

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Constructing Some Logical Algebras from *EQ***-Algebras**

Rajab Ali Borzooei^a, Narges Akhlaghinia^a, Xiao Long Xin^b, Mona Aaly Kologani^a

^aDepartment of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
^bSchool of Mathematics, Northwest University, Xi'an, 710127, P.R. China

Abstract. *EQ*-algebras were introduced by Novák in [16] as an algebraic structure of truth values for fuzzy type theory (FTT). Novák and De Baets in [18] introduced various kinds of *EQ*-algebras such as good, residuated, and lattice ordered *EQ*-algebras. In any logical algebraic structures, by using various kinds of filters, one can construct various kinds of other logical algebraic structures. With this inspirations, by means of fantastic filters of *EQ*-algebras we construct *MV*-algebras. Also, we study prelinear *EQ*-algebras and introduce a new kind of filter and named it prelinear filter. Then, we show that the quotient structure which is introduced by a prelinear filter is a distributive lattice-ordered *EQ*-algebras and under suitable conditions, is a De Morgan algebra, Stone algebra and Boolean algebra.

1. Introduction

Fuzzy type theory was developed as a counterpart of the classical higher-order logic. Since the algebra of truth values is no longer a residuated lattice, a specific algebra called an EQ-algebra was proposed by Novák [16–18]. The main primitive operations of *EQ*-algebras are meet, multiplication, and fuzzy equality. Implication is derived from the fuzzy equality and it is not a residuation with respect to multiplication. Consequently, EQ-algebras overlap with residuated lattices but are not identical with them. Novák and De Baets in [18] introduced various kinds of EQ-algebras and they defined the concept of prefilter on EQalgebras which is the same as filter of other algebraic structures such as residuated lattices, MTL-algebras, and etc. But the binary relation has been introduced by prefilters is not a congruence relation. For solving this problem, they added another condition to the definition of prefilter so filter of EQ-algebras is defined. In studying logical algebras, filter theory or ideal theory is very important. In [2-4, 12, 19] different kinds of filters such as implicative, positive implicative and fantastic filters were introduced in various logical algebras. Liu and Zhang in [14], introduced positive implicative and implicative (pre)filters of EQ-algebras and showed that these two concepts are the same in IEQ-algebras. Xin et al. [20], have studied fantastic (pre)filters of good EQ-algebras. In this paper, we investigate properties of fantastic (pre)filters in more general form of EQ-algebras and by means of this properties we can construct an MV-algebra. El-Zekey in [8] introduced prelinear good EQ-algebras and proved that a prelinear good EQ-algebra is a distributive lattice. In Section 4, we introduce a new kind of filter, named prelinear filter and we will show that if an

2020 Mathematics Subject Classification. 06E15, 06F99

Keywords. EQ-algebras, filter, fantastic (positive implicative, implicative) filter, prelinear EQ-algebra, prelinear filter

Received: 12 July 2020; Revised: 14 December 2020; Accepted: 29 December 2020

Communicated by Dijana Mosić

This research is supported by a grant of National Natural Science Foundation of China (11971384).

Email addresses: borzooei@sbu.ac.ir (Rajab Ali Borzooei), n_akhlaghinia@sbu.ac.ir (Narges Akhlaghinia),

xlxin@nwu.edu.cn (Xiao Long Xin), mona4011@gmail.com (Mona Aaly Kologani)

EQ-algebra is not good or prelinear, then the quotient structure can be distributive lattice. Also, we will see that if a prelinear filter is fantastic, positive implicative, or implicative, then we can construct a Demorgan algebra, Stone algebra or Boolean algebra, respectively.

2. Preliminaries

In this section, we recollect some definitions and results which will be used in this paper [8, 9, 14].

An *EQ-algebra* is an algebraic structure $\mathcal{E}_{\mathrm{II}} = (E, \wedge, \otimes, \sim, 1)$ of type (2, 2, 2, 0), where for any $\alpha, \beta, \gamma, \delta \in E$, the following statements hold:

- (E1) $(E, \land, 1)$ is a \land -semilattice with top element 1.
- (E2) $(E, \otimes, 1)$ is a (commutative) monoid and \otimes is isotone with respect to \leq .
- (E3) $\alpha \sim \alpha = 1$.
- (E4) $((\alpha \land \beta) \sim \gamma) \otimes (\delta \sim \alpha) \leq (\gamma \sim (\delta \land \beta)).$
- (E5) $(\alpha \sim \beta) \otimes (\gamma \sim \delta) \leq (\alpha \sim \gamma) \sim (\beta \sim \delta)$.
- (E6) $(\alpha \land \beta \land \gamma) \sim \alpha \leq (\alpha \land \beta) \sim \alpha$.
- (E7) $\alpha \otimes \beta \leq \alpha \sim \beta$.

The operations " \wedge ", " \otimes ", and " \sim " are called *meet*, *multiplication*, and *fuzzy equality*, respectively. For any $\alpha, \beta \in E$, we set $\alpha \leq \beta$ if and only if $\alpha \wedge \beta = \alpha$ and we defined the binary operation *implication* on E by, $\alpha \to \beta = (\alpha \wedge \beta) \sim \alpha$. Also, in particular $1 \to \alpha = 1 \sim \alpha = \tilde{\alpha}$. If E has a bottom element 0, we denote it by BEQ-algebra and then an unary operation \neg is defined on E by $\neg \alpha = \alpha \sim 0$.

Let $\mathcal{E}_{\mathrm{II}} = (E, \wedge, \otimes, \sim, 1)$ be an EQ-algebra and $\alpha, \beta, \gamma \in E$ are arbitrary elements. Then $\mathcal{E}_{\mathrm{II}}$ is called

- (i) separated if $\alpha \sim \beta = 1$, implies $\alpha = \beta$,
- (ii) good if $\alpha \sim 1 = \alpha$,
- (iii) an involutive (IEQ-algebra) if \mathcal{E}_{\coprod} is a BEQ-algebra and for any $\alpha \in E$, $\neg \neg \alpha = \alpha$,
- (iv) residuated, where $(\alpha \otimes \beta) \wedge \gamma = \alpha \otimes \beta$ if and only if $\alpha \wedge ((\beta \wedge \gamma) \sim \beta) = \alpha$,
- (v) lattice-ordered EQ-algebra if it has a lattice reduct¹⁾,
- (vi) prelinear EQ-algebra if the set $\{(\alpha \to \beta), (\beta \to \alpha)\}\$ has the unique upper bound 1,
- (vii) lattice EQ-algebra (or \(\ell \)EQ-algebra) if it is a lattice-ordered EQ-algebra and

$$((\alpha \vee \beta) \sim \gamma) \otimes (\delta \sim \alpha) \leq ((\delta \vee \beta) \sim \gamma).$$

Proposition 2.1. [9] *Let* \mathcal{E}_{II} *be an EQ-algebra. Then, for all* α , β , $\gamma \in E$, *the following properties hold:*

```
(i) \alpha \sim \beta = \beta \sim \alpha.
```

- (ii) $\beta \leq \alpha \rightarrow \beta$.
- (iii) $\alpha \to \beta = \alpha \to (\alpha \land \beta)$.
- (iv) $\alpha \to \beta \le (\beta \to \gamma) \to (\alpha \to \gamma)$.
- (v) $\alpha \to \beta \le (\gamma \to \alpha) \to (\gamma \to \beta)$.
- (vi) If $\alpha \leq \beta$, then $\gamma \to \alpha \leq \gamma \to \beta$ and $\beta \to \gamma \leq \alpha \to \gamma$.
- (vii) If \mathcal{E}_{II} is separated, then $\alpha \to \beta = 1$ if and only if $\alpha \leq \beta$.
- (viii) If \mathcal{E}_{\coprod} is a BEQ-algebra, then $\neg 0 = 1$ and $\neg \alpha = \alpha \rightarrow 0$.
- (ix) If \mathcal{E}_{\coprod} is a BEQ-algebra, then $\alpha \to \beta \leqslant \neg \beta \to \neg \alpha$ and if \mathcal{E}_{\coprod} is involutive, then $\alpha \to \beta = \neg \beta \to \neg \alpha$.

An EQ-algebra \mathcal{E}_{II} has exchange principle condition if for any $\alpha, \beta, \gamma \in E$, $\alpha \to (\beta \to \gamma) = \beta \to (\alpha \to \gamma)$.

Proposition 2.2. [9, 17] Let \mathcal{E}_{II} be an EQ-algebra with exchange principle condition. Then, for all indexed families $\{\alpha_i\}_{i\in I}\subseteq E$ and $\gamma\in E$, we have, $(\bigvee_{i\in I}\alpha_i)\to\gamma=\bigwedge_{i\in I}(\alpha_i\to\gamma)$.

Proposition 2.3. [14] Let \mathcal{E}_{II} be an EQ-algebra. Then, for all $\alpha, \beta, \gamma \in E$, the following statements are equivalent: (i) \mathcal{E}_{II} is good,

¹⁾Given an algebra < E, F >, where F is a set of operations on E and F' ⊆ F, then the algebra < E, F' > is called the F'-reduct of < E, F >.

