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Abstract. EQ-algebras were introduced by Novák in [16] as an algebraic structure of truth values for
fuzzy type theory (FTT). Novák and De Baets in [18] introduced various kinds of EQ-algebras such as good,
residuated, and lattice ordered EQ-algebras. In any logical algebraic structures, by using various kinds
of filters, one can construct various kinds of other logical algebraic structures. With this inspirations, by
means of fantastic filters of EQ-algebras we construct MV-algebras. Also, we study prelinear EQ-algebras
and introduce a new kind of filter and named it prelinear filter. Then, we show that the quotient structure
which is introduced by a prelinear filter is a distributive lattice-ordered EQ-algebras and under suitable
conditions, is a De Morgan algebra, Stone algebra and Boolean algebra.

1. Introduction

Fuzzy type theory was developed as a counterpart of the classical higher-order logic. Since the algebra
of truth values is no longer a residuated lattice, a specific algebra called an EQ-algebra was proposed by
Novák [16–18]. The main primitive operations of EQ-algebras are meet, multiplication, and fuzzy equality.
Implication is derived from the fuzzy equality and it is not a residuation with respect to multiplication.
Consequently, EQ-algebras overlap with residuated lattices but are not identical with them. Novák and
De Baets in [18] introduced various kinds of EQ-algebras and they defined the concept of prefilter on EQ-
algebras which is the same as filter of other algebraic structures such as residuated lattices, MTL-algebras,
and etc. But the binary relation has been introduced by prefilters is not a congruence relation. For solving
this problem, they added another condition to the definition of prefilter so filter of EQ-algebras is defined.
In studying logical algebras, filter theory or ideal theory is very important. In [2–4, 12, 19] different kinds
of filters such as implicative, positive implicative and fantastic filters were introduced in various logical
algebras. Liu and Zhang in [14], introduced positive implicative and implicative (pre)filters of EQ-algebras
and showed that these two concepts are the same in IEQ-algebras. Xin et al. [20], have studied fantastic
(pre)filters of good EQ-algebras. In this paper, we investigate properties of fantastic (pre)filters in more
general form of EQ-algebras and by means of this properties we can construct an MV-algebra. El-Zekey
in [8] introduced prelinear good EQ-algebras and proved that a prelinear good EQ-algebra is a distributive
lattice. In Section 4, we introduce a new kind of filter, named prelinear filter and we will show that if an
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EQ-algebra is not good or prelinear, then the quotient structure can be distributive lattice. Also, we will see
that if a prelinear filter is fantastic, positive implicative, or implicative, then we can construct a Demorgan
algebra, Stone algebra or Boolean algebra, respectively.

2. Preliminaries

In this section, we recollect some definitions and results which will be used in this paper [8, 9, 14].
An EQ-algebra is an algebraic structure Eq = (E,∧,⊗,∼, 1) of type (2, 2, 2, 0), where for any α, β, γ, δ ∈ E,

the following statements hold:
(E1) (E,∧, 1) is a ∧-semilattice with top element 1.
(E2) (E,⊗, 1) is a (commutative) monoid and ⊗ is isotone with respect to 6.
(E3) α ∼ α = 1.
(E4) ((α ∧ β) ∼ γ) ⊗ (δ ∼ α) 6 (γ ∼ (δ ∧ β)).
(E5) (α ∼ β) ⊗ (γ ∼ δ) 6 (α ∼ γ) ∼ (β ∼ δ).
(E6) (α ∧ β ∧ γ) ∼ α 6 (α ∧ β) ∼ α.
(E7) α ⊗ β 6 α ∼ β.

The operations ” ∧ ”, ” ⊗ ”, and ” ∼ ” are called meet, multiplication, and fuzzy equality, respectively. For
any α, β ∈ E, we set α 6 β if and only if α ∧ β = α and we defined the binary operation implication on E by,
α → β = (α ∧ β) ∼ α. Also, in particular 1 → α = 1 ∼ α = α̃. If E has a bottom element 0, we denote it by
BEQ-algebra and then an unary operation ¬ is defined on E by ¬α = α ∼ 0.

Let Eq = (E,∧,⊗,∼, 1) be an EQ-algebra and α, β, γ ∈ E are arbitrary elements. Then Eq is called
(i) separated if α ∼ β = 1, implies α = β,
(ii) good if α ∼ 1 = α,
(iii) an involutive (IEQ-algebra) if Eq is a BEQ-algebra and for any α ∈ E, ¬¬α = α,
(iv) residuated, where (α ⊗ β) ∧ γ = α ⊗ β if and only if α ∧ ((β ∧ γ) ∼ β) = α,
(v) lattice-ordered EQ-algebra if it has a lattice reduct1),
(vi) prelinear EQ-algebra if the set {(α→ β), (β→ α)} has the unique upper bound 1,
(vii) lattice EQ-algebra (or `EQ-algebra) if it is a lattice-ordered EQ-algebra and

((α ∨ β) ∼ γ) ⊗ (δ ∼ α) 6 ((δ ∨ β) ∼ γ).

Proposition 2.1. [9] Let Eq be an EQ-algebra. Then, for all α, β, γ ∈ E, the following properties hold:
(i) α ∼ β = β ∼ α.
(ii) β 6 α→ β.
(iii) α→ β = α→ (α ∧ β).
(iv) α→ β 6 (β→ γ)→ (α→ γ).
(v) α→ β 6 (γ→ α)→ (γ→ β).
(vi) If α 6 β, then γ→ α 6 γ→ β and β→ γ 6 α→ γ.
(vii) If Eq is separated, then α→ β = 1 if and only if α 6 β.
(viii) If Eq is a BEQ-algebra, then ¬0 = 1 and ¬α = α→ 0.
(ix) If Eq is a BEQ-algebra, then α→ β 6 ¬β→ ¬α and if Eq is involutive, then α→ β = ¬β→ ¬α.

An EQ-algebra Eq has exchange principle condition if for any α, β, γ ∈ E, α→ (β→ γ) = β→ (α→ γ).

Proposition 2.2. [9, 17] Let Eq be an EQ-algebra with exchange principle condition. Then, for all indexed families
{αi}i∈I ⊆ E and γ ∈ E, we have, (

∨
i∈I
αi)→ γ =

∧
i∈I

(αi → γ).

Proposition 2.3. [14] Let Eq be an EQ-algebra. Then, for all α, β, γ ∈ E, the following statements are equivalent:
(i) Eq is good,

1)Given an algebra < E,F >, where F is a set of operations on E and F′ ⊆ F, then the algebra < E,F′ > is called the F′-reduct of
< E,F >.
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(ii) Eq is separated and satisfies exchange principle condition,
(iii) Eq is separated and has α 6 (α→ β)→ β.

