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Generalizations of Some Hardy-Littlewood-Pélya Type Inequalities
and Related Results
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Abstract. In this paper, we use an identity of Fink and present some interesting identities and inequalities
for real valued functions and r-convex functions respectively. We also obtain generalizations of some
Hardy-Littlewood-Pélya type inequalities. In addition, we use the Cebygev functional and the Griiss
type inequalities and find the bounds for the remainder in the obtained identities. Finally, we present an
interesting result related to the Ostrowski type inequalities.

1. Introduction

A sequence {a;}ien C R is non-increasing () in weighted mean (WM) (see [6]) if

m+1

1

where a;, g; € R (i € N) such that g, >0 (1 <k <i)and Q; := Z;(:l gx (i € N).
If (1) holds in the reversed direction, then the sequence {4;};eny C R is called non-decreasing (') in WM.

The following inequality is given in the renowned Hardy-Littlewood-Pélya book (see [4, Theorem 134]):

Theorem 1.1. If f is a convex and continuous function defined on [0, oo) and a;, i € IN, are non-negative and \,
then

f Zaz >f(0)+Z[f(m) FG-Da]. @)

i=1

If f" is a strictly increasing function, there is an equality only when a; are equal up to a certain point and then zero.
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A weighted case of (2) was proved by Bennett [1] for power functions f (x) = x” in the following way:
if a; € [0,00) and a; are N\, (1 <i <m) and g; € [0, c0) foralli € {1,...,m} such that Q; = Y, qx (1 <i < m),
then for p € (1, o) the following inequality

[Zm: qial] Z Qp a - al“ = (qm ) + Z 3)
im1

holds. If p € (0, 1), then (3) holds in the reversed direction (see [1]).

A generalization of inequality (3) is presented in [6].

Theorem 1.2. Let a;, q; € R (1 < i < m) such that a; > 0 and q; > 0. Let q1a1, )i, qiai, Qiati, Qi—1a; € [s, t] for all
ie{2,...,myandlet f :[s,t] = R be a convex function.

(i) If {a™, is s in WM, then

f [2 Wz‘] > f(qm) + ZZ [f (Qiai) — f (Qi—1as)]. ()
(ii) If {a)™, is /" in WM, then

f [2 Wz‘] < flpm) + 2 [f (Qiai) — f (Qi-1as)]. (5)

If f is concave, then (4) and (5) hold in the reversed direction.

Definition 1.3. Let q = (41, .. .,qm) be a positive probability distribution. Then the Shannon entropy (see [7]) of q
is defined by S(q) := Y.1I'1 g log(%).

S. Khalid, D. Pecari¢ and J. Pecari¢ presented the following interesting result associated with the Shannon
entropy in [5].

Theorem 1.4. Let q; € R such that q; > 0 (1 <i <m)and let f : [s,t] = R be a convex function.
(a) Let0 < g <1(1<i<m)andletS(q), q1log () Qilog (L) Qirlog (L) els tlforallief2,...,m).
(@) If{qll, is ™\, then

I [ A R |

Aovef) 2]

(b) Letq; >1(1 <i<m)andlet -S(q), q1logq, Qilogg;, Qi-1logg; € [s,t] forall i € {2,...,m}.
(D) If{qitl, is ™\, then

(i) If gl is 7, then

m

f(S@) = f(q1 1og(qll)) )

—

f(=5(q) = f(q1logq1) + Z [f (Qilogqi) — f (Qi1logg:)]. 8)



S. Khalid, ]. Pecaric¢ / Filomat 35:8 (2021), 2811-2826 2813

(id) If g}, is /', then
f(_S (q)) < f(ql 108 ql) + Z [f (Q, 10g ql) — f(Qi—l log ql)] . (9)
i=2

If f is concave, then (6) - (9) hold in the reversed direction.

Remark 1.5. Let f : [s,t] = R be a convex function.
(@) If{aif!", is y in WM, then Theorem 1.2 (i) implies that

f [Z l]iai] - f(qua1) - Z [f (Qia:) = f (Qi-14:)] = 0. (10)
i=1 i=2
(i) If{qi}, € Ris ™\, then Theorem 1.4(a)(i) and Theorem 1.4(b)(i) imply that

o) s Elfom) Aot w

and

F(=S5(@)~ f (g1 logq) = ) [f (Qilogs) - f (Qi-1logg;)] = 0 (12)
i=2

respectively.

In the first section, we will present inequalities of kind (10) - (12) for r-convex functions by using the
following Fink’s identity [3].