- (ii) \mathcal{E}_{LI} is separated and satisfies exchange principle condition,
- (iii) \mathcal{E}_{\coprod} is separated and has $\alpha \leq (\alpha \rightarrow \beta) \rightarrow \beta$.

Proposition 2.4. [8] Let \mathcal{E}_{II} be a prelinear and separated EQ-algebra. Then, for any $\alpha, \beta \in E$, $\alpha \vee \beta = 1$ if and only if $\alpha \to \beta = \beta$ and $\beta \to \alpha = \alpha$.

Let \mathcal{E}_{II} be an EQ-algebra, $\alpha, \beta, \gamma \in E$ and $\emptyset \neq F \subseteq E$. Then;

- (i) *F* is called a *prefilter* of \mathcal{E}_{\coprod} if $1 \in F$ and if $\alpha \in F$ and $\alpha \to \beta \in F$, then $\beta \in F$.
- (ii) F is called an *implicative prefilter* of \mathcal{E}_{\coprod} if $1 \in F$ and if $\gamma \to ((\alpha \to \beta) \to \alpha) \in F$ and $\gamma \in F$, then $\alpha \in F$.
- (iii) a prefilter F of \mathcal{E}_{II} is called a *filter* of \mathcal{E}_{II} if $\alpha \to \beta \in F$, implies $(\alpha \otimes \gamma) \to (\beta \otimes \gamma) \in F$.
- (iv) a (pre)filter F of \mathcal{E}_{\coprod} is called a *positive implicative* (pre)filter of \mathcal{E}_{\coprod} if $\alpha \to (\beta \to \gamma) \in F$ and $\alpha \to \beta \in F$, imply $\alpha \to \gamma \in F$.

Remark 2.5. [18] Let F be a prefilter of EQ-algebra \mathcal{E}_{II} . If $\alpha \in F$ and $\alpha \leqslant \beta$, then $\beta \in F$.

Remark 2.6. [9] Let \mathcal{E}_{II} be a separated EQ-algebra. The singleton subset $\{1\} \subseteq E$ is a filter of \mathcal{E}_{II} .

Theorem 2.7. [9] Let F be a filter of EQ-algebra \mathcal{E}_{\coprod} . A binary relation \approx_F on E which is defined by $\alpha \approx_F \beta$ if and only if $\alpha \sim \beta \in F$, is a congruence relation on \mathcal{E}_{\coprod} and $\mathcal{E}_{\coprod}/F = (E/F, \wedge_F, \otimes_F, \sim_F, F)$ is a separated EQ-algebra, where, for any $\alpha, \beta \in E$, we have,

$$[\alpha] \wedge_F [\beta] = [\alpha \wedge \beta] , \ [\alpha] \otimes_F [\beta] = [\alpha \otimes \beta] , \ [\alpha] \sim_F [\beta] = [\alpha \sim \beta] , \ [\alpha] \to_F [\beta] = [\alpha \to \beta]$$

A binary relation \leq_F on E/F which is defined by $[\alpha] \leq_F [\beta]$ if and only if $[\alpha] \wedge_F [\beta] = [\alpha]$ is a partial order on E/F and for any $[\alpha], [\beta] \in E/F, [\alpha] \leq_F [\beta]$ if and only if $\alpha \to \beta \in F$ if and only if $[\alpha] \to_F [\beta] = [1]$.

Corollary 2.8. If an EQ-algebra \mathcal{E}_{II} has exchange principle condition, then \mathcal{E}_{II}/F is a good EQ-algebra.

Theorem 2.9. [14] Let \mathcal{E}_{II} be an EQ-algebra and F be a prefilter of \mathcal{E}_{II} . Then, for any $\alpha, \beta \in E$, the following statements are equivalent:

- (i) F is a positive implicative prefilter of $\mathcal{E}_{\mathrm{LL}}$,
- $(ii)\ (\alpha \wedge (\alpha \to \beta)) \to \beta \in F.$

Theorem 2.10. [14] Let \mathcal{E}_{II} be an EQ-algebra. Then the following statements hold:

- (i) Every implicative (pre)filter of \mathcal{E}_{II} is a (pre)filter of \mathcal{E}_{II} .
- (ii) Every implicative (pre)filter of \mathcal{E}_{\amalg} is a positive implicative (pre)filter of \mathcal{E}_{\amalg} .

Corollary 2.11. [14] Let \mathcal{E}_{II} be a BEQ-algebra and F be a prefilter of \mathcal{E}_{II} . If \mathcal{E}_{II} has exchange principle condition, then for any $\alpha, \beta \in E$, the following statments are equivalent:

- (i) F is an implicative prefilter of \mathcal{E}_{\coprod} ,
- (ii) F is a positive implicative prefilter of \mathcal{E}_{\coprod} , and $(\alpha \to \beta) \to \beta \in F$ implies $(\beta \to \alpha) \to \alpha \in F$,
- (iii) $(\alpha \to \beta) \to \alpha \in F$ implies $\alpha \in F$.

Notation 2.12. From now on, in this paper, $\mathcal{E}_{\coprod} = (E, \wedge, \otimes, \sim, 1)$ or simply \mathcal{E}_{\coprod} is an EQ-algebra, unless otherwise state.

3. Fantastic (pre)filter of EQ-algebras

In [21], Zebardast et al. showed that every good EQ-algebra is an equality algebra. On the other hand, in [1], it is proved that one can define another binary operation on any equality algebra which the equality algebra with this new operation become a good EQ-algebra. Thus the properties of (pre)filters in good EQ-algebras are the same as properties of filters in equality algebras. In [20] Xin, Ma, and Fu introduced the notions of fantastic (pre)filter of EQ-algebras and studied it in good EQ-algebras. They proved that the quotient structure of good EQ-algebra is an EQ-algebra. In this section, we investigate some properties of fantasitc (pre)filters of EQ-algebras such as every implicative (pre)filter of EQ-algebra is a fantastic (pre)filter of EQ-algebra and the quotient structure which is introduced by a fantastic filter is a lattice-ordered EQ-algebra. Also, we prove that the quotient structure of EQ-algebra with exchange principle condition is an EQ-algebra.

Definition 3.1. [20] Let F be a (pre)filter of \mathcal{E}_{\coprod} . Then F is called a fantasic (pre)filter of \mathcal{E}_{\coprod} , if for any $\alpha, \beta \in E$, $\beta \to \alpha \in F$ implies $((\alpha \to \beta) \to \beta) \to \alpha \in F$.

Proposition 3.2. Let F be a (pre)filter of \mathcal{E}_{\coprod} . Then, for any $\alpha, \beta, \gamma \in E$, the following conditions are equivalent, (i) F is a fantastic (pre)filter of \mathcal{E}_{\coprod} ,

- (ii) if $\alpha \to \gamma \in F$ and $\beta \to \gamma \in F$, then $((\alpha \to \beta) \to \beta) \to \gamma \in F$,
- (iii) if \mathcal{E}_{II} has exchange principle condition, then

$$((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha) \in F.$$

Proof. $(i \Rightarrow ii)$ Suppose that, for $\alpha, \beta, \gamma \in E$, $\alpha \to \gamma \in F$ and $\beta \to \gamma \in F$. Since F is a fantastic (pre)filter of \mathcal{E}_{II} , $((\gamma \to \beta) \to \beta) \to \gamma \in F$. On the other hand, by Proposition 2.1(iii), we have,

$$\alpha \to \gamma \le (\gamma \to \beta) \to (\alpha \to \beta)$$

$$\le ((\alpha \to \beta) \to \beta) \to ((\gamma \to \beta) \to \beta)$$

$$\le (((\gamma \to \beta) \to \beta) \to \gamma) \to (((\alpha \to \beta) \to \beta) \to \gamma).$$

Since *F* is a (pre)filter of \mathcal{E}_{II} and $\alpha \to \gamma \in F$, by Remark 2.5, we get

$$(((\gamma \to \beta) \to \beta) \to \gamma) \to (((\alpha \to \beta) \to \beta) \to \gamma) \in F.$$

Moreover, since *F* is a fantastic (pre)filter of \mathcal{E}_{IJ} and $((\gamma \to \beta) \to \beta) \to \gamma \in F$, we get $((\alpha \to \beta) \to \beta) \to \gamma \in F$. ($ii \Rightarrow i$) Let $\gamma = \alpha$ in (ii). Then the proof is clear.

