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Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear Maps Preserving the Mixed Product [A • B,C]∗ on Von
Neumann Algebras

Changjing Lia, Yuanyuan Zhaoa, Fangfang Zhaoa

aSchool of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China

Abstract. Let A and B be two von Neumann algebras. For A,B ∈ A, define by [A,B]∗ = AB − BA∗

and A • B = AB + BA∗ the new products of A and B. Suppose that a bijective map Φ : A → B satisfies
Φ([A • B,C]∗) = [Φ(A) • Φ(B),Φ(C)]∗ for all A,B,C ∈ A. In this paper, it is proved that if A and B be
two von Neumann algebras with no central abelian projections, then the map Φ(I)Φ is a sum of a linear
∗-isomorphism and a conjugate linear ∗-isomorphism, where Φ(I) is a self-adjoint central element in B
with Φ(I)2 = I. If A and B are two factor von Neumann algebras, then Φ is a linear ∗-isomorphism, or a
conjugate linear ∗-isomorphism, or the negative of a linear ∗-isomorphism, or the negative of a conjugate
linear ∗-isomorphism.

1. Introduction

LetA be a ∗-algebra over the complex field C. For A,B ∈ A, define the skew Lie product of A and B by
[A,B]∗ = AB− BA∗ and the Jordan ∗-product of A and B by A • B = AB + BA∗. The skew Lie product and the
Jordan ∗-product are fairly meaningful and important in some research topics (see [10–14, 25]). They were
extensively studied because they naturally arise in the problem of representing quadratic functionals with
sesquilinear functionals (see [17–19]) and in the problem of characterizing ideals (see [2, 16]). Particular
attention has been paid to understanding maps which preserve the skew Lie product or the Jordan ∗-product
on ∗-algebras (see [1, 3, 4, 7]). For example, J. Cui and C. K. Li [3] showed that every bijective map preserving
the skew Lie product on factor von Neumann algebras is a ∗-ring isomorphism. Bai and Du [1] proved
that any bijective map preserving the skew Lie product between von Neumann algebras with no central
abelian projections is a sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism. C. Li et al.
[7] considered maps which preserve the Jordan ∗-product and proved that such a bijective map between
factor von Neumann algebras is a ∗-ring isomorphism. These results show that the skew Lie product or the
Jordan ∗-product structure is enough to determine the algebraic structure.

Recently, nonlinear maps preserving the products of the mixture of (skew) Lie product and Jordan ∗-
product have received a fair amount of attention (see [5, 6, 8, 9, 21–24]). For example, C. Li et al. studied the
nonlinear maps preserving the skew Lie triple product [[A,B]∗,C]∗ (see [6, 9]) and the Jordan triple ∗-product
A•B•C (see [8, 24]) on von Neumann algebras. Z. Yang and J. Zhang in [21, 22] studied the nonlinear maps
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preserving the mixed skew Lie triple product [[A,B]∗,C] and [[A,B],C]∗ on factor von Neumann algebras.
In the present paper, we will establish the structure of the nonlinear maps preserving the mixed product
[A • B,C]∗ on von Neumann algebras.

2. Main results

Before stating the main results, we need some notations and preliminaries. A von Neumann algebraA
is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I.
The setZ(A) = {S ∈ A : ST = TS for all T ∈ A} is called the center ofA. A projection P is called a central
abelian projection if P ∈ Z(A) and PAP is abelian. Recall that the central carrier of A, denoted by A, is the
smallest central projection P satisfying PA = A. It is not difficult to see that the central carrier of A is the
projection onto the closed subspace spanned by {BA(x) : B ∈ A, x ∈ H}. If A is self-adjoint, then the core of
A, denoted by A, is sup{S ∈ Z(A) : S = S∗,S ≤ A}. If P is a projection, it is clear that P is the largest central
projection Q satisfying Q ≤ P. A projection P is said to be core-free if P = 0. It is easy to see that P = 0 if and
only if I − P = I.

Lemma 2.1. [15] LetA be a von Neumann algebra with no central abelian projections. Then there exists a projection
P ∈ A such that P = 0 and P = I.

Lemma 2.2. [4] LetA be a von Neumann algebra on a Hilbert space H. Let A be an operator inA and P ∈ A is a
projection with P = I. If ABP = 0 for all B ∈ A, then A = 0.