Theorem 1.6. Lets,t€R, f:[s,t] > R, r>1and f("l) is absolutely continuous on [s, t]. Then

£ —1
fx) = ﬁfsf(u)du_%nﬂrn!n(fn 1)(5) f(nl () (x — ))
W f (= u) "k (u,x) £ (u) du, (13)

where

u—s, s<u<x<t,
u—t, s<x<ucst

k(u,x) = { (14)

To check the r-convexity of f (see [8, p. 16]), we will use the following criteria:
Lemma 1.7. If f© exists, then f is r-convex if and only if f© > 0.
In the second section, we present some interesting results by using the Cebysev functional and Griiss type

inequalities (see [2]).

LetL,[s,t] (1 < p < co) denotes the space of p-power integrable functions defined on [s, t] equipped with
the norm

1

: ;
il = ( f P du)
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and let Lo, [s, t] denotes the space of essentially bounded functions defined on [s, ] together with the norm

lIClleo = ess sup [C(u)].

u€(s,t]

Suppose that (, & : [s,t] — R are two Lebesgue integrable functions. We consider the Cebysev functional
as follows:

1 t 1 t 1 t
r(c,a::;fsc<u>a<u)du—;fsc<u>du‘§fsa<u)du. (15)

The next two results are related to the Griiss type inequalities.

Theorem 1.8. Suppose that C, & : [s, t] — R are two absolutely continuous functions such that (- —s) (t — ) (&) e
L1 [s,t]. Then

(0 f 2
FCoI< 352 \/f (10— ) (t = 1) (& ()2 (16)

Theorem 1.9. Suppose that C : [s,t] — R is absolutely continuous such that (' € Ly [s,t] and & : [s,t] = R is
monotonically /. Then

[T o
IO < 310 [ w=96-nde), 17

The constants \/% and 1 are the best possible in (16) and (17) respectively.

In the second section, first we use the Fink’s identity in the left hand sides of (10) - (12) and obtain some
interesting identities and further we use the obtained identities and generalize inequalities of kind (10) - (12)
for r-convex functions. In the third section, we use the Cebysev functional and the Griiss type inequalities
and present new bounds for the remainder in the obtained identities. In the fourth section, we present the
Ostrowski type inequalities associated with the obtained identities.

2. Some interesting identities, inequalities and generalizations of some Hardy-Littlewood-Pélya type
inequalities by the Fink’s identity

The first main result of this section is related to the following identities:

Theorem 2.1. Let f : [s,t] — R, f*~V be absolutely continuous for r > 1 and k (u, x) be defined in (14).
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(i) Let qua1, Y12y qiai, Qiai, Qi—1a; € [s,t] foralli € {2,...,m}. Then
f[z Wli] - fqpam) - Z [f Qi) — f(Qi-1ai)]
i=1 i=2
1 r—1 _ . m n m .
T f-s ; - n!n [f(n_l) (s) [(lh”l -s) - [; qia; — S] - ; (Qi-1a; —s)
+ Z (Qiai — S)”] — (1) ((ﬂhﬂl -1 - [Z qifi — t] - Z (Qi—1a; — t)"
R
+ Z (Qia; — f)n]l + —DIt=3 f £ (u) H;‘ qia; — M] k[”r ;‘ qial)
= (= u) ™k (u qran) - Z (Quai — 1) k (t, Qi)
+ Z (Qiflai - u)r_l k (Ll, Qilai)} du. (18)
i=2
(ii) LetS(q), ¢ log<qll), Q; log(%), Qi1 log<%) €[s, tforallic {2,..., m}, where 0 < q; < 1(1 <i < m). Then

sl Llrlorelg)) - sfe-efi))

q

r—1

O B SR

Sl ) -fal2)-
o - Eford) - s e

I R R

Bfomst)f s

Bfoseft) sl
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(iif) Let —=S(q), q1logq1, Qiloggi, Qi—1logg; € [s,t] foralli e {2,..., m}, where q; > 1 (1 <i < m). Then

f(=S (@)~ f (qulogar) = ) [f (Qiloga) - £ (Qirlog )]

1 r—1 _ ] . m )
i by : n,n [f("_l) ®) [(Lh loggi —s)" = (~S(@) = 5)" = ) (Qi-1loggi - s)
n=1 i=2

+) " (Qilogg - S)”] A [(ql logq =) = (=S(q) =)' = ) (Qi-1loggi — )"
i=2 i=2
+ Z (Qiloggi - f)nJ
i=2
— (g1 log g1 —u) " k(w1 log q1) — ), (Qilog i — u) ™"k (u, Qilog )
)

+ Z (Qi—l IOg qi — u)y_l k (1/[, Q,'_1 IOg ql)l du. (20)
i=2

+ mmii=s | @[ @0 kS @)