 $(i \Rightarrow iii)$ Since \mathcal{E}_{II} has exchange principle condition, for any $\alpha, \beta \in E$,

$$\beta \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (\beta \to \alpha) = 1 \in F.$$

Moreover, since *F* is a fantastic (pre)filter of \mathcal{E}_{\coprod} and $\beta \to ((\beta \to \alpha) \to \alpha) \in F$, we get

$$(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \beta) \to \alpha) = ((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in F.$$

Also, by Proposition 2.1(ii) and (vi), $\alpha \leq (\beta \rightarrow \alpha) \rightarrow \alpha$ and so $((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \beta \leq \alpha \rightarrow \beta$. Hence $(\alpha \rightarrow \beta) \rightarrow \beta \leq (((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \beta) \rightarrow \beta$. Then

$$((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha \leqslant ((\alpha \to \beta) \to \beta) \to \alpha$$

which implies that,

$$(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \leqslant (\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha).$$

Since \mathcal{E}_{II} has exchange principle condition, we get,

$$((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha).$$

Since $(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \in F$, and F is a (pre)filter of \mathcal{E}_{II} , by Remark 2.5, we have $(\beta \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha) \in F$.

($iii \Rightarrow i$) Let $\alpha, \beta \in E$ such that $\beta \to \alpha \in F$. By (ii), ($\beta \to \alpha$) \to ((($\alpha \to \beta$) $\to \beta$) $\to \alpha$) $\in F$. Then by definition of (pre)filter, (($\alpha \to \beta$) $\to \beta$) $\to \alpha \in F$. Hence, F is a fantastic (pre)filter of \mathcal{E}_{II} . \square

Note. By Proposition 2.3, every good *EQ*-algebra has exchange principle condition. So there exist a lot of examples of *EQ*-algebras where have exchange principle condition.

Corollary 3.3. Let \mathcal{E}_{II} be a BEQ-algebra. If F is a fantastic (pre)filter of \mathcal{E}_{II} , then for any $\alpha \in E$, $\neg \neg \alpha \to \alpha \in F$.

Proof. By Proposition 2.1(viii), the proof is clear. \Box

In the next example we can see that the converse of Corollary 3.3, may not be true, generally.

Example 3.4. Let $E = \{0, \alpha, \beta, \gamma, \delta, \theta, \kappa, 1\}$ be a lattice with a Hesse diagram as Figure 1. For any $x, y \in E$, we define the operations \otimes and \sim as Table 1 and Table 2.

						θ		
0	0	0	0	0	0	0	0	0
α	0	0	0	0	0	0	0	α
β	0	0	0	0	0	0	0	β
γ	0	0	0	0	0	0	0	γ
						δ		
θ	0	0	0	0	δ	θ	δ	θ
κ	0	0	0	0	δ	δ	δ	κ
1	0					θ		
	'		_					

0	1	θ	κ	δ	γ	α	β	0
α	θ	1	δ	κ	γ	α	γ	α
β	κ	δ	$\frac{1}{\theta}$	θ	γ	γ	β	β
γ	δ	κ	θ	1	γ	γ	γ	γ
δ	γ	γ	γ	γ	1	κ	θ	δ
θ	α	α	$\gamma \\ \gamma$	γ	κ	1	δ	θ
κ	β	γ	β	γ	θ	δ	1	ĸ
1	0	α	β	γ	δ	θ	κ	1

Table 1

Table 2

\rightarrow		0	α	β	γ	δ	θ	κ	1
0	Т	1	1	1	1	1	1	1	1
α		θ	1	θ	1	1	1	1	1
β		κ	κ	1	1	1	1	1 1 1 1 1 1 1 1	1
γ		δ	κ	θ	1	1	1	1	1
δ		γ	γ	γ	γ	1	1	1	1
θ		α	α	γ	γ	κ	1	к	1
κ		β	γ	β	γ	θ	θ	1	1
1		0	α	β	γ	δ	θ	1 κ	1

Table 3

Figure 1

Then $\mathcal{E}_{II} = (E, \wedge, \otimes, \sim, 1)$ is an IEQ-algebra [18] and operation \rightarrow is as Table 3. Hence for any $\alpha \in E$, $\neg \neg \alpha = \alpha$ then $\neg \neg \alpha \rightarrow \alpha = 1$. But $G = \{1\}$ is not a fantastic (pre)filter of \mathcal{E}_{II} . Because $\gamma \rightarrow \delta = 1 \in G$ but $((\delta \rightarrow \gamma) \rightarrow \gamma) \rightarrow \delta = 1 \rightarrow \delta = \delta \notin G$.

Corollary 3.5. Let \mathcal{E}_{II} be a BEQ-algebra with exchange principle condition. If F is a fantastic filter of \mathcal{E}_{II} , then \mathcal{E}_{II}/F is an IEQ-algebra.

Proof. By Theorem 2.7 and Corollary 3.3, for any $\alpha \in E$, $[\neg \neg \alpha] \leq [\alpha]$. On the other hand, since \mathcal{E}_{\coprod} has exchange principle condition, for any $\alpha \in E$ we have, $\alpha \to \neg \neg \alpha = (\alpha \to 0) \to (\alpha \to 0) = 1 \in F$. Hence, $[\alpha] \leq [\neg \neg \alpha]$ and so $[\alpha] = [\neg \neg \alpha]$. Therefore, \mathcal{E}_{\coprod}/F is an *IEQ*-algebra. \square

In the following theorem, we show that extended of every fantastic (pre)filter of an *EQ*-algebra is also a fantastic (pre)filter.

Theorem 3.6. Suppose \mathcal{E}_{Π} has exchange principle condition and F and G are two (pre)filters of \mathcal{E}_{Π} such that $F \subseteq G$. If F is a fantastic (pre)filter of \mathcal{E}_{Π} , then G is a fantastic (pre)filter of \mathcal{E}_{Π} .

Proof. Let $\alpha, \beta \in E$ such that $\beta \to \alpha \in G$. Since $\beta \to ((\beta \to \alpha) \to \alpha) = (\beta \to \alpha) \to (\beta \to \alpha) = 1 \in F$ and F is a fantastic (pre)filter of \mathcal{E}_{IJ} , we have

$$((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in F \subseteq G.$$

Since $\mathcal{E}_{\mathrm{II}}$ has exchange principle condition, we have

$$(\beta \to \alpha) \to (((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \in G.$$

Moreover, since *G* is a (pre)filter of \mathcal{E}_{II} and $\beta \to \alpha \in G$, then $(((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \in G$. By Proposition 2.1(*ii*), $\alpha \le (\beta \to \alpha) \to \alpha$. Then $\alpha \to ((\beta \to \alpha) \to \alpha) = 1$. Hence, by Proposition 2.1(*iv*),

$$\begin{split} \alpha \to ((\beta \to \alpha) \to \alpha) \leqslant &(((\beta \to \alpha) \to \alpha) \to \beta) \to (\alpha \to \beta) \\ \leqslant &((\alpha \to \beta) \to \beta) \to ((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \\ \leqslant &(((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha). \end{split}$$

Since $\alpha \to ((\beta \to \alpha) \to \alpha) = 1$, we get

$$(((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha) \to (((\alpha \to \beta) \to \beta) \to \alpha) = 1.$$

Also, since $((((\beta \to \alpha) \to \alpha) \to \beta) \to \beta) \to \alpha \in G$ and G is a (pre)filter of \mathcal{E}_{II} , by definition of (pre)filter, $((\alpha \to \beta) \to \beta) \to \alpha \in G$. Hence, G is a fantastic (pre)filter of \mathcal{E}_{II} . \square

Corollary 3.7. Consider \mathcal{E}_{II} has exchange principle condition. If $\{1\}$ is a fantastic prefilter of \mathcal{E}_{II} , then any prefilter of \mathcal{E}_{II} is a fantastic prefilter of \mathcal{E}_{II} .

Theorem 3.8. Consider \mathcal{E}_{II} has exchange principle condition. Then,

- (i) any implicative (pre)filter of \mathcal{E}_{II} is a fantastic (pre)filter of \mathcal{E}_{II} .
- (ii) F is a fantastic and positive implicative prefilter of \mathcal{E}_{II} if and only if F is an implicative prefilter of \mathcal{E}_{II} .

Proof. (*i*) Let *F* be an implicative (pre)filter of \mathcal{E}_{II} and for α , $\beta \in E$, $\beta \to \alpha \in F$. By Proposition 2.1(*ii*), $\alpha \leq ((\alpha \to \beta) \to \beta) \to \alpha$. Then by Proposition 2.1(*vi*), $(((\alpha \to \beta) \to \beta) \to \alpha) \to \beta \leq \alpha \to \beta$. Let $\alpha = ((\alpha \to \beta) \to \beta) \to \alpha$. Then $\alpha \to \beta \leq \alpha \to \beta$ and so $\alpha \to \beta \to \alpha = \alpha \to \beta$. On the other hand, by Proposition 2.1(*v*), $\alpha \to \alpha \leq ((\alpha \to \beta) \to \beta) \to \alpha$. Then by exchange principle condition,

$$(\alpha \to \beta) \to x = (\alpha \to \beta) \to (((\alpha \to \beta) \to \beta) \to \alpha) = ((\alpha \to \beta) \to \beta) \to ((\alpha \to \beta) \to \alpha) \in F.$$

Since F is a prefilter of \mathcal{E}_{\coprod} and $(\alpha \to \beta) \to x \in F$, by Remark 2.5, $(x \to \beta) \to x \in F$. Moreover, since F is an implicative prefilter of \mathcal{E}_{\coprod} , by Corollary 2.11(*iii*), $x \in F$, and so $((\alpha \to \beta) \to \beta) \to \alpha \in F$. Therefore, F is a fantastic filter of \mathcal{E}_{\coprod} .