Proposition 2.4. [8] Let Eq be a prelinear and separated EQ-algebra. Then, for any α, β ∈ E, α ∨ β = 1 if and only
if α→ β = β and β→ α = α.

Let Eq be an EQ-algebra, α, β, γ ∈ E and ∅ , F ⊆ E. Then;
(i) F is called a prefilter of Eq if 1 ∈ F and if α ∈ F and α→ β ∈ F, then β ∈ F.
(ii) F is called an implicative prefilter of Eq if 1 ∈ F and if γ→ ((α→ β)→ α) ∈ F and γ ∈ F, then α ∈ F.
(iii) a prefilter F of Eq is called a filter of Eq if α→ β ∈ F, implies (α ⊗ γ)→ (β ⊗ γ) ∈ F.
(iv) a (pre)filter F of Eq is called a positive implicative (pre)filter of Eq if α → (β → γ) ∈ F and α → β ∈ F,
imply α→ γ ∈ F.

Remark 2.5. [18] Let F be a prefilter of EQ-algebra Eq. If α ∈ F and α 6 β, then β ∈ F.

Remark 2.6. [9] Let Eq be a separated EQ-algebra. The singleton subset {1} ⊆ E is a filter of Eq.

Theorem 2.7. [9] Let F be a filter of EQ-algebra Eq. A binary relation ≈F on E which is defined by α ≈F β if and
only if α ∼ β ∈ F, is a congruence relation on Eq and Eq/F = (E/F,∧F,⊗F,∼F,F) is a separated EQ-algebra, where,
for any α, β ∈ E, we have,

[α] ∧F [β] = [α ∧ β] , [α] ⊗F [β] = [α ⊗ β] , [α] ∼F [β] = [α ∼ β] , [α]→F [β] = [α→ β]

A binary relation 6F on E/F which is defined by [α] 6F [β] if and only if [α]∧F [β] = [α] is a partial order on
E/F and for any [α], [β] ∈ E/F, [α] 6F [β] if and only if α→ β ∈ F if and only if [α]→F [β] = [1].

Corollary 2.8. If an EQ-algebra Eq has exchange principle condition, then Eq/F is a good EQ-algebra.

Theorem 2.9. [14] Let Eq be an EQ-algebra and F be a prefilter of Eq. Then, for any α, β ∈ E, the following
statements are equivalent:
(i) F is a positive implicative prefilter of Eq,
(ii) (α ∧ (α→ β))→ β ∈ F.

Theorem 2.10. [14] Let Eq be an EQ-algebra. Then the following statements hold:
(i) Every implicative (pre)filter of Eq is a (pre)filter of Eq.
(ii) Every implicative (pre)filter of Eq is a positive implicative (pre)filter of Eq.

Corollary 2.11. [14] Let Eq be a BEQ-algebra and F be a prefilter of Eq. If Eq has exchange principle condition,
then for any α, β ∈ E, the following statments are equivalent:
(i) F is an implicative prefilter of Eq,
(ii) F is a positive implicative prefilter of Eq, and (α→ β)→ β ∈ F implies (β→ α)→ α ∈ F,
(iii) (α→ β)→ α ∈ F implies α ∈ F.

Notation 2.12. From now on, in this paper, Eq = (E,∧,⊗,∼, 1) or simply Eq is an EQ-algebra, unless otherwise
state.

3. Fantastic (pre)filter of EQ-algebras

In [21], Zebardast et al. showed that every good EQ-algebra is an equality algebra. On the other
hand, in [1], it is proved that one can define another binary operation on any equality algebra which the
equality algebra with this new operation become a good EQ-algebra. Thus the properties of (pre)filters
in good EQ-algebras are the same as properties of filters in equality algebras. In [20] Xin, Ma, and Fu
introduced the notions of fantastic (pre)filter of EQ-algebras and studied it in good EQ-algebras. They
proved that the quotient structure of good BEQ-algebra is an MV-algebra. In this section, we investigate
some properties of fantasitc (pre)filters of EQ-algebras such as every implicative (pre)filter of EQ-algebra
is a fantastic (pre)filter of EQ-algebra and the quotient structure which is introduced by a fantastic filter
is a lattice-ordered EQ-algebra. Also, we prove that the quotient structure of BEQ-algebra with exchange
principle condition is an MV-algebra.
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Definition 3.1. [20] Let F be a (pre)filter of Eq. Then F is called a fantasic (pre)filter of Eq, if for any α, β ∈ E,
β→ α ∈ F implies ((α→ β)→ β)→ α ∈ F.

Proposition 3.2. Let F be a (pre)filter of Eq. Then, for any α, β, γ ∈ E, the following conditions are equivalent,
(i) F is a fantastic (pre)filter of Eq,
(ii) if α→ γ ∈ F and β→ γ ∈ F, then ((α→ β)→ β)→ γ ∈ F,
(iii) if Eq has exchange principle condition, then

((α→ β)→ β)→ ((β→ α)→ α) = (β→ α)→ (((α→ β)→ β)→ α) ∈ F.

Proof. (i⇒ ii) Suppose that, for α, β, γ ∈ E, α→ γ ∈ F and β→ γ ∈ F. Since F is a fantastic (pre)filter of Eq,
((γ→ β)→ β)→ γ ∈ F. On the other hand, by Proposition 2.1(iii), we have,

α→ γ 6(γ→ β)→ (α→ β)
6((α→ β)→ β)→ ((γ→ β)→ β)
6(((γ→ β)→ β)→ γ)→ (((α→ β)→ β)→ γ).

Since F is a (pre)filter of Eq and α→ γ ∈ F, by Remark 2.5, we get

(((γ→ β)→ β)→ γ)→ (((α→ β)→ β)→ γ) ∈ F.

Moreover, since F is a fantastic (pre)filter of Eq and ((γ→ β)→ β)→ γ ∈ F, we get ((α→ β)→ β)→ γ ∈ F.
(ii⇒ i) Let γ = α in (ii). Then the proof is clear.
(i⇒ iii) Since Eq has exchange principle condition, for any α, β ∈ E,

β→ ((β→ α)→ α) = (β→ α)→ (β→ α) = 1 ∈ F.

Moreover, since F is a fantastic (pre)filter of Eq and β→ ((β→ α)→ α) ∈ F, we get

(β→ α)→ (((((β→ α)→ α)→ β)→ β)→ α) = ((((β→ α)→ α)→ β)→ β)→ ((β→ α)→ α) ∈ F.

