table 18. By Proposition 2.3 and Remark 2.6, we know that $\{1\}$ is a filter of \mathcal{E}_{\coprod} . Since \mathcal{E}_{\coprod} is not involutive, it is not a De Morgan algebra, either. (iii) Let $E = \{0, \alpha, \beta, \gamma, \delta, 1\}$ be a chain where $0 \le \alpha \le \beta \le \gamma \le \delta \le 1$. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 19 and Table 20: | \otimes | 0 | α | β | γ | δ | 1 | ~ | 0 | α | β | γ | δ | 1 | \rightarrow | 0 | α | β | γ | δ | 1 | |-----------|---|----------|----------|----------|----------|----------|----------|---|----------|------|----------|----------|----------|---------------|---|----------|------|----|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | γ | β | α | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | α | 0 | 0 | 0 | 0 | 0 | α | α | γ | 1 | β | α | α | α | α | γ | 1 | 1 | 1 | 1 | 1 | | β | 0 | 0 | 0 | 0 | α | β | β | β | β | 1 | β | β | β | β | β | β | 1 | 1 | 1 | 1 |
 γ | 0 | 0 | 0 | α | α | γ | γ | α | α | β | 1 | γ | γ | γ | α | α | β | 1 | 1 | 1 | | δ | 0 | 0 | α | α | α | δ | δ | 0 | α | β | γ | 1 | δ | δ | 0 | α | β | γ | 1 | 1 | | 1 | 0 | α | β | γ | δ | 1 | 1 | 0 | α | β | γ | δ | 1 | 1 | 0 | α | β | γ | δ | 1 | | | ' | | Tabl | e 19 | | | | ' | | Tabl | e 20 | | | | | 7 | able | 21 | | | By routine calculations, we can see that $\mathcal{E}_{IJ}=(E,\wedge,\otimes,\sim,1)$ is a good prelinear and non involutive EQ-algebra and operation \to is as Table 21. We can see that, $F=\{\gamma,\delta,1\}$ is a fantastic filter of \mathcal{E}_{IJ} and $\mathcal{E}_{IJ}/F=([0],[\beta],[1])$ is a De Morgan algebra. Let $(X, \vee, \wedge, 0, 1)$ be a bounded lattice. An element $x^* \in X$ is called a *pseudocomplement* of $x \in X$, if $x \wedge x^* = 0$ and if there exists $y \in X$ such that $x \wedge y = 0$, then $y \leq x^*$. If every element of X has a pseudocomplement element, then X is called a *pseudocomplemented lattice*(See [15]). **Theorem 4.11.** Let \mathcal{E}_{II} be a good BEQ-algebra. If F is a prelinear positive implicative filter of \mathcal{E}_{II} , then \mathcal{E}_{II}/F is a pseudocomplemented lattice. *Proof.* Since \mathcal{E}_{II} has a bottom element and F is a prelinear filter of \mathcal{E}_{II} , by Propositions 2.3 and 4.9, \mathcal{E}_{II}/F is a bounded lattice. Now, for any $[\alpha] \in \mathcal{E}_{II}/F$, we define $[\alpha]^* = \neg[\alpha] = [\neg \alpha]$. Since F is a positive implicative filter of \mathcal{E}_{II} , by Theorem 2.9(*ii*), for any $\alpha \in E$, we have $(\alpha \land (\alpha \to 0)) \to 0 \in F$ and so $[\alpha] \land_F [\neg \alpha] = [0]$. Now, suppose that there exists $[\delta] \in E/F$ such that $[\alpha] \land_F [\delta] = [0]$. By Propositions 2.3 and 4.9, \mathcal{E}_{II}/F satisfies the De Morgan Laws and so we obtain $[\neg \alpha] \lor_F [\neg \delta] = [1]$. By Proposition 2.4, we have $[\neg \alpha] \to [\neg \delta] = [\neg \delta]$ and so $(\neg \alpha \to \neg \delta) \to \neg \delta \in F$. Since \mathcal{E}_{II} is good, by exchange principle condition, we get $$(\neg \alpha \rightarrow \neg \delta) \rightarrow \neg \delta = \delta \rightarrow ((\neg \alpha \rightarrow \neg \delta) \rightarrow 0) = \delta \rightarrow ((\delta \rightarrow \neg \neg \alpha) \rightarrow 0).$$ By Proposition 2.1(iv), we obtain $$\delta \to ((\delta \to \neg \neg \alpha) \to 0) \leqslant (((\delta \to \neg \neg \alpha) \to 0) \to \neg \alpha) \to (\delta \to \neg \alpha). \tag{1}$$ By exchange principle condition, we have $$((\delta \to \neg \neg \alpha) \to 0) \to \neg \alpha = \alpha \to (((\delta \to \neg \neg \alpha) \to 0) \to 0) = \alpha \to \neg \neg (\delta \to \neg \neg \alpha).