(*ii*) If F is an implicative prefilter of \mathcal{E}_{\coprod} , then by Theorem 3.8, F is a fantistic prefilter of \mathcal{E}_{\coprod} , and by Theorem 2.10(*ii*), F is a positive implicative prefilter of \mathcal{E}_{\coprod} .

Conversely, suppose F is a fantastic and positive implicative prefilter of \mathcal{E}_{IJ} such that, for $\alpha, \beta \in E$, $(\alpha \to \beta) \to \beta \in F$. Since F is a fantastic prefilter of \mathcal{E}_{IJ} , by Proposition 3.2(*iii*), $(\beta \to \alpha) \to \alpha \in F$. Moreover, since F is a positive implicative prefilter of \mathcal{E}_{IJ} , by Corollary 2.11(*ii*), F is an implicative prefilter of \mathcal{E}_{IJ} . \square

In the next example, we can see that the converse of Theorem 3.8(i), is generally not correct.

Example 3.9. Let $E = \{0, \alpha, \beta, \gamma, \delta, 1\}$ be a lattice with a Hesse diagram as Figure 2. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 4 and Table 5:

Figure 2

\otimes	0	α	β	γ	δ	1	~	0	α	β	γ	δ	1		\rightarrow	0	α	β	γ	δ	1
0	0	0	0	0	0	0	0	1	δ	γ	β	α	0		0	1	1	1	1	1	1
α	0	β	β	δ	0	α	α	δ	1	α	δ	γ	α		α	δ	1	α	γ	γ	1
β	0	β	β	0	0	β	β	γ	α	1	0	δ	β		β	γ	1	1	γ	γ	1
γ	0	δ	0	γ	δ	γ	γ	β	δ	0	1	α	γ		γ	β	α	β	1	α	1
δ	0	0	0	δ	0	δ	δ	α	γ	δ	α	1	δ		δ	α	1	α	1	1	1
1	0	α	β	γ	δ	1	1	0	α	β	γ	δ	1		1	0	α	β	γ	δ	1
			·				$1 \mid 0 \alpha \beta \gamma \delta 1$ Table 5														
			Tab	le 4						Tabl	e 5							Iable	? 6		

Then $\mathcal{E}_{IJ} = (E, \wedge, \otimes, \sim, 1)$ is a good EQ-algebra and operation \rightarrow is as Table 6. It is easy to see that $H = \{1\}$ is a fantastic filter of \mathcal{E}_{IJ} , but H is not an implicative filter of \mathcal{E}_{IJ} . Because $(\alpha \rightarrow 0) \rightarrow \alpha = \delta \rightarrow \alpha = 1 \in H$ but $\alpha \notin H$. Also, H is not a positive implicative filter of \mathcal{E}_{IJ} . Because $(\alpha \wedge (\alpha \rightarrow 0)) \rightarrow 0 = \alpha \notin H$.

Theorem 3.10. Let \mathcal{E}_{\coprod} has exchange principle condition. If F is a fantastic filter of \mathcal{E}_{\coprod} , then $\mathcal{E}_{\coprod}/F = (E/F, \otimes_F, \wedge_F, \sim_F, (1))$ is a lattice-ordered EQ-algebra.

Proof. By Theorem 2.7, \mathcal{E}_{II}/F is an EQ-algebra. Now, for any $\alpha, \beta \in E$, we define $[\alpha] \vee_f [\beta] = [(\alpha \to \beta) \to \beta]$. We claim that " \vee_f " is a join operation on \mathcal{E}_{II} . By Proposition 2.1(ii), $[\beta] \leq [(\alpha \to \beta) \to \beta]$. Since \mathcal{E}_{II} has exchange principle condition, by Proposition 2.3 and Corollary 2.8, \mathcal{E}_{II}/F is a good EQ-algebra and so by Proposition 2.1(vii), we have $[\alpha] \leq [(\alpha \to \beta) \to \beta]$. Thus, $[\alpha] \vee [\beta] \leq [(\alpha \to \beta) \to \beta]$. Suppose that there exists $\delta \in E$ such that $[\alpha] \leq [\delta]$ and $[\beta] \leq [\delta]$. By Theorem 2.7, we obtain $\alpha \to \delta \in F$ and $\beta \to \delta \in F$. Since F is a fantastic filter of \mathcal{E}_{II} , by Proposition 3.2(iii), we have $((\alpha \to \beta) \to \beta) \to \delta \in F$, which means $[(\alpha \to \beta) \to \beta] \leq [\delta]$. Therefore, " \vee_f " is the join operation. \square

The next example shows that the quotient structure induced by fantastic filter is not an ℓEQ -algebra, in general.

Example 3.11. Let \mathcal{E}_{Π} be an EQ-algebra as in Example 3.9. By some calculations, we can see that $\{1\}$ is a fantastic prefilter of \mathcal{E}_{Π} , but \mathcal{E}_{Π} is not an ℓ EQ-algebra. Because $((\beta \lor \gamma) \sim 1) \otimes (\gamma \sim \delta) = 1 \otimes \alpha = \alpha$ and $(\gamma \lor \gamma) \sim 1 = \gamma$, but α and γ are not comparable.

An MV-algebra [6] is an algebraic structure $(M, \oplus, ^*, 0)$ of type (2, 1, 0) which for any $\alpha, \beta \in M$, satisfies the following conditions:

(MV1) $(M, \oplus, 0)$ is a commutative monoid.

(MV2) $(\alpha^*)^* = \alpha$.

(MV3) $0^* \oplus \alpha = 0^*$.

(MV4) $(\alpha^* \oplus \beta)^* \oplus \beta = (\beta^* \oplus \alpha)^* \oplus \alpha$.

Theorem 3.12. Let \mathcal{E}_{II} be an BEQ-algebra with exchange principle condition. Let F be a filter of \mathcal{E}_{II} and for any $\alpha, \beta \in E$, binary operation \oplus on \mathcal{E}_{II}/F is defined by $[\alpha] \oplus [\beta] = \neg[\alpha] \to [\beta]$, where $\neg \alpha = \alpha \sim 0$. Then $\mathcal{E}_{II}/F = (E/F, \oplus, \neg, [0])$ is an MV-algebra if and only if F is a fantastic filter of \mathcal{E}_{II} .

Proof. Let F be a fantastic filter of \mathcal{E}_{II} . Then by Corollary 3.5, \mathcal{E}_{II}/F is an IEQ-algebra. Hence for any $[\alpha] \in \mathcal{E}_{II}/F$, $\neg(\neg[\alpha]) = [\alpha]$ and so (MV2) holds. Now, we show that the binary operation \oplus is associative. From Proposition 2.1(ix) and exchange principle condition, we have

$$[\alpha] \oplus ([\beta] \oplus [\gamma]) = \neg[\alpha] \to (\neg[\beta] \to [\gamma]) = \neg[\alpha] \to (\neg[\gamma] \to [\beta])$$

$$= \neg[\gamma] \to (\neg[\alpha] \to [\beta]) = \neg(\neg[\alpha] \to [\beta]) \to \neg\neg[\gamma]$$

$$= \neg(\neg[\alpha] \to [\beta]) \to [\gamma]$$

$$= ([\alpha] \oplus [\beta]) \oplus [\gamma].$$

By Proposition 2.1(*ix*), for any $[\alpha]$, $[\beta] \in \mathcal{E}_{\text{II}}/F$, we have $[\alpha] \oplus [\beta] = \neg[\alpha] \to [\beta] = \neg[\beta] \to [\alpha] = [\beta] \oplus [\alpha]$ and $[\alpha] \oplus [0] = \neg[\alpha] \to [0] = ([\alpha] \to [0]) \to [0] = [\alpha]$. Hence, $(E/F, \oplus, 0)$ is a commutative monoid and so (MV1)

holds. Also, (MV3) is satisfied, because for any $\alpha \in E$, we have,

$$\neg [0] \oplus [\alpha] = ([0] \to [0]) \oplus [\alpha] = [1] \oplus [\alpha] = [\neg 1 \to \alpha] = [0 \to \alpha] = [1].$$

Now, we show that (MV4) holds. Since \mathcal{E}_{II}/F is an *IEQ*-algebra, for any $\alpha, \beta \in E$, we get

$$\neg(\neg[\alpha] \oplus [\beta]) \oplus [\beta] = (\neg[\alpha] \oplus [\beta]) \to [\beta] = ([\alpha] \to [\beta]) \to [\beta] = [(\alpha \to \beta) \to \beta].$$

and

$$\neg(\neg[\beta] \oplus [\alpha]) \oplus [\alpha] = (\neg[\beta] \oplus [\alpha]) \to [\alpha] = ([\beta] \to [\alpha]) \to [\alpha] = [(\beta \to \alpha) \to \alpha].$$

Since \mathcal{E}_{II} has exchange principle condition and F is a fantastic filter of \mathcal{E}_{II} , by Proposition 3.2(*iii*), $[(\alpha \to \beta) \to \beta] = [(\beta \to \alpha) \to \alpha]$. Hence, $\neg(\neg[\alpha] \oplus [\beta]) \oplus [\beta] = \neg(\neg[\beta] \oplus [\alpha]) \oplus [\alpha]$. Therefore, $\mathcal{E}_{\text{II}}/F = (E/F, \oplus, \neg, 0)$ is an MV-algebra.