Lemma 2.3. LetA be a von Neumann algebra on a Hilbert space and A ∈ A. If AB + BA∗ = 0 for all self-adjoint or
conjugate self-adjoint elements B ∈ A, then A = −A∗ ∈ Z(A).

Proof. Since for every element B in A, B can be written as the linear sum of two self-adjoint or conjugate
self-adjoint elements inA. Hence AB+BA∗ = 0 for all B ∈ A. Now we take B = I, then A = −A∗. So AB = BA
for all B ∈ A, and then A ∈ Z(A).

Our main result in this paper reads as follows.

Theorem 2.4. Let A and B be two von Neumann algebras with no central abelian projections. Suppose that a
bijective map Φ : A→ B satisfies Φ([A • B,C]∗) = [Φ(A) •Φ(B),Φ(C)]∗ for all A,B,C ∈ A. Then the map Φ(I)Φ is
a sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism, where Φ(I) is a self-adjoint central element in
B with Φ(I)2 = I.

Proof. The proof will be organized in some claims.
Claim 1. Φ(0) = 0.

Since Φ is surjective, there exists A ∈ A such that Φ(A) = 0. So

Φ(0) = Φ([0 • A,A]∗) = [Φ(0) • 0, 0]∗ = 0.

Claim 2. For each A ∈ A, A = A∗ if and only if Φ(A) = Φ(A)∗.
Since Φ is surjective, there exists B ∈ A such that Φ(B) = I. For any A inA, we have that

0 = Φ([iI • A,B]∗)
= [Φ(iI) •Φ(A), I]∗
= Φ(iI)(Φ(A) −Φ(A)∗) + (Φ(A) −Φ(A)∗)Φ(iI)∗

holds true for all A ∈ A. So Φ(iI)B + BΦ(iI)∗ = 0 holds true for all B = −B∗ ∈ B. It follows from Lemma 2.3
that Φ(iI) = −Φ(iI)∗ ∈ Z(B). Similarly, we have Φ−1(iI) ∈ Z(A).

Let A = A∗ ∈ A and Φ(B) = I. Since 0 = [B • A,Φ−1(iI)]∗, it follows that

0 = Φ([B • A,Φ−1(iI)]∗) = [I •Φ(A), iI]∗ = 2i(Φ(A) −Φ(A)∗).
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This implies that Φ(A) = Φ(A)∗. Similarly, if Φ(A) = Φ(A)∗, then

0 = Φ−1([Φ(I) •Φ(A),Φ(iI)]∗) = [I • A, (iI)]∗ = 2i(A − A∗),

and so A = A∗.
Claim 3. Φ(Z(A)) = Z(B).

Let Z ∈ Z(A) be arbitrary and Φ(B) = I. For every A = A∗ ∈ A, we obtain that

0 = Φ([B • A,Z]∗) = [I •Φ(A),Φ(Z)]∗ = 2(Φ(A)Φ(Z) −Φ(Z)Φ(A)∗).

So Φ(A)Φ(Z) = Φ(Z)Φ(A)∗ holds true for all A = A∗ ∈ A. It follows from Claim 2 that CΦ(Z) = Φ(Z)C holds
true for all C = C∗ ∈ A. Since for every C ∈ B, we have C = C1 + iC2, where C1 = C+C∗

2 and C2 = C−C∗
2i are

self-adjoint elements. Hence CΦ(Z) = Φ(Z)C holds true for all C ∈ A. Then Φ(Z) ∈ Z(B). Applying the
similar process to Φ−1, we get Φ(Z(A)) = Z(B).

In the following, we will show the additivity of Φ. First we give a key technique. Suppose that
A1,A2, ...,An and T are inA such that Φ(T) =

∑n
i=1 Φ(Ai). Then for all S1,S2 ∈ A, we have

Φ([S1 • S2,T]∗) = [Φ(S1) •Φ(S2),Φ(T)]∗ =

n∑
i=1

Φ([S1 • S2,Ai]∗), (1)

Φ([S1 • T,S2]∗) = [Φ(S1) •Φ(T),Φ(S2)]∗ =

n∑
i=1

Φ([S1 • Ai,S2]∗), (2)

and

Φ([T • S1,S2]∗) = [Φ(T) •Φ(S1),Φ(S2)]∗ =

n∑
i=1

Φ([Ai • S1,S2]∗). (3)

By Lemma 2.1, there exists a projection P such that P = 0 and P = I. Let P1 = P and P2 = I − P. Denote
Ai j = PiAP j. ThenA =

∑2
i, j=1Ai j. In all that follows, when we write Ai j, it indicates that Ai j ∈ Ai j.