$$ Since \mathcal{E}_{II} is good, by Proposition 2.3(*iii*), we have $\alpha \leq \neg \neg \alpha$ and by Proposition 2.1(*ii*), we have $\neg \neg \alpha \leq \delta \rightarrow \neg \neg \alpha$. Again by Proposition 2.3(*iii*), we obtain $\delta \rightarrow \neg \neg \alpha \leq \neg \neg (\delta \rightarrow \neg \neg \alpha)$. Then, $(\delta \rightarrow \neg \neg \alpha) \rightarrow 0) \rightarrow \neg \alpha = \alpha \rightarrow \neg \neg (\delta \rightarrow \neg \neg \alpha) = 1 \in F$. Hence, by (4.1), we have $\delta \rightarrow \neg \alpha \in F$. Then, $[\delta] \leq [\neg \alpha]$ and so, $[\neg \alpha]$ is the greatest element in \mathcal{E}_{II}/F such that $[\alpha] \land_F [\neg \alpha] = [0]$. Therefore \mathcal{E}_{II}/F is a pseudocomplemented lattice. \square An algebra $(S, \vee, \wedge, *, 0, 1)$ of type (2, 2, 1, 0, 0) is called a *Stone algebra* [15], if: (S1) $(S, \lor, \land, 0, 1)$ is a pseudocomplemented distributive lattice. (S2) $s^* \vee s^{**} = 1$, for any $s \in S$. **Theorem 4.12.** Let \mathcal{E}_{II} be a good BEQ-algebra. If F is a prelinear positive implicative filter of \mathcal{E}_{II} , then $\mathcal{E}_{II}/F =$ $(E/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a Stone algebra. *Proof.* Let F be a prelinear positive implicative filter of \mathcal{E}_{II} . Then by Proposition 4.9, \mathcal{E}_{II}/F is an (\vee_F, \wedge_F) distributive lattice. By Theorem 4.11, \mathcal{E}_{II}/F is a pseudocomplemented lattice and so, (S1) is satisfied. By Proposition 4.9(ii) we have $\neg([\alpha] \land [\neg \alpha]) = \neg[0]$ and so $[\neg \alpha] \lor_F [\neg \neg \alpha] = [\neg 0] = [1]$. Hence, (S2) is satisfied. Therefore, \mathcal{E}_{\coprod}/F is a Stone algebra. \square In the following example, we show that the converse of Theorem 4.12 may not be true, in general. **Example 4.13.** Let $E = \{0, \alpha, \beta, 1\}$ be a chain where $0 \le \alpha \le \beta \le 1$. Define the operations \otimes and \sim on E as Table 22 and Table 23: | l Table 23: | | | | | | | | | | | | | | | | | |-------------|---|----------|---|----------|---|----------|---|----------|---|----------|--|---------------|----------|----------|---|---| | \otimes | 0 | α | β | 1 | | ~ | 0 | α | β | 1 | | \rightarrow | 0 | α | β | 1 | | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | 0 | | | 1 | | | | | α | 0 | 0 | 0 | α | | α | 0 | 1 | β | α | | α | 0 | 1 | 1 | 1 | | β | 0 | 0 | 0 | β | | β | 0 | β | 1 | β | | β | 0 | β | 1 | 1 | | | | α | | | | | | α | | | | | 0 | | | | | Table 22 | | | | | | Table 23 | | | | | | | Table 24 | | | | Then $\mathcal{E}_{II} = (E, \land, \otimes, \sim, 1)$ is a prelinear good EQ-algebra and it is a Stone algebra. Moreover, operation \rightarrow is as Table 24. Since \mathcal{E}_{II} is a good EQ-algebra, by Remark 2.6, $\{1\}$ is a filter of \mathcal{E}_{II} but, $\{1\}$ is not a positive implicative filter of \mathcal{E}_{\coprod} , because $(\beta \land (\beta \rightarrow \alpha)) \rightarrow \alpha = \beta \notin \{1\}$. A Boolean algebra [5] is an algebra $(B, \vee, \wedge, ', 0, 1)$ of type (2, 2, 1, 0, 0) such that for any $a, b \in E$; (B1) (B, \vee, \wedge) is a distributive lattice. (B2) $a \land 0 = 0$, and $a \lor 1 = 1$. (bounded) (B3) $a \wedge a' = 0$, and $a \vee a' = 1$. (complemented) **Remark 4.14.