Also, by Proposition 2.1(ii) and (vi), α 6 (β → α) → α and so ((β → α) → α) → β 6 α → β. Hence
(α→ β)→ β 6 (((β→ α)→ α)→ β)→ β. Then

((((β→ α)→ α)→ β)→ β)→ α 6 ((α→ β)→ β)→ α,

which implies that,

(β→ α)→ (((((β→ α)→ α)→ β)→ β)→ α) 6 (β→ α)→ (((α→ β)→ β)→ α).

Since Eq has exchange principle condition, we get,

((α→ β)→ β)→ ((β→ α)→ α) = (β→ α)→ (((α→ β)→ β)→ α).

Since (β→ α)→ (((((β→ α)→ α)→ β)→ β)→ α) ∈ F, and F is a (pre)filter of Eq, by Remark 2.5, we have
(β→ α)→ (((α→ β)→ β)→ α) ∈ F.
(iii⇒ i) Let α, β ∈ E such that β→ α ∈ F. By (ii), (β→ α)→ (((α→ β)→ β)→ α) ∈ F. Then by definition of
(pre)filter, ((α→ β)→ β)→ α ∈ F. Hence, F is a fantastic (pre)filter of Eq.

Note. By Proposition 2.3, every good EQ-algebra has exchange principle condition. So there exist a lot of
examples of EQ-algebras where have exchange principle condition.

Corollary 3.3. Let Eq be a BEQ-algebra. If F is a fantastic (pre)filter of Eq, then for any α ∈ E, ¬¬α→ α ∈ F.

Proof. By Proposition 2.1(viii), the proof is clear.
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In the next example we can see that the converse of Corollary 3.3, may not be true, generally.

Example 3.4. Let E = {0, α, β, γ, δ, θ, κ, 1} be a lattice with a Hesse diagram as Figure 1. For any x, y ∈ E, we define
the operations ⊗ and ∼ as Table 1 and Table 2.

⊗ 0 α β γ δ θ κ 1
0 0 0 0 0 0 0 0 0
α 0 0 0 0 0 0 0 α
β 0 0 0 0 0 0 0 β
γ 0 0 0 0 0 0 0 γ
δ 0 0 0 0 δ δ δ δ
θ 0 0 0 0 δ θ δ θ
κ 0 0 0 0 δ δ δ κ
1 0 α β γ δ θ κ 1

Table 1

∼ 0 α β γ δ θ κ 1
0 1 θ κ δ γ α β 0
α θ 1 δ κ γ α γ α
β κ δ 1 θ γ γ β β
γ δ κ θ 1 γ γ γ γ
δ γ γ γ γ 1 κ θ δ
θ α α γ γ κ 1 δ θ
κ β γ β γ θ δ 1 κ
1 0 α β γ δ θ κ 1

Table 2

→ 0 α β γ δ θ κ 1
0 1 1 1 1 1 1 1 1
α θ 1 θ 1 1 1 1 1
β κ κ 1 1 1 1 1 1
γ δ κ θ 1 1 1 1 1
δ γ γ γ γ 1 1 1 1
θ α α γ γ κ 1 κ 1
κ β γ β γ θ θ 1 1
1 0 α β γ δ θ κ 1

Table 3

0

βα

δ
γ

κθ

1

Figure 1

Then Eq = (E,∧,⊗,∼, 1) is an IEQ-algebra [18] and operation → is as Table 3. Hence for any α ∈ E, ¬¬α = α
then ¬¬α → α = 1. But G = {1} is not a fantastic (pre)filter of Eq. Because γ → δ = 1 ∈ G but
((δ→ γ)→ γ)→ δ = 1→ δ = δ < G.

Corollary 3.5. Let Eq be a BEQ-algebra with exchange principle condition. If F is a fantastic filter of Eq, then Eq/F
is an IEQ-algebra.

Proof. By Theorem 2.7 and Corollary 3.3, for any α ∈ E, [¬¬α] 6 [α]. On the other hand, since Eq has
exchange principle condition, for any α ∈ E we have, α → ¬¬α = (α → 0) → (α → 0) = 1 ∈ F. Hence,
[α] 6 [¬¬α] and so [α] = [¬¬α]. Therefore, Eq/F is an IEQ-algebra.

In the following theorem, we show that extended of every fantastic (pre)filter of an EQ-algebra is also a
fantastic (pre)filter.

Theorem 3.6. Suppose Eq has exchange principle condition and F and G are two (pre)filters of Eq such that F ⊆ G.
If F is a fantastic (pre)filter of Eq, then G is a fantastic (pre)filter of Eq.

Proof. Let α, β ∈ E such that β → α ∈ G. Since β → ((β → α) → α) = (β → α) → (β → α) = 1 ∈ F and F is a
fantastic (pre)filter of Eq, we have

((((β→ α)→ α)→ β)→ β)→ ((β→ α)→ α) ∈ F ⊆ G.

Since Eq has exchange principle condition, we have

(β→ α)→ (((((β→ α)→ α)→ β)→ β)→ α) ∈ G.
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Moreover, since G is a (pre)filter of Eq and β → α ∈ G, then (((((β → α) → α) → β) → β) → α) ∈ G. By
Proposition 2.1(ii), α 6 (β→ α)→ α. Then α→ ((β→ α)→ α) = 1. Hence, by Proposition 2.1(iv),

α→ ((β→ α)→ α) 6(((β→ α)→ α)→ β)→ (α→ β)
6((α→ β)→ β)→ ((((β→ α)→ α)→ β)→ β)
6(((((β→ α)→ α)→ β)→ β)→ α)→ (((α→ β)→ β)→ α).

Since α→ ((β→ α)→ α) = 1, we get

(((((β→ α)→ α)→ β)→ β)→ α)→ (((α→ β)→ β)→ α) = 1.

Also, since ((((β → α) → α) → β) → β) → α ∈ G and G is a (pre)filter of Eq, by definition of (pre)filter,
((α→ β)→ β)→ α ∈ G. Hence, G is a fantastic (pre)filter of Eq.

Corollary 3.7. Consider Eq has exchange principle condition. If {1} is a fantastic prefilter of Eq, then any prefilter
of Eq is a fantastic prefilter of Eq.

Theorem 3.8. Consider Eq has exchange principle condition. Then,
(i) any implicative (pre)filter of Eq is a fantastic (pre)filter of Eq.
(ii) F is a fantastic and positive implicative prefilter of Eq if and only if F is an implicative prefilter of Eq.

