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Abstract. Let A and B be two von Neumann algebras. For A,B € A, define by [A,B]. = AB — BA*
and A e B = AB + BA" the new products of A and B. Suppose that a bijective map ® : A — B satisfies
D([A o B,CL.) = [D(A) @ D(B), P(C)]. for all A,B,C € A. In this paper, it is proved that if A and B be
two von Neumann algebras with no central abelian projections, then the map ®(I)® is a sum of a linear
+-isomorphism and a conjugate linear *-isomorphism, where ®(I) is a self-adjoint central element in B
with ®()? = I. If A and B are two factor von Neumann algebras, then @ is a linear *-isomorphism, or a

conjugate linear #-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate
linear *-isomorphism.

1. Introduction

Let A be a *-algebra over the complex field C. For A, B € A, define the skew Lie product of A and B by
[A, B]. = AB — BA" and the Jordan *-product of A and Bby A e B = AB + BA". The skew Lie product and the
Jordan #-product are fairly meaningful and important in some research topics (see [10-14, 25]). They were
extensively studied because they naturally arise in the problem of representing quadratic functionals with
sesquilinear functionals (see [17-19]) and in the problem of characterizing ideals (see [2, 16]). Particular
attention has been paid to understanding maps which preserve the skew Lie product or the Jordan *-product
on *-algebras (see [1, 3,4, 7]). For example, J. Cuiand C. K. Li [3] showed that every bijective map preserving
the skew Lie product on factor von Neumann algebras is a *-ring isomorphism. Bai and Du [1] proved
that any bijective map preserving the skew Lie product between von Neumann algebras with no central
abelian projections is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism. C. Li et al.
[7] considered maps which preserve the Jordan *-product and proved that such a bijective map between
factor von Neumann algebras is a *+-ring isomorphism. These results show that the skew Lie product or the
Jordan s-product structure is enough to determine the algebraic structure.

Recently, nonlinear maps preserving the products of the mixture of (skew) Lie product and Jordan *-
product have received a fair amount of attention (see [5, 6, 8, 9, 21-24]). For example, C. Li et al. studied the
nonlinear maps preserving the skew Lie triple product [[A, B]., C]. (see [6, 9]) and the Jordan triple *-product
AeBe( (see8,24]) on von Neumann algebras. Z. Yang and J. Zhang in [21, 22] studied the nonlinear maps
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preserving the mixed skew Lie triple product [[A, B]., C] and [[A, B], C]. on factor von Neumann algebras.
In the present paper, we will establish the structure of the nonlinear maps preserving the mixed product
[A e B, C]. on von Neumann algebras.

2. Main results

Before stating the main results, we need some notations and preliminaries. A von Neumann algebra A
is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I.
The set Z(A) = {Se€ A : ST = TS forall T € A} is called the center of A. A projection P is called a central
abelian projection if P € Z(A) and PAP is abelian. Recall that the central carrier of A, denoted by A, is the
smallest central projection P satisfying PA = A. It is not difficult to see that the central carrier of A is the
projection onto the closed subspace spanned by {BA(x) : B € A, x € H}. If A is self-adjoint, then the core of
A, denoted by A, is sup(S € Z(A) : S = S, S < A}. If P is a projection, it is clear that P is the largest central
projection Q satisfying Q < P. A projection P is said to be core-free if P = 0. It is easy to see that P = 0 if and
onlyif [ -P =1

Lemma 2.1. [15] Let A be a von Neumann algebra with no central abelian projections. Then there exists a projection
P e AsuchthatP=0and P = 1.

Lemma 2.2. [4] Let A be a von Neumann algebra on a Hilbert space H. Let A be an operator in Aand P € Aisa
projection with P = I. If ABP = 0 for all B € A, then A = 0.

Lemma 2.3. Let A be a von Neumann algebra on a Hilbert space and A € A. If AB + BA* = 0 for all self-adjoint or
conjugate self-adjoint elements B € A, then A = —A* € Z(A).

Proof. Since for every element B in (A, B can be written as the linear sum of two self-adjoint or conjugate
self-adjoint elements in A. Hence AB+BA* = Oforall B € A. Now we take B = I, then A = —A*.So AB = BA
forall Be A, and then A € Z(A). O

Our main result in this paper reads as follows.