Claim 4. For every A12 ∈ A12,B21 ∈ A21, we have

Φ(A12 + B21) = Φ(A12) + Φ(B21).

Choose T =
∑2

i, j=1 Ti j ∈ A such that

Φ(T) = Φ(A12) + Φ(B21).

Since
[I • (i(P2 − P1)),A12]∗ = [I • (i(P2 − P1)),B21]∗ = 0,

it follows from Eq. (1) that
Φ([I • (i(P2 − P1)),T]∗) = 0.

From this, we get [I • (i(P2 − P1)),T]∗ = 0. So T11 = T22 = 0.
Since [I • A12,P1]∗ = 0, it follows from Eq. (2) that

Φ([I • T,P1]∗) = Φ([I • B21,P1]∗).

By the injectivity of Φ, we obtain that

2(TP1 − P1T∗) = [I • T,P1]∗ = [I • B21,P1]∗ = 2(B21 − B∗21).
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Hence T21 = B21. Similarly, T12 = A12, proving the claim.

Claim 5. For every A11 ∈ A11,B12 ∈ A12,C21 ∈ A21,D22 ∈ A22, we have

Φ(A11 + B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21)

and
Φ(B12 + C21 + D22) = Φ(B12) + Φ(C21) + Φ(D22).

Let T =
∑2

i, j=1 Ti j ∈ A be such that

Φ(T) = Φ(A11) + Φ(B12) + Φ(C21).

It follows from Eq. (1) and Claim 4 that

Φ(2i(P2T + TP2))
= Φ([I • (iP2),T]∗)
= Φ([I • (iP2),A11]∗) + Φ([I • (iP2),B12]∗) + Φ([I • (iP2),C21]∗)
= Φ(2iB12) + Φ(2iC21)
= Φ(2i(B12 + C21)).

Thus P2T + TP2 = B12 + C21, which implies T22 = 0,T12 = B12,T21 = C21. Now we get T = T11 + B12 + C21.
Since

[I • (i(P2 − P1)),B12]∗ = [I • (i(P2 − P1)),C21]∗ = 0,

it follows from Eq. (1) that

Φ([I • (i(P2 − P1)),T]∗) = Φ([I • (i(P2 − P1)),A11]∗),

from which we get T11 = A11. Consequently, Φ(A11 + B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21).
Similarly, we can get that Φ(B12 + C21 + D22) = Φ(B12) + Φ(C21) + Φ(D22).

Claim 6. For every A11 ∈ A11,B12 ∈ A12,C21 ∈ A21,D22 ∈ A22, we have

Φ(A11 + B12 + C21 + D22) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

Let T =
∑2

i, j=1 Ti j ∈ A be such that

Φ(T) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

It follows from Eq. (1) and Claim 5 that

Φ(2iP1T + 2iTP1) = Φ([I • (iP1),T]∗)
= Φ([I • (iP1),A11]∗) + Φ([I • (iP1),B12]∗)
+ Φ([I • (iP1),C21]∗) + Φ([I • (iP1),D22]∗)
= Φ(4iA11) + Φ(2iB12) + Φ(2iC21)
= Φ(4iA11 + 2iB12 + 2iC21).

Thus
P1T + TP1 = 2A11 + B12 + C21,

and then T11 = A11,T12 = B12,T21 = C21.
Similarly, we can get

Φ(2iP2T + 2iTP2) = Φ(4iD22 + 2iB12 + 2iC21).
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From this, we get T22 = D22, proving the claim.

Claim 7. For every A jk,B jk ∈ A jk, 1 ≤ j , k ≤ 2, we have

Φ(A jk + B jk) = Φ(A jk) + Φ(B jk).