** Let \mathcal{E}_{II} be a BEQ-algebra with exchange principle condition and F be a prelinear filter of \mathcal{E}_{II} . By Proposition 4.9 we know $\mathcal{E}_{II}/F = (E/F, \vee_F, \wedge_F, \neg, [0], [1])$ is a distributive lattice, where for any $\alpha, \beta \in E$, $[\alpha] \vee_F$ $[\beta] = [((\alpha \to \beta) \to \beta) \land ((\beta \to \alpha) \to \alpha)].$ Also, if F is a fantastic filter of \mathcal{E}_{IJ} , then by Proposition 3.2(iii), $[\alpha] \vee_F [\beta] = [((\alpha \to \beta) \to \beta] \text{ and } \mathcal{E}_{\coprod}/F \text{ is a De Morgan algebra.}$ **Lemma 4.15.** Let \mathcal{E}_{\coprod} be a BEQ-algebra with exchange principle condition. A (pre)filter F of \mathcal{E}_{\coprod} is an implicative (pre)filter of \mathcal{E}_{\coprod} if and only if for any $\alpha \in E$, $(\neg \alpha \to \alpha) \to \alpha \in F$. *Proof.* The proof is similar to the proof of [4, Proposition 3.17]. \Box **Theorem 4.16.** Let \mathcal{E}_{II} be a BEQ-algebra with exchange principle condition such that F be a prelinear filter of \mathcal{E}_{II} . Then F is an implicative filter of \mathcal{E}_{II} if and only if $(\mathcal{E}_{II}/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a Boolean algebra. *Proof.* Let F be an implicative filter of \mathcal{E}_{II} . By Proposition 3.8, F is a fantastic filter of \mathcal{E}_{II} and so by Proposition 4.9, $(\mathcal{E}_{II}/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a De Morgan algebra. By Remark 4.14, for any $\alpha \in F$, we have $[\neg \alpha] \lor_F [\alpha] = [(\neg \alpha \to \alpha) \to \alpha]$. Since *F* is an implicative filter of \mathcal{E}_{IJ} , by Lemma 4.15, $(\neg \alpha \to \alpha) \to \alpha \in F$. Hence, $[\neg \alpha] \lor_F [\alpha] = [1]$. Therefore, $(\mathcal{E}_{\coprod}/F, \lor_F, \land_F, \lnot_F, [0], [1])$ is a Boolean algebra. Conversely, let $(\mathcal{E}_{\coprod}/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ be a Boolean algebra. Then, for any $\alpha \in E$, $[\alpha \vee_F \neg \alpha] = [1]$. By definition of \forall_F , we have $((\alpha \to \neg \alpha) \to \neg \alpha) \land ((\neg \alpha \to \alpha) \to \alpha) \in F$. Since $$((\alpha \to \neg \alpha) \to \neg \alpha) \land ((\neg \alpha \to \alpha) \to \alpha) \leqslant (\neg \alpha \to \alpha) \to \alpha,$$ by Remark 2.5, for any $\alpha \in E$, $(\neg \alpha \to \alpha) \to \alpha \in F$. Hence, by Lemma 4.15, F is an implicative filter of \mathcal{E}_{\coprod} . \Box - **Example 4.17.** (i) According to Example 4.4(iii), \mathcal{E}_{\coprod} is a good prelinear EQ-algebra and $F = \{1, \beta\}$ is a filter but, it is not an implicative filter of \mathcal{E}_{\coprod} . By routine calculations, we can see that $\mathcal{E}_{\coprod}/F = \{[0], [\alpha], [1]\}$ is not a Boolean algebra. So the implicative condition is necessary. - (ii) According to Example 3.4, \mathcal{E}_{\coprod} is a prelinear good IEQ-algebra. By Remark 2.6, $G = \{1\}$ is a filter of \mathcal{E}_{\coprod} but it is not an implicative filter of \mathcal{E}_{\coprod} . Because, $\neg \kappa \to \kappa = \beta \to \kappa = 1 \in G$ but $\kappa \notin G$. Also, \mathcal{E}_{\coprod} is not a Boolean algebra, because $\alpha \vee \neg \alpha = \alpha \vee \theta = \theta \neq 1$. - (iii) According to Example 3.13, \mathcal{E}_{II} is a prelinear good IEQ-algebra and $F = \{\mu, 1\}$ is a prelinear and fantastic filter of \mathcal{E}_{II} . But \mathcal{E}_{II}/F is not a Boolean algebra, because $\neg[\beta] = [\theta]$ and $[\beta] \wedge [\theta] = [\beta] \neq [0]$. #### 5. Conclusions and future works In this paper, a new kind of filter of *EQ*-algebras was introduced and the quotient structures