Theorem 2.4. Let A and B be two von Neumann algebras with no central abelian projections. Suppose that a
bijective map @ : A — B satisfies O([A o B, C].) = [DP(A) @ D(B), D(C)]. for all A, B, C € A. Then the map O(I)P is
a sum of a linear +-isomorphism and a conjugate linear s-isomorphism, where ®(1) is a self-adjoint central element in
B with O(I)* = L.

Proof. The proof will be organized in some claims.
Claim 1. ®(0) = 0.
Since @ is surjective, there exists A € A such that ®(A) = 0. So

D(0) = D([0 ® A, Al.) = [D(0) » 0,0]. = 0.

Claim 2. For each A € A, A = A* if and only if ®(A) = P(A)".
Since @ is surjective, there exists B € A such that ®(B) = I. For any A in A, we have that
0=®([ile A, B].)
= [D(i]) o D(A),I].
= QD) (P(A) — D(A)) + (P(A) — D(A) D)
holds true for all A € A. So ©(I)B + BO(I)* = 0 holds true for all B = —B* € B. It follows from Lemma 2.3

that ®(il) = —P(il)* € Z(B). Similarly, we have ©~1(il) € Z(A).
Let A= A" € Aand ®(B) = I. Since 0 = [B o A, ®7'(il)]., it follows that

0=d(BeA O] = [I e D(A),il]. = 2i(D(A) — D(AY).
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This implies that ®(A) = O(A)*. Similarly, if P(A) = P(A)*, then
0= O7([O(I) @ O(A), D(iD)]) = [T » A, ()], = 2i(A - A,
andso A = A”.
Claim 3. ®(Z(A)) = Z(B).
Let Z € Z(A) be arbitrary and ®(B) = I. For every A = A* € A, we obtain that
0=O(Be A,ZL)=[leD(A),D(2)]. = 2(P(A)DP(Z) — D(Z)D(A)).

So P(A)D(Z) = D(Z)D(A)* holds true for all A = A* € A. It follows from Claim 2 that CO(Z) = O(Z)C holds
true for all C = C* € A. Since for every C € B, we have C = C; +iC,, where C; = % and C, = % are
self-adjoint elements. Hence CP(Z) = ®(Z)C holds true for all C € A. Then ®(Z) € Z(B). Applying the
similar process to @1, we get D(Z(A)) = Z(B).

In the following, we will show the additivity of ®. First we give a key technique. Suppose that
Ay, Ay, ...,Ay and T are in A such that ®(T) = Y. ; ®(A;). Then for all S, S, € A, we have

D([S1 @ S, T].) = [D(S1) @ D(S2), D(T)]. = Z D([S1 ® 52, Ail.), 1)
i=1
D([S1 @ T, S2].) = [D(S1) @ D(T), D(S2)]. = Z D([S1 ® A;, S2].), 2)
i=1
and
O([T ® Sy, S52].) = [O(T) ® D(S1), D(S2)]. = Z D([A; ® 51, 52].). 3)
i=1

By Lemma 2.1, there exists a projection P such that P = 0 and P = I. Let P; = P and P, = I — P. Denote
Ajj = P;AP;. Then A = Z,% i-1 Ajj. In all that follows, when we write A;j, it indicates that A;; € Aj;.

Claim 4. For every A1, € Ain, By € Ary, we have
D(A12 + Ba1) = D(A12) + P(B21).
Choose T = Z,‘z,]'ﬂ T;; € A such that

D(T) = (A1) + D(Byy).

Since
[I e (i(P2 — P1)), A12] = [I ® (i(P2 = P1)), Ba1]. = 0,

it follows from Eq. (1) that
O([I o (i(P2 — P1)), T].) = 0.

From this, we get [[ ® (i(P, — P1)),T]. =0.50 T11 = T, = 0.
Since [I ® A1y, P1]. = 0, it follows from Eq. (2) that

O([I o T, P1].) = ©([I ® By1, P1].).
By the injectivity of ®, we obtain that

2(TPy — P1T") = [l T, P1]. = [I ® Byy, P1]. = 2(B21 — By).
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Hence T»; = By;. Similarly, T1» = A1, proving the claim.