Conversely, let $\mathcal{E}_{II}/F = (E/F, \oplus, \neg, 0)$ be an MV-algebra. Then by (MV4), for any $\alpha, \beta \in E$, we have,

$$[(\alpha \to \beta) \to \beta] = \neg(\neg[\alpha] \oplus [\beta]) \oplus [\beta] = \neg(\neg[\beta] \oplus [\alpha]) \oplus [\alpha] = [(\beta \to \alpha) \to \alpha].$$

Then, for any $\alpha, \beta \in E$, $((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \in F$. Thus by Proposition 3.2(*iii*), *F* is a fantastic filter of \mathcal{E}_{II} .

Example 3.13. Let $E = \{0, \alpha, \beta, \gamma, \delta, \theta, \kappa, \mu, \nu, 1\}$ be a lattice with the following Hasse digram (Figure 3) and the operations \otimes and \sim are defined on E as Table 7 and Table 8.

\otimes	0	ν	α	β	γ	δ	θ	κ	μ	1
0	0	0	0	0	0	0	0	0	0	0
ν	0	0	0	0	0	0	0	0	0	ν
α	0	0	α	0	α	0	α	0		
β	0	0	0	0	0	0	0	β	β	β
γ	0	0			α	0	α		γ	γ
δ	0	0	0	0	0	β	β	δ	δ	δ
θ	0	0	α		α	β	γ	δ	θ	θ
κ	0	0	0	β	β	δ	δ	κ	κ	κ
μ	0		α	β	γ		θ	κ	μ	μ
1	0	ν	α		γ			κ	μ	1

~	0	ν	α	β	γ	δ	θ	κ	μ	1
0	1	μ	κ	θ	δ	γ	β	α	ν	0
ν	μ	1	κ	θ	δ	γ	β	α	ν	ν
α	κ		1	δ	θ	β	γ		α	α
β	θ	θ	δ	1			δ	γ	β	β
γ	δ	δ			1	δ	θ	β	γ	γ
δ	γ	γ	β	θ	δ	1	κ	θ		δ
θ	β	β	γ	δ	θ	κ	1	δ	θ	θ
κ	α	α	ν	γ	β	θ		1	κ	
μ	ν	ν	α	β	γ		θ	κ	1	μ
1	0	ν	α	β	γ	δ	θ	κ	μ	1

Table 8

	0		21	0		s	0			1
\rightarrow	U	ν	α	β	γ	δ	θ	к	μ	1
0	1	1	1	1	1	1	1	1	1	1
ν	μ	1	1	1	1	1	1	1	1	1
α	κ	κ	1	κ	1	κ	1	κ	1	1
β	θ	θ	θ	1	1	1	1	1	1	1
γ	δ	δ	θ	κ	1	κ	1	κ	1	1
δ	γ	γ	γ	θ	θ	1	1	1	1	1
θ	β	β	γ	δ	θ	κ	1	κ	1	1
κ	α	α	α	γ	γ	θ	θ	1	1	1
μ	ν	ν	α	β	γ	δ	θ	κ	1	1
1	0	ν	α	β	γ	δ	θ	κ	μ	1
				Τι	ıble 9)				

Figure 3

Then $\mathcal{E}_{II} = (E, \wedge, \otimes, \sim, 1)$ is an EQ-algebra and the operation \to is as Table 9. By some routine calculations, we can see that $F = \{\mu, 1\}$ is a fantastic filter of \mathcal{E}_{II} and $\mathcal{E}_{II}/F = \{[0], [\alpha], [\beta], [\gamma], [\delta], [\theta], [\kappa], [1]\}$ is an MV-algebra. But F is not a positive implicative filter of \mathcal{E} . Because, $(\beta \wedge (\beta \to \nu)) \to \nu = \theta \notin F$. Thus, by Theorem 2.10(ii), F is not an implicative filter of \mathcal{E}_{II} .

4. Prelinear filters of EQ-algebras

Every finite EQ-algebra is a lattice-ordered EQ-algebra [8]. But in which condition an EQ-algebra is a (\land, \lor) -distributive lattice-ordered EQ-algebra? In [8], Elzekey proved that one can define a join operation on a prelinear EQ-algebra and then the EQ-algebra will be (\land, \lor) -distributive lattice-ordered EQ-algebra. In this section, we introduce a new kind of (pre)filter, named *prelinear (pre)filter*. In the rest of this section, we show that the quotient structure induced by a prelinear filter, is a (\land, \lor) -distributive lattice-ordered EQ-algebra. Also, we will show that if this prelinear filter is fantastic, positive implicative, or implicative, then we can construct a De Morgan algebra, Stone algebra or Boolean algebra, respectively.

Definition 4.1. Let F be a (pre)filter of \mathcal{E}_{II} . Then F is called a prelinear (pre)filter of \mathcal{E}_{II} if for any $\alpha, \beta, \gamma \in E$, $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) \in F$.

Example 4.2. Let \mathcal{E}_{\coprod} be an EQ-algebra as in Example 3.9. Then $F = \{\alpha, \beta, 1\}$ is a prelinear filter of \mathcal{E}_{\coprod} .

Remark 4.3. If \mathcal{E}_{II} is a prelinear EQ-algebra with exchange principle condition, then every (pre)filter of \mathcal{E}_{II} is a prelinear (pre)filter.

In the following examples, we show that the concept of prelinear (pre)filter is not the same as fantastic or (positive)implicative (pre)filter.

Example 4.4. (*i*) Let $E = \{0, \alpha, \gamma, \delta, \mu, 1\}$ be a lattice with a Hesse diagram as Figure 3. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 10 and Table 11:

\otimes	0	α	γ	δ	μ	1	~	0	α	γ	δ	μ	1	\rightarrow	0	α	γ	δ	μ	1
0	0	0	0	0	0	0	0	1	δ	α	α	0	0	0	1	1	1	1	1	1
α	0	α	0	0	α	α	α	δ	1	0	0	α	α	α	δ	1	δ	δ	1	1
γ	0	0	γ	γ	γ	γ	γ	α	0	1	μ	δ	γ	γ	α	α	1	1	1	1
δ	0	0	γ	γ	γ	δ	δ	α	0	μ	1	δ	δ	δ	α	α	μ	1	1	1
μ	0	α	γ	γ	μ	μ	μ	0	α	δ	δ	1	μ	μ	0	α	δ	δ	1	1
1	0	α	γ	δ	μ	1	1	0	α	γ	δ	μ	1	1	0	α	γ	δ	μ	1
		Т	able	10						Table	e 11					7	able	12		

Figure 4

Then $\mathcal{E}_{\coprod} = (\mathcal{E}, \wedge, \otimes, \sim, 1)$ is an EQ-algebra and operation \rightarrow is as Table 12. We can see that \mathcal{E}_{\coprod} is not prelinear because, $\alpha \rightarrow \delta = \delta$ and $\delta \rightarrow \alpha = \alpha$ but $\alpha \vee \delta = \mu \neq 1$. Since \mathcal{E}_{\coprod} is good, $G = \{1\}$ is a filter of \mathcal{E}_{\coprod} . But G is not a prelinear filter of \mathcal{E}_{\coprod} . Because, $((\alpha \rightarrow \delta) \rightarrow \mu) \rightarrow (((\delta \rightarrow \alpha) \rightarrow \mu) \rightarrow \mu = \mu \notin G$.

(ii) Let \mathcal{E}_{\coprod} be an EQ-algebra as in Example 3.4. It is obvious that \mathcal{E}_{\coprod} is a prelinear good EQ-algebra. By Remark 2.6, we obtain $G = \{1\}$ is a prelinear filter of \mathcal{E}_{\coprod} . But G is not a fantastic filter of \mathcal{E}_{\coprod} . Because, $\alpha \to \delta = 1 \in G$ and $((\delta \to \alpha) \to \alpha) \to \delta = \theta \notin G$.