Proof. (i) Let F be an implicative (pre)filter of Eq and for α, β ∈ E, β → α ∈ F. By Proposition 2.1(ii),
α 6 ((α → β) → β) → α. Then by Proposition 2.1(vi), (((α → β) → β) → α) → β 6 α → β. Let
x = ((α → β) → β) → α. Then x → β 6 α → β and so (α → β) → x 6 (x → β) → x. On the other hand, by
Proposition 2.1(v), β→ α 6 ((α→ β)→ β)→ ((α→ β)→ α). Then by exchange principle condition,

(α→ β)→ x = (α→ β)→ (((α→ β)→ β)→ α) = ((α→ β)→ β)→ ((α→ β)→ α) ∈ F.

Since F is a prefilter of Eq and (α → β) → x ∈ F, by Remark 2.5, (x → β) → x ∈ F. Moreover, since F is an
implicative prefilter of Eq, by Corollary 2.11(iii), x ∈ F, and so ((α → β) → β) → α ∈ F. Therefore, F is a
fantastic filter of Eq.

(ii) If F is an implicative prefilter of Eq, then by Theorem 3.8, F is a fantistic prefilter of Eq, and by
Theorem 2.10(ii), F is a positive implicative prefilter of Eq.
Conversely, suppose F is a fantastic and positive implicative prefilter of Eq such that, for α, β ∈ E, (α →
β)→ β ∈ F. Since F is a fantastic prefilter of Eq, by Proposition 3.2(iii), (β→ α)→ α ∈ F. Moreover, since F
is a positive implicative prefilter of Eq, by Corollary 2.11(ii), F is an implicative prefilter of Eq.

In the next example, we can see that the converse of Theorem 3.8(i), is generally not correct.

Example 3.9. Let E = {0, α, β, γ, δ, 1} be a lattice with a Hesse diagram as Figure 2. For any x, y ∈ E, we define the
operations ⊗ and ∼ on E as Table 4 and Table 5:

0

β

α

δ

γ

1

Figure 2
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⊗ 0 α β γ δ 1
0 0 0 0 0 0 0
α 0 β β δ 0 α
β 0 β β 0 0 β
γ 0 δ 0 γ δ γ
δ 0 0 0 δ 0 δ
1 0 α β γ δ 1

Table 4

∼ 0 α β γ δ 1
0 1 δ γ β α 0
α δ 1 α δ γ α
β γ α 1 0 δ β
γ β δ 0 1 α γ
δ α γ δ α 1 δ
1 0 α β γ δ 1

Table 5

→ 0 α β γ δ 1
0 1 1 1 1 1 1
α δ 1 α γ γ 1
β γ 1 1 γ γ 1
γ β α β 1 α 1
δ α 1 α 1 1 1
1 0 α β γ δ 1

Table 6

Then Eq = (E,∧,⊗,∼, 1) is a good EQ-algebra and operation→ is as Table 6. It is easy to see that H = {1} is a
fantastic filter of Eq, but H is not an implicative filter of Eq. Because (α → 0) → α = δ → α = 1 ∈ H but α < H.
Also, H is not a positive implicative filter of Eq. Because (α ∧ (α→ 0))→ 0 = α < H.

Theorem 3.10. Let Eq has exchange principle condition. If F is a fantastic filter of Eq, then Eq/F = (E/F,⊗F,∧F,∼F
, [1]) is a lattice-ordered EQ-algebra.

Proof. By Theorem 2.7, Eq/F is an EQ-algebra. Now, for any α, β ∈ E, we define [α] ∨ f [β] = [(α→ β)→ β].
We claim that ”∨ f ” is a join operation on Eq. By Proposition 2.1(ii), [β] 6 [(α → β) → β]. Since Eq has
exchange principle condition, by Proposition 2.3 and Corollary 2.8, Eq/F is a good EQ-algebra and so by
Proposition 2.1(vii), we have [α] 6 [(α → β) → β]. Thus, [α] ∨ [β] 6 [(α → β) → β]. Suppose that there
exists δ ∈ E such that [α] 6 [δ] and [β] 6 [δ]. By Theorem 2.7, we obtain α → δ ∈ F and β → δ ∈ F.
Since F is a fantastic filter of Eq, by Proposition 3.2(iii), we have ((α → β) → β) → δ ∈ F, which means
[(α→ β)→ β] 6 [δ]. Therefore, ”∨ f ” is the join operation.

The next example shows that the quotient structure induced by fantastic filter is not an `EQ-algebra, in
general.

Example 3.11. Let Eq be an EQ-algebra as in Example 3.9. By some calculations, we can see that {1} is a fantastic
prefilter of Eq, but Eq is not an `EQ-algebra. Because ((β∨ γ) ∼ 1)⊗ (γ ∼ δ) = 1⊗ α = α and (γ∨ γ) ∼ 1 = γ, but
α and γ are not comparable.

An MV-algebra [6] is an algebraic structure (M,⊕,∗ , 0) of type (2, 1, 0) which for any α, β ∈M, satisfies the
following conditions:
(MV1) (M,⊕, 0) is a commutative monoid.
(MV2) (α∗)∗ = α.
(MV3) 0∗ ⊕ α = 0∗.
(MV4) (α∗ ⊕ β)∗ ⊕ β = (β∗ ⊕ α)∗ ⊕ α.

Theorem 3.12. Let Eq be an BEQ-algebra with exchange principle condition. Let F be a filter of Eq and for
any α, β ∈ E, binary operation ⊕ on Eq/F is defined by [α] ⊕ [β] = ¬[α] → [β], where ¬α = α ∼ 0. Then
Eq/F = (E/F,⊕,¬, [0]) is an MV-algebra if and only if F is a fantastic filter of Eq.

Proof. Let F be a fantastic filter of Eq. Then by Corollary 3.5, Eq/F is an IEQ-algebra. Hence for any
[α] ∈ Eq/F, ¬(¬[α]) = [α] and so (MV2) holds. Now, we show that the binary operation ⊕ is associative.
From Proposition 2.1(ix) and exchange principle condition, we have

[α] ⊕ ([β] ⊕ [γ]) =¬[α]→ (¬[β]→ [γ]) = ¬[α]→ (¬[γ]→ [β])
=¬[γ]→ (¬[α]→ [β]) = ¬(¬[α]→ [β])→ ¬¬[γ]
=¬(¬[α]→ [β])→ [γ]
=([α] ⊕ [β]) ⊕ [γ].