For every A jk,B jk ∈ A jk, since

[
I
2
• (P j + A jk),Pk + B jk]∗ = (A jk + B jk) + A∗jk + B jkA∗jk,

we get from Claim 6 that

Φ(A jk + B jk) + Φ(A∗jk) + Φ(B jkA∗jk)

= Φ([
I
2
• (P j + A jk),Pk + B jk]∗)

= [Φ(
I
2

) •Φ(P j + A jk),Φ(Pk + B jk)]∗

= [Φ(
I
2

) • (Φ(P j) + Φ(A jk)),Φ(Pk) + Φ(B jk)]∗

= [Φ(
I
2

) •Φ(P j),Φ(Pk)]∗ + [Φ(
I
2

) •Φ(P j),Φ(B jk)]∗

+ [Φ(
I
2

) •Φ(A jk),Φ(Pk)]∗ + [Φ(
I
2
•Φ(A jk),Φ(B jk)]∗

= Φ(B jk) + Φ(A jk + A∗jk) + Φ(B jkA∗jk)

= Φ(B jk) + Φ(A jk) + Φ(A∗jk) + Φ(B jkA∗jk).

Then
Φ(A jk + B jk) = Φ(A jk) + Φ(B jk).

Claim 8. For every A j j,B j j ∈ A j j, 1 ≤ j ≤ 2, we have

Φ(A j j + B j j) = Φ(A j j) + Φ(B j j).

Let T =
∑2

i, j=1 Ti j ∈ A be such that
Φ(T) = Φ(A j j) + Φ(B j j).

For 1 ≤ j , k ≤ 2, it follows from Eq. (1) that

Φ([I • (iPk),T]∗) = Φ([I • (iPk),A j j]∗) + Φ([I • (iPk),B j j]∗) = 0.

Hence PkT + TPk = 0, which implies T jk = Tkj = Tkk = 0. Now we get T = T j j.
For every C jk ∈ A jk, j , k, it follows from Eq. (2) and Claim 7 that

Φ(2T j jC jk) = Φ([P j • T j j,C jk]∗)
= Φ([P j • A j j,C jk]∗) + Φ([P j • B j j,C jk]∗)
= Φ(2A j jC jk) + Φ(2B j jC jk)
= Φ(2(A j jC jk + BiiC jk)).

Hence
(T j j − A j j − B j j)C jk = 0

for all C jk ∈ A jk, that is, (T j j −A j j − B j j)CP j = 0 for all C ∈ A. It follows from Lemma 2.2 that T j j = A j j + B j j,
proving the claim.
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Claim 9. Φ is additive.
Let A =

∑2
i, j=1 Ai j,B =

∑2
i, j=1 Bi j ∈ A. By Claim 6, Claim 7 and Claim 8, we have

Φ(A + B) = Φ(
2∑

i, j=1

Ai j +

2∑
i, j=1

Bi j) = Φ(
2∑

i, j=1

(Ai j + Bi j))

=

2∑
i, j=1

Φ(Ai j + Bi j) =

2∑
i, j=1

Φ(Ai j) +

2∑
i, j=1

Φ(Bi j)

= Φ(
2∑

i, j=1

Ai j) + Φ(
2∑

i, j=1

Bi j) = Φ(A) + Φ(B).

Claim 10. Φ(I)2 = I.
By Claim 2 and Claim 3, Φ(I) is a self-adjoint central element. For all A ∈ A, it follows from Claim 9 that

2Φ(A − A∗) = Φ([I • A, I]∗) = [Φ(I) •Φ(A),Φ(I)]∗ = 2Φ(I)2(Φ(A) −Φ(A)∗). (4)

Consequently, for every A = −A∗ ∈ A,

Φ(A) = Φ(I)2(Φ(
A
2

) −Φ(
A
2

)∗), (5)

which ensures that Φ(A) = −Φ(A)∗. Note that Φ−1 has the same properties as Φ, we have that Φ pre-
serves the conjugate self-adjoint elements in both directions, i.e., A = −A∗ if and only if Φ(A) = −Φ(A)∗. It
follows from the additivity of Φ and Eq. (5) that Φ(A) = Φ(I)2Φ(A). By choosing Φ(A) = iI,we have Φ(I)2 = I.

Now, defining a map φ : A→ B by φ(A) = Φ(I)Φ(A) for all A ∈ A. It is easy to see that φ is an additive
bijection with φ(I) = I, and satisfies

φ([A • B,C]∗) = [φ(A) • φ(B), φ(C)]∗

for all A,B,C ∈ A.
Claim 11 For all A,B ∈ A, we have φ([A,B]∗) = [φ(A), φ(B)]∗.