(iii) Let $E = \{0, \alpha, \beta, 1\}$ be a chain where $0 \le \alpha \le \beta \le 1$. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 13 and Table 14:

\otimes	0	α	β	1		~	0	α	β	1			\rightarrow	0	α	β	1
0	0	0	0	0	•	0	1	а	0	0	-	_	0	1	1	1	1
α	0	0	0	α		α	α	1	α	α			α				
β	0	0	0	β		β	0	α	1	β			β	0	α	1	1
1	0	α	β	1		1	0	α	β	1			1	0	α	β	1
		Т	able	13				Ta	ible 1	14					Tab	le 15	5

Then $\mathcal{E}_{\coprod} = (E, \wedge, \otimes, \sim, 1)$ is an EQ-algebra and operation \to is as Table 15. Since \mathcal{E}_{\coprod} is a linearly ordered EQ-algebra, we can see that $F = \{1, \beta\}$ is a prelinear filter of \mathcal{E}_{\coprod} but by Theorem 2.9(ii), it is not a positive implicative filter of \mathcal{E}_{\coprod} . Because, $(\alpha \wedge (\alpha \to 0)) \to 0 = \alpha \notin F$ and then by Proposition 2.10, F is not an implicative filter of \mathcal{E}_{\coprod} , either.

Theorem 4.5. [8] Let \mathcal{E}_{II} be prelinear and good. If, for any $\alpha, \beta \in E$,

$$\alpha \vee \beta = ((\alpha \to \beta) \to \beta) \wedge ((\beta \to \alpha) \to \alpha),$$

then \mathcal{E}_{\coprod} is a (\land, \lor) -distributive ℓ EQ-algebra.

Theorem 4.6. [8] A lattice-ordered separated EQ-algebra \mathcal{E}_{Π} is prelinear if and only if, for any $\alpha, \beta, \gamma \in E$:

$$(\alpha \land \beta) \rightarrow \gamma = (\alpha \rightarrow \gamma) \lor (\beta \rightarrow \gamma).$$

Lemma 4.7. Let \mathcal{E}_{II} be good. Then \mathcal{E}_{II} is prelinear if and only if, for any $\alpha, \beta, \gamma \in E$,

$$(\alpha \to \beta) \to \gamma \leqslant ((\beta \to \alpha) \to \gamma) \to \gamma$$
.

Proof. Suppose \mathcal{E}_{II} is prelinear and good. Then for any $\alpha, \beta \in E$, 1 is the unique upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$ in E. By Proposition 2.1(ii) and (iv), we have

$$\alpha \to \beta \leqslant ((\beta \to \alpha) \to \gamma) \to (\alpha \to \beta) \leqslant ((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma).$$

On the other hand, since \mathcal{E}_{II} is good, by Proposition 2.3(ii), \mathcal{E}_{II} satisfies the exchange principle condition. Then by Proposition 2.1(ii) and (iv),

$$\beta \to \alpha \le ((\alpha \to \beta) \to \gamma) \to (\beta \to \alpha)$$

$$\le ((\beta \to \alpha) \to \gamma) \to (((\alpha \to \beta) \to \gamma) \to \gamma)$$

$$= ((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma).$$

Hence $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma)$ is an upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$. Since \mathcal{E}_{II} is prelinear and separated, we have $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1$ and so,

$$(\alpha \to \beta) \to \gamma \le (((\beta \to \alpha) \to \gamma) \to \gamma.$$

Conversely, suppose that for any $\alpha, \beta, \gamma \in E$, $(\alpha \to \beta) \to \gamma \leq ((\beta \to \alpha) \to \gamma) \to \gamma$. Since 1 is the greatest element of \mathcal{E}_{II} , it is clear that $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1$ is an upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$. We show $\{\alpha \to \beta, \beta \to \alpha\}$ dose not have another upper bound. For this, suppose that there exists $\delta \in E$ such that $\alpha \to \beta \leq \delta$ and $\beta \to \alpha \leq \delta$. Thus, by Proposition 2.1(vi), we have $\delta \to \gamma \leq (\alpha \to \beta) \to \gamma$. By the similar

way, $\delta \to \gamma \le (\beta \to \alpha) \to \gamma$. Then $((\beta \to \alpha) \to \gamma) \to \gamma \le (\delta \to \gamma) \to \gamma$. Now, by Proposition 2.1(vi), we have

$$\begin{split} 1 = & ((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) \\ \leq & ((\alpha \to \beta) \to \gamma) \to ((\delta \to \gamma) \to \gamma) \\ \leq & (\delta \to \gamma) \to ((\delta \to \gamma) \to \gamma). \end{split}$$

Since $\mathcal{E}_{\mathrm{II}}$ is separated, by Proposition 2.1(vii), for any $\gamma \in E$, we have $\delta \to \gamma \leqslant (\delta \to \gamma) \to \gamma$. Let $\gamma = \delta$. Then $1 \leqslant \delta$ and so $\delta = 1$. Hence, the upper bound of $\{\alpha \to \beta, \beta \to \alpha\}$ is equal to 1. Therefore, $\mathcal{E}_{\mathrm{II}}$ is a prelinear EQ-algebra. \square

Corollary 4.8. Let \mathcal{E}_{II} be prelinear with exchange principle condition. Then for any $\alpha, \beta, \gamma \in E$,

$$((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1.$$

Proof. By considering the proof of Lemma 4.7 and Proposition 2.3, the separated condition only use to obtain the nonequality from $((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) = 1$.

An algebra $(D, \vee, \wedge, \neg, 0, 1)$ of type (2, 2, 1, 0, 0) is called a *De Morgan algebra* [15], if for any $\gamma, \delta \in D$, the following conditions hold:

- (D1) $(D, \vee, \wedge, 0, 1)$ is a bounded distributive lattice.
- (D2) $\neg \neg \gamma = \gamma$.
- (D3) $\neg (\gamma \lor \delta) = \neg \gamma \land \neg \delta$, and $\neg (\gamma \land \delta) = \neg \gamma \lor \neg \delta$.

Proposition 4.9. *Let* \mathcal{E}_{II} *has exchange principle condition. If* F *is a prelinear filter of* \mathcal{E}_{II} *, then:*

- (i) \mathcal{E}_{\coprod}/F is good and prelinear.
- (ii) If for any $\alpha, \beta \in E$, we define

$$[\alpha] \vee_F [\beta] = [((\alpha \to \beta) \to \beta) \land ((\beta \to \alpha) \to \alpha)],$$

then $\mathcal{E}_{II}/F = (E/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a distributive lattice which satisfies the De Morgan Laws. (iii) If F is a fantastic filter of \mathcal{E}_{II} , then \mathcal{E}_{II}/F is a De Morgan algebra.

Proof. (*i*) By Theorem 2.7, for any filter F of \mathcal{E}_{II} , \mathcal{E}_{II}/F is separated. Since \mathcal{E}_{II} has exchange principle condition, for any $\alpha, \beta, \gamma \in E$, we have

$$[\alpha] \to ([\beta] \to [\gamma]) = [\alpha \to (\beta \to \gamma)] = [\beta \to (\alpha \to \gamma)] = [\beta] \to ([\alpha] \to [\gamma]).$$

Then, \mathcal{E}_{\coprod}/F has exchange principle condition and so by Proposition 2.3(*ii*), \mathcal{E}_{\coprod}/F is a good *EQ*-algebra. Since *F* is a prelinear filter of \mathcal{E}_{\coprod} , for any $\alpha, \beta, \gamma \in E$,

$$((\alpha \to \beta) \to \gamma) \to (((\beta \to \alpha) \to \gamma) \to \gamma) \in F.$$

Then $[(\alpha \to \beta) \to \gamma] \le [((\beta \to \alpha) \to \gamma) \to \gamma]$. Hence, by Lemma 4.7, \mathcal{E}_{II}/F is a prelinear *EQ*-algebra.

- (ii) By Theorems 2.7, 4.5 and (i), \mathcal{E}_{\coprod}/F is a (\wedge_F, \vee_F) -distributive lattice-ordered EQ-algebra. Since every good EQ-algebra is separated, by Theorem 4.6, for any $\alpha, \beta \in E$, we have $\neg([\alpha] \wedge_F [\beta]) = \neg[\alpha] \vee_F \neg[\beta]$. Since \mathcal{E}_{\coprod}/F has exchange principle condition, from Proposition 2.2, for any $\alpha, \beta \in E$, $\neg([\alpha] \vee_F [\beta]) = \neg[\alpha] \wedge_F \neg[\beta]$. Therefore, \mathcal{E}_{\coprod}/F satisfies the De Morgan Laws.
- (iii) Since F is a prelinear filter of \mathcal{E}_{\coprod} , by Proposition 4.9, \mathcal{E}_{\coprod}/F is a (\vee_F, \wedge_F) -distributive lattice which satisfies the De Morgan Laws. Also, F is a fantastic filter of \mathcal{E}_{\coprod} , then by Corollary 3.5, \mathcal{E}_{\coprod}/F is an involutive EQ-algebra and (D2) is satisfied. \square

Example 4.10. (i) According to Example 3.4, we can see that \mathcal{E}_{II} is a prelinear and involutive EQ-algebra and so it is a De Morgan algebra.