By Proposition 2.1(ix), for any [α], [β] ∈ Eq/F, we have [α] ⊕ [β] = ¬[α] → [β] = ¬[β] → [α] = [β] ⊕ [α] and
[α] ⊕ [0] = ¬[α]→ [0] = ([α]→ [0])→ [0] = [α]. Hence, (E/F,⊕, 0) is a commutative monoid and so (MV1)
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holds. Also, (MV3) is satisfied, because for any α ∈ E, we have,

¬[0] ⊕ [α] = ([0]→ [0]) ⊕ [α] = [1] ⊕ [α] = [¬1→ α] = [0→ α] = [1].

Now, we show that (MV4) holds. Since Eq/F is an IEQ-algebra, for any α, β ∈ E, we get

¬(¬[α] ⊕ [β]) ⊕ [β] = (¬[α] ⊕ [β])→ [β] = ([α]→ [β])→ [β] = [(α→ β)→ β].

and
¬(¬[β] ⊕ [α]) ⊕ [α] = (¬[β] ⊕ [α])→ [α] = ([β]→ [α])→ [α] = [(β→ α)→ α].

Since Eq has exchange principle condition and F is a fantastic filter of Eq, by Proposition 3.2(iii), [(α →
β)→ β] = [(β→ α)→ α]. Hence, ¬(¬[α] ⊕ [β]) ⊕ [β] = ¬(¬[β] ⊕ [α]) ⊕ [α]. Therefore, Eq/F = (E/F,⊕,¬, 0) is
an MV-algebra.

Conversely, let Eq/F = (E/F,⊕,¬, 0) be an MV-algebra. Then by (MV4), for any α, β ∈ E, we have,

[(α→ β)→ β] = ¬(¬[α] ⊕ [β]) ⊕ [β] = ¬(¬[β] ⊕ [α]) ⊕ [α] = [(β→ α)→ α].

Then, for any α, β ∈ E, ((α→ β)→ β)→ ((β→ α)→ α) ∈ F. Thus by Proposition 3.2(iii), F is a fantastic filter
of Eq.

Example 3.13. Let E = {0, α, β, γ, δ, θ, κ, µ, ν, 1} be a lattice with the following Hasse digram (Figure 3) and the
operations ⊗ and ∼ are defined on E as Table 7 and Table 8.

⊗ 0 ν α β γ δ θ κ µ 1
0 0 0 0 0 0 0 0 0 0 0
ν 0 0 0 0 0 0 0 0 0 ν
α 0 0 α 0 α 0 α 0 α α
β 0 0 0 0 0 0 0 β β β
γ 0 0 α 0 α 0 α β γ γ
δ 0 0 0 0 0 β β δ δ δ
θ 0 0 α 0 α β γ δ θ θ
κ 0 0 0 β β δ δ κ κ κ
µ 0 0 α β γ δ θ κ µ µ
1 0 ν α β γ δ θ κ µ 1

Table 7

∼ 0 ν α β γ δ θ κ µ 1
0 1 µ κ θ δ γ β α ν 0
ν µ 1 κ θ δ γ β α ν ν
α κ κ 1 δ θ β γ ν α α
β θ θ δ 1 κ θ δ γ β β
γ δ δ θ κ 1 δ θ β γ γ
δ γ γ β θ δ 1 κ θ δ δ
θ β β γ δ θ κ 1 δ θ θ
κ α α ν γ β θ δ 1 κ κ
µ ν ν α β γ δ θ κ 1 µ
1 0 ν α β γ δ θ κ µ 1

Table 8

→ 0 ν α β γ δ θ κ µ 1
0 1 1 1 1 1 1 1 1 1 1
ν µ 1 1 1 1 1 1 1 1 1
α κ κ 1 κ 1 κ 1 κ 1 1
β θ θ θ 1 1 1 1 1 1 1
γ δ δ θ κ 1 κ 1 κ 1 1
δ γ γ γ θ θ 1 1 1 1 1
θ β β γ δ θ κ 1 κ 1 1
κ α α α γ γ θ θ 1 1 1
µ ν ν α β γ δ θ κ 1 1
1 0 ν α β γ δ θ κ µ 1

Table 9 0

βα

δγ

κθ

µ

ν

1

Figure 3
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Then Eq = (E,∧,⊗,∼, 1) is an EQ-algebra and the operation→ is as Table 9. By some routine calculations, we
can see that F = {µ, 1} is a fantastic filter of Eq and Eq/F = {[0], [α], [β], [γ], [δ], [θ], [κ], [1]} is an MV-algebra. But
F is not a positive implicative filter of E. Because, (β ∧ (β → ν)) → ν = θ < F. Thus, by Theorem 2.10(ii), F is not
an implicative filter of Eq.

4. Prelinear filters of EQ-algebras

Every finite EQ-algebra is a lattice-ordered EQ-algebra [8]. But in which condition an EQ-algebra is a
(∧,∨)-distributive lattice-ordered EQ-algebra? In [8], Elzekey proved that one can define a join operation
on a prelinear EQ-algebra and then the EQ-algebra will be (∧,∨)-distributive lattice-ordered EQ-algebra.
In this section, we introduce a new kind of (pre)filter, named prelinear (pre)filter. In the rest of this section,
we show that the quotient structure induced by a prelinear filter, is a (∧,∨)-distributive lattice-ordered
EQ-algebra. Also, we will show that if this prelinear filter is fantastic, positive implicative, or implicative,
then we can construct a De Morgan algebra, Stone algebra or Boolean algebra, respectively.

Definition 4.1. Let F be a (pre)filter of Eq. Then F is called a prelinear (pre)filter of Eq if for any α, β, γ ∈ E,
((α→ β)→ γ)→ (((β→ α)→ γ)→ γ) ∈ F.

Example 4.2. Let Eq be an EQ-algebra as in Example 3.9. Then F = {α, β, 1} is a prelinear filter of Eq.

Remark 4.3. If Eq is a prelinear EQ-algebra with exchange principle condition, then every (pre)filter of Eq is a
prelinear (pre)filter.

In the following examples, we show that the concept of prelinear (pre)filter is not the same as fantastic or
(positive)implicative (pre)filter.