induced by it were studied. It was proved that the quotient structure was induced by a fantastic filter is an MV-algebra. By using a prelinear filter of an EQ-algebra, a distributive lattice was constructed. If the prelinear filter also, was positive implicative or implicative filter, then the quotient structure would be a Stone algebra or a Boolean algebra, respectively. ## Acknowledgement The authors are very indebted to the editor and anonymous referees for their helpful comments and valuable suggestions that greatly improve the quality and clarity of the paper ### References - [1] M. Aaly Kologani, R. A. Borzooei, G. R. Rezaei, Y. B Jun, Commutative equality algebras and &-equality algebras, Annals of the University of Craiova Mathematics and Computer Science Series, to apear. - [2] R. A. Borzooei, H. Farahani, M. Moniri, Neutrosophic deductive filters on *BL*-Algebras, Journal of Intelligent and Fuzzy Systems, 26(6) (2014) 2993–3004. - [3] R. A. Borzooei, S. Khosravi Shoar, R. Ameri, Some types of filters in MTL-algebras, Fuzzy Sets and Systems, 187(1) (2012) 92–102. - [4] R. A. Borzooei, F. Zebardast, M. Aaly Kologhani, Some types of filters in equality algebras, Categories and General Algebraic Structures with Applications, 7 (2017) 33–55. - [5] S. Burris, H. P. Sankappanavar, A course in universal algebra, (The Millennium Edition), Springer-Verlag, 78 (1981). - [6] R. Cignoli, I. D'ottaaviano, D. Mundici, Algebraic foundations of many valued reasoning, Kluwer Academic Publishers, Dordrecht, Boston-London, (2000). - [7] M. Dyba, M. El-Zekey, V. Novák, Non-commutative first-order EQ-logics, Fuzzy Sets and Systems, 292 (2016) 215–241. - [8] M. El-Zekey, Representable good EQ-algebras, Soft Computing, 14(9) (2010) 1011–1023. - [9] M. El-Zekey, V. Novák, R. Mesiar, On good EQ-algebras, Fuzzy Sets and Systems, 178 (2011) 1–23. - [10] B. Ganji Saffar, R. A. Borzooei, Filter theory on good hyper *EQ*-algebras, Annals of the university of Graiova, Mathmatics and Computer Science Series 43(2) (2016) 243–258. - [11] S. Jenei, Equality algebras, Studia Logica, 100 (2012) 1201–1209. - [12] M. Kondo, W. A. Dudek, Filter theory of BL-algebras, Soft Computing, 12 (2008) 419–423. - [13] J. Liang, X. L. Xin, J. T. Wang, On derivations of EQ-algebras, Journal of Intelligent and Fuzzy Systems, 35(5) (2018) 5573-5583. - [14] L. Z. Liu, X. Y. Zhang, Implicative and positive implivative prefilters of EQ-algebras, Journal of Intelligent and Fuzzy Systems, 26 (2014) 2087–2097. - [15] H. T. Nguyen, E. A. Walker, A first course in fuzzy logic, third edition, Chapman and Hall/CRC, NewYork, 2006. - [16] V. Novák, EQ-algebras: Primary concepts and properties, in: Proc. Czech-Japan Seminar, Ninth Meeting, Kitakyushu and Nagasaki, Graduate School of Information, Waseda University, August 18-22, (2006). - [17] V. Novák, EQ-algebras-based fuzzy type theory and its extensions, Logic Journal of the IGPL, 19 (2011) 512–542. - [18] V. Novák, B. De Baets, EQ-algebras, Fuzzy Sets and Systems, 160 (2009) 2956–2978. - [19] A. Rezaei, A. Borumand Saeid, R. A. Borzooei, Some types of filters in BE-algebras, Mathematics in Computer Science, 7 (2013) 341-352. - [20] X. L. Xin, Y. C. Ma, Y.L. Fu, The existence of states on EQ-algebras, Mathematica Slovaca, 70(3) (2020) 527–546. - [21] F. Zebardast, R. A. Borzooei, M. Aaly Kologhani, Results on equality algebras, Information Sciences, 381 (2017) 270–282.