Claim 5. For every A1 € Ay, Bio € Az, Co1 € Az, Dy € Ay, we have
O(A11 + B1z + Co1) = P(A11) + P(Bi2) + D(Ca1)
and
O(B1z + Co1 + Dyp) = ©(B12) + D(Ca1) + O(D2).
LetT = Z?,]ﬂ T;j € Abe such that

O(T) = P(A11) + P(B12) + O(Co).
It follows from Eq. (1) and Claim 4 that

DQi(P,T + TPy))

= @([I o (iP2), T].)

= O([I o (iP2), A11]s) + O([I o (iP2), B12].) + D([I @ (iP2), Ca1].)
= B(2iB1y) + D(2iCa1)

= O(2i(B12 + C21)).

Thus P,T + TP, = By + Cy1, which implies Ty =0, T2 = B1p, To1 = Cp1. Now we get T =Ty + Bip + Cor.
Since
[L o (i(P2 — P1)), Bi2]. = [I ® (i(P> — P1)),C2]. = 0,

it follows from Eq. (1) that
O([I o (i(P2 = P1)), T].) = O([I ® (i(P2 — P1)), Au1l.),

from which we get T11 = An. Consequently, (D(All + By + Czl) = (D(An) + CD(Blz) + (D(Czl)
Similarly, we can get that q)(Blz +Coy + D22) = q)(Blz) + q)(C21) + q)(Dzz)

Claim 6. For every Ay € Ay, Bip € Az, Co1 € Ary, Doy € Ay, we have
D(A11 + Bia + Co1 + D2y) = ©(A11) + P(B12) + P(Cy1) + P(Da2).
LetT = Z?,]ﬂ T;j € Abe such that
D(T) = D(A11) + D(B12) + D(Ca1) + D(D22).
It follows from Eq. (1) and Claim 5 that
®QiP,T + 2iTP;) = O([I » (iP1), T].)
= O([I @ (iP1), A11].) + D([I  (iP1), B12].)
+ O([I o (iP1), C1].) + O([I @ (iP1), Dx2])

= (D(4ZA11) + @(21312) + CD(21C21)
= @(4iA11 + ZiBlz + 2iC21).
Thus
PlT + TP1 = 2A11 + B12 + C21,

and then Ty1 = A11, T12 = Bip, To1 = Ca1.
Similarly, we can get
q)(ZszT + 21TP2) = CD(4ID22 + 2iB12 + 21C21)
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From this, we get T2, = Dy, proving the claim.

Claim 7. For every Ay, Bjx € Ay, 1 < j # k <2, we have
D(Ajk + Bjk) = D(Aj) + P(Bj).
For every Aj, Bjx € Ay, since
[é o (Pj+Aj), P+ Bjl. = (Aj + Bjg) + A;k + B]va;k,
we get from Claim 6 that
D(Aj + Bj) + CD(A;.k) + O(B jkA;k)
= (5 o (P + Aj), Pe+ Byl
= [D(3) » DP; + A, DPe + Byl
= [B(3) * (@(P)) + D(A), D(P) + DB
= [D(3) * B(P), PP + [B(3) » D(P), DByl
+10(3) o D(AR), (P + 93 # D(A), (B0
= O(Br) + DA + A%) + D(BjAY)
= D(Bj) + B(Aj) + B(AY) + DBAY).
Then
D(Aj + Bi) = D(Aj) + D(Bj).
Claim 8. For every A;;, Bj; € Aj;,1 < j <2, we have
D(Ajj + Bjj) = D(Aj)) + D(Bjj).

LetT = Z%jzl T;j € Abe such that
For 1 < j # k <2, it follows from Eq. (1) that
D([1 @ (iPy), T].) = D([I @ (iPx), Ajjl.) + D([I o (iPy), Bjj].) = 0.