Example 4.4. (i) Let E = {0, α, γ, δ, µ, 1} be a lattice with a Hesse diagram as Figure 3. For any x, y ∈ E, we define
the operations ⊗ and ∼ on E as Table 10 and Table 11:

⊗ 0 α γ δ µ 1
0 0 0 0 0 0 0
α 0 α 0 0 α α
γ 0 0 γ γ γ γ
δ 0 0 γ γ γ δ
µ 0 α γ γ µ µ
1 0 α γ δ µ 1

Table 10

∼ 0 α γ δ µ 1
0 1 δ α α 0 0
α δ 1 0 0 α α
γ α 0 1 µ δ γ
δ α 0 µ 1 δ δ
µ 0 α δ δ 1 µ
1 0 α γ δ µ 1

Table 11

→ 0 α γ δ µ 1
0 1 1 1 1 1 1
α δ 1 δ δ 1 1
γ α α 1 1 1 1
δ α α µ 1 1 1
µ 0 α δ δ 1 1
1 0 α γ δ µ 1

Table 12

0

α
δ

γ

µ

1

Figure 4

Then Eq = (E,∧,⊗,∼, 1) is an EQ-algebra and operation → is as Table 12. We can see that Eq is not prelinear
because, α → δ = δ and δ → α = α but α ∨ δ = µ , 1. Since Eq is good, G = {1} is a filter of Eq. But G is not a
prelinear filter of Eq. Because, ((α→ δ)→ µ)→ (((δ→ α)→ µ)→ µ = µ < G.
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(ii) Let Eq be an EQ-algebra as in Example 3.4. It is obvious that Eq is a prelinear good EQ-algebra. By Remark
2.6, we obtain G = {1} is a prelinear filter of Eq. But G is not a fantastic filter of Eq. Because, α → δ = 1 ∈ G and
((δ→ α)→ α)→ δ = θ < G.

(iii) Let E = {0, α, β, 1} be a chain where 0 6 α 6 β 6 1. For any x, y ∈ E, we define the operations ⊗ and ∼ on E
as Table 13 and Table 14:

⊗ 0 α β 1
0 0 0 0 0
α 0 0 0 α
β 0 0 0 β
1 0 α β 1

Table 13

∼ 0 α β 1
0 1 a 0 0
α α 1 α α
β 0 α 1 β
1 0 α β 1

Table 14

→ 0 α β 1
0 1 1 1 1
α α 1 1 1
β 0 α 1 1
1 0 α β 1

Table 15

Then Eq = (E,∧,⊗,∼, 1) is an EQ-algebra and operation → is as Table 15. Since Eq is a linearly ordered
EQ-algebra, we can see that F = {1, β} is a prelinear filter of Eq but by Theorem 2.9(ii), it is not a positive implicative
filter of Eq. Because, (α ∧ (α→ 0))→ 0 = α < F and then by Proposition 2.10, F is not an implicative filter of Eq,
either.

Theorem 4.5. [8] Let Eq be prelinear and good. If, for any α, β ∈ E,

α ∨ β = ((α→ β)→ β) ∧ ((β→ α)→ α),

then Eq is a (∧,∨)-distributive `EQ-algebra.

Theorem 4.6. [8] A lattice-ordered separated EQ-algebra Eq is prelinear if and only if, for any α, β, γ ∈ E:

(α ∧ β)→ γ = (α→ γ) ∨ (β→ γ).

Lemma 4.7. Let Eq be good. Then Eq is prelinear if and only if, for any α, β, γ ∈ E,

(α→ β)→ γ 6 ((β→ α)→ γ)→ γ.

Proof. Suppose Eq is prelinear and good. Then for any α, β ∈ E, 1 is the unique upper bound of {α→ β, β→
α} in E. By Proposition 2.1(ii) and (iv), we have

α→ β 6 ((β→ α)→ γ)→ (α→ β) 6 ((α→ β)→ γ)→ (((β→ α)→ γ)→ γ).

On the other hand, since Eq is good, by Proposition 2.3(ii), Eq satisfies the exchange principle condition.
Then by Proposition 2.1(ii) and (iv),

β→ α 6((α→ β)→ γ)→ (β→ α)
6((β→ α)→ γ)→ (((α→ β)→ γ)→ γ)
=((α→ β)→ γ)→ (((β→ α)→ γ)→ γ).

Hence ((α → β) → γ) → (((β → α) → γ) → γ) is an upper bound of {α → β, β → α}. Since Eq is prelinear
and separated, we have ((α→ β)→ γ)→ (((β→ α)→ γ)→ γ) = 1 and so,

(α→ β)→ γ 6 (((β→ α)→ γ)→ γ.

Conversely, suppose that for any α, β, γ ∈ E, (α → β) → γ 6 ((β → α) → γ) → γ. Since 1 is the greatest
element ofEq, it is clear that ((α→ β)→ γ)→ (((β→ α)→ γ)→ γ) = 1 is an upper bound of {α→ β, β→ α}.
We show {α→ β, β→ α} dose not have another upper bound. For this, suppose that there exists δ ∈ E such
that α→ β 6 δ and β→ α 6 δ. Thus, by Proposition 2.1(vi), we have δ→ γ 6 (α→ β)→ γ. By the similar
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way, δ→ γ 6 (β→ α)→ γ. Then ((β→ α)→ γ)→ γ 6 (δ→ γ)→ γ. Now, by Proposition 2.1(vi), we have

1 =((α→ β)→ γ)→ (((β→ α)→ γ)→ γ)
6((α→ β)→ γ)→ ((δ→ γ)→ γ)
6(δ→ γ)→ ((δ→ γ)→ γ).

Since Eq is separated, by Proposition 2.1(vii), for any γ ∈ E, we have δ→ γ 6 (δ→ γ)→ γ. Let γ = δ. Then
1 6 δ and so δ = 1. Hence, the upper bound of {α → β, β → α} is equal to 1. Therefore, Eq is a prelinear
EQ-algebra.

Corollary 4.8. Let Eq be prelinear with exchange principle condition. Then for any α, β, γ ∈ E,

((α→ β)→ γ)→ (((β→ α)→ γ)→ γ) = 1.

Proof. By considering the proof of Lemma 4.7 and Proposition 2.3, the separated condition only use to
obtain the nonequality from ((α→ β)→ γ)→ (((β→ α)→ γ)→ γ) = 1.

An algebra (D,∨,∧,¬, 0, 1) of type (2, 2, 1, 0, 0) is called a De Morgan algebra [15], if for any γ, δ ∈ D, the
following conditions hold:
(D1) (D,∨,∧, 0, 1) is a bounded distributive lattice.
(D2) ¬¬γ = γ.
(D3) ¬(γ ∨ δ) = ¬γ ∧ ¬δ, and ¬(γ ∧ δ) = ¬γ ∨ ¬δ.