(ii) Let $E = \{0, \alpha, \beta, 1\}$ be a chain where $0 \le \alpha \le \beta \le 1$. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 16 and Table 17:

\otimes	0	α	β	1		~	0	α	β	1		\rightarrow	0	α	β	1
0	0	0	0	0	-	0	1	0	0	0	-		l	1		
α	0	α	α	α		α	0	1	α	α		α	0	1	1	1
β	0	α	β	β		β	0	α	1	1		β	0	α	1	1
1	0	α	β	1		1	0	α	1	1		1	0	α	1	1
		-	Table	16				Та	ble 1	7				Tabl	e 18	

By routine calculations, we can see that $\mathcal{E}_{\coprod} = (E, \wedge, \otimes, \sim, 1)$ is a prelinear EQ-algebra and operation \to is as Table 18. By Proposition 2.3 and Remark 2.6, we know that $\{1\}$ is a filter of \mathcal{E}_{\coprod} . Since \mathcal{E}_{\coprod} is not involutive, it is not a De Morgan algebra, either.

(iii) Let $E = \{0, \alpha, \beta, \gamma, \delta, 1\}$ be a chain where $0 \le \alpha \le \beta \le \gamma \le \delta \le 1$. For any $x, y \in E$, we define the operations \otimes and \sim on E as Table 19 and Table 20:

\otimes	0	α	β	γ	δ	1	~	0	α	β	γ	δ	1	\rightarrow	0	α	β	γ	δ	1
0	0	0	0	0	0	0	0	1	γ	β	α	0	0	0	1	1	1	1	1	1
α	0	0	0	0	0	α	α	γ	1	β	α	α	α	α	γ	1	1	1	1	1
β	0	0	0	0	α	β	β	β	β	1	β	β	β	β	β	β	1	1	1	1
γ	0	0	0	α	α	γ	γ	α	α	β	1	γ	γ	γ	α	α	β	1	1	1
δ	0	0	α	α	α	δ	δ	0	α	β	γ	1	δ	δ	0	α	β	γ	1	1
1	0	α	β	γ	δ	1	1	0	α	β	γ	δ	1	1	0	α	β	γ	δ	1
	'		Tabl	e 19				'		Tabl	e 20					7	able	21		

By routine calculations, we can see that $\mathcal{E}_{IJ}=(E,\wedge,\otimes,\sim,1)$ is a good prelinear and non involutive EQ-algebra and operation \to is as Table 21. We can see that, $F=\{\gamma,\delta,1\}$ is a fantastic filter of \mathcal{E}_{IJ} and $\mathcal{E}_{IJ}/F=([0],[\beta],[1])$ is a De Morgan algebra.

Let $(X, \vee, \wedge, 0, 1)$ be a bounded lattice. An element $x^* \in X$ is called a *pseudocomplement* of $x \in X$, if $x \wedge x^* = 0$ and if there exists $y \in X$ such that $x \wedge y = 0$, then $y \leq x^*$. If every element of X has a pseudocomplement element, then X is called a *pseudocomplemented lattice*(See [15]).

Theorem 4.11. Let \mathcal{E}_{II} be a good BEQ-algebra. If F is a prelinear positive implicative filter of \mathcal{E}_{II} , then \mathcal{E}_{II}/F is a pseudocomplemented lattice.

Proof. Since \mathcal{E}_{II} has a bottom element and F is a prelinear filter of \mathcal{E}_{II} , by Propositions 2.3 and 4.9, \mathcal{E}_{II}/F is a bounded lattice. Now, for any $[\alpha] \in \mathcal{E}_{II}/F$, we define $[\alpha]^* = \neg[\alpha] = [\neg \alpha]$. Since F is a positive implicative filter of \mathcal{E}_{II} , by Theorem 2.9(*ii*), for any $\alpha \in E$, we have $(\alpha \land (\alpha \to 0)) \to 0 \in F$ and so $[\alpha] \land_F [\neg \alpha] = [0]$. Now, suppose that there exists $[\delta] \in E/F$ such that $[\alpha] \land_F [\delta] = [0]$. By Propositions 2.3 and 4.9, \mathcal{E}_{II}/F satisfies the De Morgan Laws and so we obtain $[\neg \alpha] \lor_F [\neg \delta] = [1]$. By Proposition 2.4, we have $[\neg \alpha] \to [\neg \delta] = [\neg \delta]$ and so $(\neg \alpha \to \neg \delta) \to \neg \delta \in F$. Since \mathcal{E}_{II} is good, by exchange principle condition, we get

$$(\neg \alpha \rightarrow \neg \delta) \rightarrow \neg \delta = \delta \rightarrow ((\neg \alpha \rightarrow \neg \delta) \rightarrow 0) = \delta \rightarrow ((\delta \rightarrow \neg \neg \alpha) \rightarrow 0).$$

By Proposition 2.1(iv), we obtain

$$\delta \to ((\delta \to \neg \neg \alpha) \to 0) \leqslant (((\delta \to \neg \neg \alpha) \to 0) \to \neg \alpha) \to (\delta \to \neg \alpha). \tag{1}$$

By exchange principle condition, we have

$$((\delta \to \neg \neg \alpha) \to 0) \to \neg \alpha = \alpha \to (((\delta \to \neg \neg \alpha) \to 0) \to 0) = \alpha \to \neg \neg (\delta \to \neg \neg \alpha).$$

Since \mathcal{E}_{II} is good, by Proposition 2.3(*iii*), we have $\alpha \leq \neg \neg \alpha$ and by Proposition 2.1(*ii*), we have $\neg \neg \alpha \leq \delta \rightarrow \neg \neg \alpha$. Again by Proposition 2.3(*iii*), we obtain $\delta \rightarrow \neg \neg \alpha \leq \neg \neg (\delta \rightarrow \neg \neg \alpha)$. Then, $(\delta \rightarrow \neg \neg \alpha) \rightarrow 0) \rightarrow \neg \alpha = \alpha \rightarrow \neg \neg (\delta \rightarrow \neg \neg \alpha) = 1 \in F$. Hence, by (4.1), we have $\delta \rightarrow \neg \alpha \in F$. Then, $[\delta] \leq [\neg \alpha]$ and so, $[\neg \alpha]$ is the greatest element in \mathcal{E}_{II}/F such that $[\alpha] \land_F [\neg \alpha] = [0]$. Therefore \mathcal{E}_{II}/F is a pseudocomplemented lattice. \square

An algebra $(S, \vee, \wedge, *, 0, 1)$ of type (2, 2, 1, 0, 0) is called a *Stone algebra* [15], if: (S1) $(S, \lor, \land, 0, 1)$ is a pseudocomplemented distributive lattice. (S2) $s^* \vee s^{**} = 1$, for any $s \in S$.

Theorem 4.12. Let \mathcal{E}_{II} be a good BEQ-algebra. If F is a prelinear positive implicative filter of \mathcal{E}_{II} , then $\mathcal{E}_{II}/F =$ $(E/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a Stone algebra.

Proof. Let F be a prelinear positive implicative filter of \mathcal{E}_{II} . Then by Proposition 4.9, \mathcal{E}_{II}/F is an (\vee_F, \wedge_F) distributive lattice. By Theorem 4.11, \mathcal{E}_{II}/F is a pseudocomplemented lattice and so, (S1) is satisfied. By Proposition 4.9(ii) we have $\neg([\alpha] \land [\neg \alpha]) = \neg[0]$ and so $[\neg \alpha] \lor_F [\neg \neg \alpha] = [\neg 0] = [1]$. Hence, (S2) is satisfied. Therefore, \mathcal{E}_{\coprod}/F is a Stone algebra. \square

In the following example, we show that the converse of Theorem 4.12 may not be true, in general.

Example 4.13. Let $E = \{0, \alpha, \beta, 1\}$ be a chain where $0 \le \alpha \le \beta \le 1$. Define the operations \otimes and \sim on E as Table 22 and Table 23:

l Table 23:																
\otimes	0	α	β	1		~	0	α	β	1		\rightarrow	0	α	β	1
0	0	0	0	0	-	0	1	0	0	0			1			
α	0	0	0	α		α	0	1	β	α		α	0	1	1	1
β	0	0	0	β		β	0	β	1	β		β	0	β	1	1
		α						α					0			
Table 22						Table 23							Table 24			

Then $\mathcal{E}_{II} = (E, \land, \otimes, \sim, 1)$ is a prelinear good EQ-algebra and it is a Stone algebra. Moreover, operation \rightarrow is as Table 24. Since \mathcal{E}_{II} is a good EQ-algebra, by Remark 2.6, $\{1\}$ is a filter of \mathcal{E}_{II} but, $\{1\}$ is not a positive implicative filter of \mathcal{E}_{\coprod} , because $(\beta \land (\beta \rightarrow \alpha)) \rightarrow \alpha = \beta \notin \{1\}$.

A Boolean algebra [5] is an algebra $(B, \vee, \wedge, ', 0, 1)$ of type (2, 2, 1, 0, 0) such that for any $a, b \in E$; (B1) (B, \vee, \wedge) is a distributive lattice.