Hence PiT + TPy = 0, which implies Tjx = Txj = Tix = 0. Now we get T = T};.
For every Cjx € Ay, j # k, it follows from Eq. (2) and Claim 7 that
O(2T;iCix) = O([Pj ® Tjj, Cjl.)
= O([Pj e Ajj,Cixl.) + O([P; ® Bjj, Cjx].)
= q)(ZA]‘]‘Cjk) + CI)(ZB]']'Cjk)
= D(2(A};iCjr + BiiCj)).
Hence
(Tjj = Ajj = Bjj)Cjx =0

for all Cjx € Ay, thatis, (T;; — Aj; — B;j;)CP; = 0 for all C € A. It follows from Lemma 2.2 that T; = Aj; + Bjj,
proving the claim.
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Claim 9. @ is additive.
LetA = Z?,j:l Aij, B = 212,]'=1 B;j € A. By Claim 6, Claim 7 and Claim 8, we have

2 2 2
D(A + B) = CD(Z Ajj + Z Bij) = q)(Z(Aij +Bij)

=1 ij=1 ij=1

2 2 2
- Z D(A;j + Bij) = Z D(Ay) + Z (Bij)

ij=1 i,j=1 i,j=1

2 2
= 0() " Aij) + () By) = D(A) + D(B).

ij=1 ij=1

Claim 10. ®(I)?> = I.
By Claim 2 and Claim 3, ®(I) is a self-adjoint central element. For all A € A, it follows from Claim 9 that

2D(A — A*) = O([I o A, I].) = [D(I) @ D(A), D(I)], = 2D(I)2(D(A) — D(A)"). (4)

Consequently, for every A = —A* € A,
A A,
O(A) = q3(1)2@(5) - 2(5)) (5)

which ensures that ®(A) = —P(A)*. Note that @' has the same properties as @, we have that ® pre-
serves the conjugate self-adjoint elements in both directions, i.e., A = —A" if and only if ®(A) = —D(A)". It
follows from the additivity of @ and Eq. (5) that ®(A) = ®(I)>®(A). By choosing ®(A) = il, we have ®(I)? = I.

Now, defining a map ¢ : A — B by ¢(A) = D(I)D(A) for all A € A. It is easy to see that ¢ is an additive
bijection with ¢(I) = I, and satisfies

P([A o B,CL.) = [(A) @ $(B), (C)].

forall A,B,C € A.
Claim 11 For all A, B € A, we have ¢([4, Bl.) = [¢(A), ¢(B)]..
Indeed, for all A, B € A, we get that

2¢(lA, Bl.) = $(2[A, Bl.) = ([ ® A, BL.) = [I @ ¢(A), ¢(B)]. = 2[$(A), ¢(B)]..
Then ¢([4, Bl.) = [p(A), p(B)]..

Now, by the main result of [1], we have that the map ¢ = ®(I)® is a sum of a linear *-isomorphism and
a conjugate linear *-isomorphism. [J

A is a factor von Neumann algebra means that its center only contains the scalar operators. It is well
known that the factor von Neumann algebra A is prime, in the sense that AAB = 0 for A, B € A implies
either A=0or B =0.

Theorem 2.5. Let A and B be two factor von Neumann algebras with dimA > 2. Suppose that a bijective map
D : A — B satisfies P([A o B, C].) = [D(A) @ D(B), P(C)]. for all A,B,C € A. Then P is a linear +-isomorphism,
or a conjugate linear *-isomorphism, or the negative of a linear +-isomorphism, or the negative of a conjugate linear
*-isomorphism.
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Proof. Let P be a nontrivial projection in A. Since A is prime, then ABP = 0 for all B € A implies A = 0. So
Lemma 2.2 holds true for factor von Neumann algebras. It is easy to check that all claims of Theorem 2.4
hold true for factor von Neumann algebras. Since ®(I) is a self-adjoint central element and ®(I)? = I, we get
®(I) =1 or O(I) = —I. It follows from Claim 11 that ® or —® is a map preserving the skew Lie product on
factor von Neumann algebras. Now, by the main result of [3], we have that ® or —® is a *+-ring isomorphism.
It is easy to show that @ or —® is a map preserving the absolute value. Now, by Theorem 2.5 of [20], ®

or —

®is alinear *-isomorphism or a conjugate linear +-isomorphism. Now, we have proved the theorem. [
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