Proposition 4.9. Let Eq has exchange principle condition. If F is a prelinear filter of Eq, then:
(i) Eq/F is good and prelinear.
(ii) If for any α, β ∈ E, we define

[α] ∨F [β] = [((α→ β)→ β) ∧ ((β→ α)→ α)],

then Eq/F = (E/F,∨F,∧F,¬F, [0], [1]) is a distributive lattice which satisfies the De Morgan Laws.
(iii) If F is a fantastic filter of Eq, then Eq/F is a De Morgan algebra.

Proof. (i) By Theorem 2.7, for any filter F of Eq, Eq/F is separated. Since Eq has exchange principle
condition, for any α, β, γ ∈ E, we have

[α]→ ([β]→ [γ]) = [α→ (β→ γ)] = [β→ (α→ γ)] = [β]→ ([α]→ [γ]).

Then, Eq/F has exchange principle condition and so by Proposition 2.3(ii), Eq/F is a good EQ-algebra.
Since F is a prelinear filter of Eq, for any α, β, γ ∈ E,

((α→ β)→ γ)→ (((β→ α)→ γ)→ γ) ∈ F.

Then [(α→ β)→ γ] 6 [((β→ α)→ γ)→ γ]. Hence, by Lemma 4.7, Eq/F is a prelinear EQ-algebra.
(ii) By Theorems 2.7, 4.5 and (i), Eq/F is a (∧F,∨F)-distributive lattice-ordered EQ-algebra. Since every

good EQ-algebra is separated, by Theorem 4.6, for any α, β ∈ E, we have ¬([α] ∧F [β]) = ¬[α] ∨F ¬[β]. Since
Eq/F has exchange principle condition, from Proposition 2.2, for any α, β ∈ E, ¬([α] ∨F [β]) = ¬[α] ∧F ¬[β].
Therefore, Eq/F satisfies the De Morgan Laws.

(iii) Since F is a prelinear filter of Eq, by Proposition 4.9, Eq/F is a (∨F,∧F)-distributive lattice which
satisfies the De Morgan Laws. Also, F is a fantastic filter of Eq, then by Corollary 3.5, Eq/F is an involutive
EQ-algebra and (D2) is satisfied.

Example 4.10. (i) According to Example 3.4, we can see that Eq is a prelinear and involutive EQ-algebra and so it
is a De Morgan algebra.

(ii) Let E = {0, α, β, 1} be a chain where 0 6 α 6 β 6 1. For any x, y ∈ E, we define the operations ⊗ and ∼ on E
as Table 16 and Table 17:
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⊗ 0 α β 1
0 0 0 0 0
α 0 α α α
β 0 α β β
1 0 α β 1

Table 16

∼ 0 α β 1
0 1 0 0 0
α 0 1 α α
β 0 α 1 1
1 0 α 1 1

Table 17

→ 0 α β 1
0 1 1 1 1
α 0 1 1 1
β 0 α 1 1
1 0 α 1 1

Table 18

By routine calculations, we can see that Eq = (E,∧,⊗,∼, 1) is a prelinear EQ-algebra and operation→ is as Table
18. By Proposition 2.3 and Remark 2.6, we know that {1} is a filter of Eq. Since Eq is not involutive, it is not a De
Morgan algebra, either.

(iii) Let E = {0, α, β, γ, δ, 1} be a chain where 0 6 α 6 β 6 γ 6 δ 6 1. For any x, y ∈ E, we define the operations
⊗ and ∼ on E as Table 19 and Table 20:

⊗ 0 α β γ δ 1
0 0 0 0 0 0 0
α 0 0 0 0 0 α
β 0 0 0 0 α β
γ 0 0 0 α α γ
δ 0 0 α α α δ
1 0 α β γ δ 1

Table 19

∼ 0 α β γ δ 1
0 1 γ β α 0 0
α γ 1 β α α α
β β β 1 β β β
γ α α β 1 γ γ
δ 0 α β γ 1 δ
1 0 α β γ δ 1

Table 20

→ 0 α β γ δ 1
0 1 1 1 1 1 1
α γ 1 1 1 1 1
β β β 1 1 1 1
γ α α β 1 1 1
δ 0 α β γ 1 1
1 0 α β γ δ 1

Table 21

By routine calculations, we can see that Eq = (E,∧,⊗,∼, 1) is a good prelinear and non involutive EQ-algebra
and operation→ is as Table 21. We can see that, F = {γ, δ, 1} is a fantastic filter of Eq and Eq/F = ([0], [β], [1]) is a
De Morgan algebra.

Let (X,∨,∧, 0, 1) be a bounded lattice. An element x∗ ∈ X is called a pseudocomplement of x ∈ X, if x ∧ x∗ = 0
and if there exists y ∈ X such that x ∧ y = 0, then y 6 x∗. If every element of X has a pseudocomplement
element, then X is called a pseudocomplemented lattice(See [15]).

Theorem 4.11. Let Eq be a good BEQ-algebra. If F is a prelinear positive implicative filter of Eq, then Eq/F is a
pseudocomplemented lattice.

Proof. Since Eq has a bottom element and F is a prelinear filter of Eq, by Propositions 2.3 and 4.9, Eq/F is
a bounded lattice. Now, for any [α] ∈ Eq/F, we define [α]∗ = ¬[α] = [¬α]. Since F is a positive implicative
filter of Eq, by Theorem 2.9(ii), for any α ∈ E, we have (α∧ (α→ 0))→ 0 ∈ F and so [α]∧F [¬α] = [0]. Now,
suppose that there exists [δ] ∈ E/F such that [α] ∧F [δ] = [0]. By Propositions 2.3 and 4.9, Eq/F satisfies the
De Morgan Laws and so we obtain [¬α] ∨F [¬δ] = [1]. By Proposition 2.4, we have [¬α]→ [¬δ] = [¬δ] and
so (¬α→ ¬δ)→ ¬δ ∈ F. Since Eq is good, by exchange principle condition, we get

(¬α→ ¬δ)→ ¬δ = δ→ ((¬α→ ¬δ)→ 0) = δ→ ((δ→ ¬¬α)→ 0).

By Proposition 2.1(iv), we obtain

δ→ ((δ→ ¬¬α)→ 0) 6 (((δ→ ¬¬α)→ 0)→ ¬α)→ (δ→ ¬α). (1)

By exchange principle condition, we have

((δ→ ¬¬α)→ 0)→ ¬α = α→ (((δ→ ¬¬α)→ 0)→ 0) = α→ ¬¬(δ→ ¬¬α).