Indeed, for all A,B ∈ A, we get that

2φ([A,B]∗) = φ(2[A,B]∗) = φ([I • A,B]∗) = [I • φ(A), φ(B)]∗ = 2[φ(A), φ(B)]∗.

Then φ([A,B]∗) = [φ(A), φ(B)]∗.

Now, by the main result of [1], we have that the map φ = Φ(I)Φ is a sum of a linear ∗-isomorphism and
a conjugate linear ∗-isomorphism.

A is a factor von Neumann algebra means that its center only contains the scalar operators. It is well
known that the factor von Neumann algebra A is prime, in the sense that AAB = 0 for A,B ∈ A implies
either A = 0 or B = 0.

Theorem 2.5. Let A and B be two factor von Neumann algebras with dimA ≥ 2. Suppose that a bijective map
Φ : A → B satisfies Φ([A • B,C]∗) = [Φ(A) • Φ(B),Φ(C)]∗ for all A,B,C ∈ A. Then Φ is a linear ∗-isomorphism,
or a conjugate linear ∗-isomorphism, or the negative of a linear ∗-isomorphism, or the negative of a conjugate linear
∗-isomorphism.
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Proof. Let P be a nontrivial projection inA. Since A is prime, then ABP = 0 for all B ∈ A implies A = 0. So
Lemma 2.2 holds true for factor von Neumann algebras. It is easy to check that all claims of Theorem 2.4
hold true for factor von Neumann algebras. Since Φ(I) is a self-adjoint central element and Φ(I)2 = I, we get
Φ(I) = I or Φ(I) = −I. It follows from Claim 11 that Φ or −Φ is a map preserving the skew Lie product on
factor von Neumann algebras. Now, by the main result of [3], we have that Φ or−Φ is a ∗-ring isomorphism.
It is easy to show that Φ or −Φ is a map preserving the absolute value. Now, by Theorem 2.5 of [20], Φ
or−Φ is a linear ∗-isomorphism or a conjugate linear ∗-isomorphism. Now, we have proved the theorem.
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[2] M. Brešar, A. Fošner, On ring with involution equipped with some new product, Publicationes Mathematicae-Debrecen 57 (2000)
121-134.

[3] J. Cui, C. K. Li, Maps preserving product XY − YX∗ on factor von Neumann algebras, Linear Algebra and its Applications 431
(2009) 833-842.

[4] L. Dai, F. Lu, Nonlinear maps preserving Jordan ∗-products, Journal of Mathematical Analysis and Applications 409 (2014)
180-188.

[5] D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple η-∗-products, Journal of Mathematical Analysis and
Applications 430 (2015) 830-844.

[6] C. Li, Q. Chen, T. Wang, Nonlinear maps preserving the Jordan triple ∗-product on factors, Chinese Annals of Mathematics,
Series B 39(2018) 633-642.

[7] C. Li, F. Lu and X. Fang, Mappings preserving new product XY + YX∗ on factor von Neumann algebras, Linear Algebra and its
Applications 438 (2013) 2339-2345.

[8] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple 1-∗-product on von Neumann algebras, Complex Analysis and Operator
Theory 11 (2017) 109-117.

[9] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple ∗-product on von Neumann algebras, Annals of Functional Analysis 7
(2016) 496-507.

[10] C. Li, Q. Chen, Strong skew commutativity preserving maps on rings with involution, Acta Mathematica Sinica, English Series
32 (2016) 745-752.

[11] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Mathematica Sinica, English Series 32 (2016)
821-830.

[12] C. Li, F. Lu, 2-local ∗-Lie isomorphisms of operator algebras, Aequationes Mathematicae 90 (2016) 905-916 .
[13] C. Li, F. Lu, 2-local Lie isomorphisms of nest algebras, Operators and Matrices 10 (2016) 425-434.
[14] C. Li, F. Zhao, Q. Chen, Nonlinear maps preserving product X∗Y + Y∗X on von Neumann algebras, Bulletin of the Iranian

Mathematical Society 44 (2018) 729-738.
[15] C. R. Miers, Lie homomorphisms of operator algebras, Pacific Journal of Mathematics 38 (1971) 717-735.
[16] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra and its Applications 235 (1996) 229-234.
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