(B2) $a \land 0 = 0$, and $a \lor 1 = 1$. (bounded)

(B3) $a \wedge a' = 0$, and $a \vee a' = 1$. (complemented)

Remark 4.14. Let \mathcal{E}_{II} be a BEQ-algebra with exchange principle condition and F be a prelinear filter of \mathcal{E}_{II} . By Proposition 4.9 we know $\mathcal{E}_{II}/F = (E/F, \vee_F, \wedge_F, \neg, [0], [1])$ is a distributive lattice, where for any $\alpha, \beta \in E$, $[\alpha] \vee_F$ $[\beta] = [((\alpha \to \beta) \to \beta) \land ((\beta \to \alpha) \to \alpha)].$ Also, if F is a fantastic filter of \mathcal{E}_{IJ} , then by Proposition 3.2(iii), $[\alpha] \vee_F [\beta] = [((\alpha \to \beta) \to \beta] \text{ and } \mathcal{E}_{\coprod}/F \text{ is a De Morgan algebra.}$

Lemma 4.15. Let \mathcal{E}_{\coprod} be a BEQ-algebra with exchange principle condition. A (pre)filter F of \mathcal{E}_{\coprod} is an implicative (pre)filter of \mathcal{E}_{\coprod} if and only if for any $\alpha \in E$, $(\neg \alpha \to \alpha) \to \alpha \in F$.

Proof. The proof is similar to the proof of [4, Proposition 3.17]. \Box

Theorem 4.16. Let \mathcal{E}_{II} be a BEQ-algebra with exchange principle condition such that F be a prelinear filter of \mathcal{E}_{II} . Then F is an implicative filter of \mathcal{E}_{II} if and only if $(\mathcal{E}_{II}/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a Boolean algebra.

Proof. Let F be an implicative filter of \mathcal{E}_{II} . By Proposition 3.8, F is a fantastic filter of \mathcal{E}_{II} and so by Proposition 4.9, $(\mathcal{E}_{II}/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ is a De Morgan algebra. By Remark 4.14, for any $\alpha \in F$, we have $[\neg \alpha] \lor_F [\alpha] = [(\neg \alpha \to \alpha) \to \alpha]$. Since *F* is an implicative filter of \mathcal{E}_{IJ} , by Lemma 4.15, $(\neg \alpha \to \alpha) \to \alpha \in F$. Hence, $[\neg \alpha] \lor_F [\alpha] = [1]$. Therefore, $(\mathcal{E}_{\coprod}/F, \lor_F, \land_F, \lnot_F, [0], [1])$ is a Boolean algebra.

Conversely, let $(\mathcal{E}_{\coprod}/F, \vee_F, \wedge_F, \neg_F, [0], [1])$ be a Boolean algebra. Then, for any $\alpha \in E$, $[\alpha \vee_F \neg \alpha] = [1]$. By definition of \forall_F , we have $((\alpha \to \neg \alpha) \to \neg \alpha) \land ((\neg \alpha \to \alpha) \to \alpha) \in F$. Since

$$((\alpha \to \neg \alpha) \to \neg \alpha) \land ((\neg \alpha \to \alpha) \to \alpha) \leqslant (\neg \alpha \to \alpha) \to \alpha,$$

by Remark 2.5, for any $\alpha \in E$, $(\neg \alpha \to \alpha) \to \alpha \in F$. Hence, by Lemma 4.15, F is an implicative filter of \mathcal{E}_{\coprod} . \Box

- **Example 4.17.** (i) According to Example 4.4(iii), \mathcal{E}_{\coprod} is a good prelinear EQ-algebra and $F = \{1, \beta\}$ is a filter but, it is not an implicative filter of \mathcal{E}_{\coprod} . By routine calculations, we can see that $\mathcal{E}_{\coprod}/F = \{[0], [\alpha], [1]\}$ is not a Boolean algebra. So the implicative condition is necessary.
- (ii) According to Example 3.4, \mathcal{E}_{\coprod} is a prelinear good IEQ-algebra. By Remark 2.6, $G = \{1\}$ is a filter of \mathcal{E}_{\coprod} but it is not an implicative filter of \mathcal{E}_{\coprod} . Because, $\neg \kappa \to \kappa = \beta \to \kappa = 1 \in G$ but $\kappa \notin G$. Also, \mathcal{E}_{\coprod} is not a Boolean algebra, because $\alpha \vee \neg \alpha = \alpha \vee \theta = \theta \neq 1$.
- (iii) According to Example 3.13, \mathcal{E}_{II} is a prelinear good IEQ-algebra and $F = \{\mu, 1\}$ is a prelinear and fantastic filter of \mathcal{E}_{II} . But \mathcal{E}_{II}/F is not a Boolean algebra, because $\neg[\beta] = [\theta]$ and $[\beta] \wedge [\theta] = [\beta] \neq [0]$.

5. Conclusions and future works

In this paper, a new kind of filter of *EQ*-algebras was introduced and the quotient structures induced by it were studied.

It was proved that the quotient structure was induced by a fantastic filter is an MV-algebra. By using a prelinear filter of an EQ-algebra, a distributive lattice was constructed. If the prelinear filter also, was positive implicative or implicative filter, then the quotient structure would be a Stone algebra or a Boolean algebra, respectively.

Acknowledgement

The authors are very indebted to the editor and anonymous referees for their helpful comments and valuable suggestions that greatly improve the quality and clarity of the paper

References

- [1] M. Aaly Kologani, R. A. Borzooei, G. R. Rezaei, Y. B Jun, Commutative equality algebras and &-equality algebras, Annals of the University of Craiova Mathematics and Computer Science Series, to apear.
- [2] R. A. Borzooei, H. Farahani, M. Moniri, Neutrosophic deductive filters on *BL*-Algebras, Journal of Intelligent and Fuzzy Systems, 26(6) (2014) 2993–3004.
- [3] R. A. Borzooei, S. Khosravi Shoar, R. Ameri, Some types of filters in MTL-algebras, Fuzzy Sets and Systems, 187(1) (2012) 92–102.
- [4] R. A. Borzooei, F. Zebardast, M. Aaly Kologhani, Some types of filters in equality algebras, Categories and General Algebraic Structures with Applications, 7 (2017) 33–55.
- [5] S. Burris, H. P. Sankappanavar, A course in universal algebra, (The Millennium Edition), Springer-Verlag, 78 (1981).
- [6] R. Cignoli, I. D'ottaaviano, D. Mundici, Algebraic foundations of many valued reasoning, Kluwer Academic Publishers, Dordrecht, Boston-London, (2000).
- [7] M. Dyba, M. El-Zekey, V. Novák, Non-commutative first-order EQ-logics, Fuzzy Sets and Systems, 292 (2016) 215–241.
- [8] M. El-Zekey, Representable good EQ-algebras, Soft Computing, 14(9) (2010) 1011–1023.
- [9] M. El-Zekey, V. Novák, R. Mesiar, On good EQ-algebras, Fuzzy Sets and Systems, 178 (2011) 1–23.
- [10] B. Ganji Saffar, R. A. Borzooei, Filter theory on good hyper *EQ*-algebras, Annals of the university of Graiova, Mathmatics and Computer Science Series 43(2) (2016) 243–258.
- [11] S. Jenei, Equality algebras, Studia Logica, 100 (2012) 1201–1209.
- [12] M. Kondo, W. A. Dudek, Filter theory of BL-algebras, Soft Computing, 12 (2008) 419–423.
- [13] J. Liang, X. L. Xin, J. T. Wang, On derivations of EQ-algebras, Journal of Intelligent and Fuzzy Systems, 35(5) (2018) 5573-5583.
- [14] L. Z. Liu, X. Y. Zhang, Implicative and positive implivative prefilters of EQ-algebras, Journal of Intelligent and Fuzzy Systems, 26 (2014) 2087–2097.
- [15] H. T. Nguyen, E. A. Walker, A first course in fuzzy logic, third edition, Chapman and Hall/CRC, NewYork, 2006.
- [16] V. Novák, EQ-algebras: Primary concepts and properties, in: Proc. Czech-Japan Seminar, Ninth Meeting, Kitakyushu and Nagasaki, Graduate School of Information, Waseda University, August 18-22, (2006).
- [17] V. Novák, EQ-algebras-based fuzzy type theory and its extensions, Logic Journal of the IGPL, 19 (2011) 512–542.
- [18] V. Novák, B. De Baets, EQ-algebras, Fuzzy Sets and Systems, 160 (2009) 2956–2978.
- [19] A. Rezaei, A. Borumand Saeid, R. A. Borzooei, Some types of filters in BE-algebras, Mathematics in Computer Science, 7 (2013) 341-352.
- [20] X. L. Xin, Y. C. Ma, Y.L. Fu, The existence of states on EQ-algebras, Mathematica Slovaca, 70(3) (2020) 527–546.
- [21] F. Zebardast, R. A. Borzooei, M. Aaly Kologhani, Results on equality algebras, Information Sciences, 381 (2017) 270–282.