Since Eq is good, by Proposition 2.3(iii), we have α 6 ¬¬α and by Proposition 2.1(ii), we have ¬¬α 6 δ →
¬¬α. Again by Proposition 2.3(iii), we obtain δ → ¬¬α 6 ¬¬(δ → ¬¬α). Then, (δ → ¬¬α) → 0) → ¬α =
α → ¬¬(δ → ¬¬α) = 1 ∈ F. Hence, by (4.1), we have δ → ¬α ∈ F. Then, [δ] 6 [¬α] and so, [¬α] is the
greatest element in Eq/F such that [α] ∧F [¬α] = [0]. Therefore Eq/F is a pseudocomplemented lattice.
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An algebra (S,∨,∧,∗ , 0, 1) of type (2, 2, 1, 0, 0) is called a Stone algebra [15], if:
(S1) (S,∨,∧, 0, 1) is a pseudocomplemented distributive lattice.
(S2) s∗ ∨ s∗∗ = 1, for any s ∈ S.

Theorem 4.12. Let Eq be a good BEQ-algebra. If F is a prelinear positive implicative filter of Eq, then Eq/F =
(E/F,∨F,∧F,¬F, [0], [1]) is a Stone algebra.

Proof. Let F be a prelinear positive implicative filter of Eq. Then by Proposition 4.9, Eq/F is an (∨F,∧F)-
distributive lattice. By Theorem 4.11, Eq/F is a pseudocomplemented lattice and so, (S1) is satisfied. By
Proposition 4.9(ii) we have ¬([α] ∧ [¬α]) = ¬[0] and so [¬α] ∨F [¬¬α] = [¬0] = [1]. Hence, (S2) is satisfied.
Therefore, Eq/F is a Stone algebra.

In the following example, we show that the converse of Theorem 4.12 may not be true, in general.

Example 4.13. Let E = {0, α, β, 1} be a chain where 0 6 α 6 β 6 1. Define the operations ⊗ and ∼ on E as Table 22
and Table 23:

⊗ 0 α β 1
0 0 0 0 0
α 0 0 0 α
β 0 0 0 β
1 0 α β 1

Table 22

∼ 0 α β 1
0 1 0 0 0
α 0 1 β α
β 0 β 1 β
1 0 α β 1

Table 23

→ 0 α β 1
0 1 1 1 1
α 0 1 1 1
β 0 β 1 1
1 0 α β 1

Table 24

Then Eq = (E,∧,⊗,∼, 1) is a prelinear good EQ-algebra and it is a Stone algebra. Moreover, operation→ is as
Table 24. Since Eq is a good EQ-algebra, by Remark 2.6, {1} is a filter of Eq but, {1} is not a positive implicative filter
of Eq, because (β ∧ (β→ α))→ α = β < {1}.

A Boolean algebra [5] is an algebra (B,∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0) such that for any a, b ∈ E;
(B1) (B,∨,∧) is a distributive lattice.
(B2) a ∧ 0 = 0, and a ∨ 1 = 1. (bounded)
(B3) a ∧ a′ = 0, and a ∨ a′ = 1. (complemented)

Remark 4.14. Let Eq be a BEQ-algebra with exchange principle condition and F be a prelinear filter of Eq. By
Proposition 4.9 we know Eq/F = (E/F,∨F,∧F,¬, [0], [1]) is a distributive lattice, where for any α, β ∈ E, [α] ∨F
[β] = [((α → β) → β) ∧ ((β → α) → α)]. Also, if F is a fantastic filter of Eq, then by Proposition 3.2(iii),
[α] ∨F [β] = [((α→ β)→ β] and Eq/F is a De Morgan algebra.

Lemma 4.15. Let Eq be a BEQ-algebra with exchange principle condition. A (pre)filter F of Eq is an implicative
(pre)filter of Eq if and only if for any α ∈ E, (¬α→ α)→ α ∈ F.

Proof. The proof is similar to the proof of [4, Proposition 3.17].

Theorem 4.16. Let Eq be a BEQ-algebra with exchange principle condition such that F be a prelinear filter of Eq.
Then F is an implicative filter of Eq if and only if (Eq/F,∨F,∧F,¬F, [0], [1]) is a Boolean algebra.

Proof. Let F be an implicative filter of Eq. By Proposition 3.8, F is a fantastic filter of Eq and so by
Proposition 4.9, (Eq/F,∨F,∧F,¬F, [0], [1]) is a De Morgan algebra. By Remark 4.14, for any α ∈ F, we have
[¬α] ∨F [α] = [(¬α → α) → α]. Since F is an implicative filter of Eq, by Lemma 4.15, (¬α → α) → α ∈ F.
Hence, [¬α] ∨F [α] = [1]. Therefore, (Eq/F,∨F,∧F,¬F, [0], [1]) is a Boolean algebra.

Conversely, let (Eq/F,∨F,∧F,¬F, [0], [1]) be a Boolean algebra. Then, for any α ∈ E, [α ∨F ¬α] = [1]. By
definition of ∨F, we have ((α→ ¬α)→ ¬α) ∧ ((¬α→ α)→ α) ∈ F. Since

((α→ ¬α)→ ¬α) ∧ ((¬α→ α)→ α) 6 (¬α→ α)→ α,

by Remark 2.5, for any α ∈ E, (¬α→ α)→ α ∈ F. Hence, by Lemma 4.15, F is an implicative filter of Eq.
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Example 4.17. (i) According to Example 4.4(iii), Eq is a good prelinear EQ-algebra and F = {1, β} is a filter but,
it is not an implicative filter of Eq. By routine calculations, we can see that Eq/F = {[0], [α], [1]} is not a Boolean
algebra. So the implicative condition is necessary.

(ii) According to Example 3.4, Eq is a prelinear good IEQ-algebra. By Remark 2.6, G = {1} is a filter of Eq but it
is not an implicative filter of Eq. Because, ¬κ→ κ = β→ κ = 1 ∈ G but κ < G. Also, Eq is not a Boolean algebra,
because α ∨ ¬α = α ∨ θ = θ , 1.

(iii) According to Example 3.13, Eq is a prelinear good IEQ-algebra and F = {µ, 1} is a prelinear and fantastic
filter of Eq. But Eq/F is not a Boolean algebra, because ¬[β] = [θ] and [β] ∧ [θ] = [β] , [0].

5. Conclusions and future works

In this paper, a new kind of filter of EQ-algebras was introduced and the quotient structures induced
by it were studied.

It was proved that the quotient structure was induced by a fantastic filter is an MV-algebra. By using
a prelinear filter of an EQ-algebra, a distributive lattice was constructed. If the prelinear filter also, was
positive implicative or implicative filter, then the quotient structure would be a Stone algebra or a Boolean
algebra, respectively.
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