Proof. (i) Use the Fink’s identity (13) in the L.H.S of (10), we have

& qiui] = f @) = Y [F Qe - £ (Qi1ai)]
=1 =2
1 r—1 _ ) . .
- f—s L. r n!Tl [f(”—l) (s) [(‘71611 -s)' = (; giai — s] ]

n . ' 1 t r
—F0D 1) [(qm ~ By (Z 7 - f] H e f fou

m -1 m m r-1
X l(qlal - u)r_1 k(u,q101) — [Z qifi — u] k[u, 2 q,-ai]] du — % Z ! ;'n
i=1 i=1 i=2 n=1 ’
X [F7 () (Qiaai = 8)" = (Quai = 9)") = U~ (6) (Qiaai = 1) = (Qusy = 1)")]

m ¢
+m Z f FO @) [(Qiras =)™ K (w, Qi-aas) = (Quar — )™ k (u, Q)| .
’ i=2 VS

On simplifying the above expression and interchanging the summation and integral, (18) isimmediate.
(if) Use the Fink’s identity in the LHS of (11), we have (19).

(iif) Use the Fink’s identity in the LHS of (12), we obtain (20).
|

We present inequalities of kind (10) - (12) for r-convex functions as follows:

Theorem 2.2. Let all the assumptions of Theorem 2.1 be satisfied and let for r > 1, f be r-convex.
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(i) Let a1, Y12y qiai, Qiai, Qicrai, u € [s,t foralli € {2,...,m}). If

m =1 m
[Z qii — u] k [u/ Z %ﬂi] — (s — 1) " k (u, rar)
i=1 i=1
> ) (Qai—u) "k, Q) = ) Qi — ) e, Qiaa) (21)
i=2 i=2
holds, then

f [Z qiﬂi] - f(qan) - Z [f (Qiai) = f (Qi-1a:)]

r=1

1 ., " noom .
2 — Y rn'n [f(n—l) (s) [(111111 —s)' - [; qia; — s] - ; (Qi_1a; — s)
+ Z (Qiai — s)"] _ f(n—l) (1) [(5]1111 —t)" - [Z qia; — t] - Z (Qi1a; — )"
=2 i=1 i=2
+ Z (Qiai — f)n” : 22)
i=2

(i) Let S(q), ;1 log(ql) Qilog (ql), Qi log(%), u€lstlforallief2,..., m}, where0 < g; <1 (1 <i<m).If

(08 ) k(s qllog( ) - 5@ -0 ks )

- Sfomf)f o)

i(Q’ o8 (q) ) (“’ Qi log(%)) (23)

holds, then

o5 -+ Kl feres(3)) oo )]

r—1

%;rn'n[(n 1)(5)[(5(q)_5) —(thlog( ) )n_,’_i(QzllOg( ) )n
|

lm llog( ) )] £l 1>(t)((S(q)—t) _(qllog(qll ) )n

Efo-fd)- |- Elom( ]

i=2 i=2
(iif) Let —S(q), q1logq1, Qiloggi, Qi—1logqgi, u e ls, tl forallie|{2,..., m}, where g; 21 (1 <i<m). If
(=S (@) =) " k (4, =S (@) — (g1 log g1 — u)' " k (u, g1 log 1)

> ; (Qiloggi — u) " k(u,Qilogq:) - ; (Qi1loggi — u) " k (1, Qi_1 log g;) (25)
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holds, then

F(=S(@) - f (g1 logq) - ) [f (Qilogqs) - f (Qi-1log )]
i=2

r—1

1 - ) . )
z T L : n!n [f D (s) [(% log g1 —s)" = (=5(q) =s)" - ; (Qi-1loggi —s)
+ Y (Qiloggi - S)”] A0 [(lh logg: — )" = (=S (@) = )" = ) (Qi-1logq; — )"
i=2 i=2
+Y (Qiloggi - t)"]l . (26)
i=2

If the reversed inequalities hold in (21), (23) and (25), then (22),(24) and (26) hold in the reversed direction.

Proof. The absolute continuity of f*~V defined on [s, ] implies the existence of f almost everywhere. By
using the r-convexity of f, from Lemma 1.7, we obtain f” (x) > 0 for all x € [s, ¢].

(1) Use f(r) > 0 and (21) in (18), we have (22).
(ii) By using the non-negativity of f) together with (23) in (19), (24) is immediate.

(iif) Follow the proof of (i) and (i7).
|

Now we present generalizations of the inequalities (10) - (12) as follows:
Theorem 2.3. Let all the assumptions of Theorem 2.1 be satisfied. Let r be even such thatv > 2and let A : [s,t] —» R
be a function defined by

r—1

Ax) = % le : :l!n (=t F D (1) = (= 9)" f7 (). 27)

(a) Leta;, g€ R(1 <i<m)suchthata; > 0andgq; > 0. Let q1a1, Y1 qiai, Qiai, Qi—14; € [s, t] foralli € {2,...,m}
and let the sequence {a;}" | be ™, in WM.

@) If f : [s,t] = R is r-convex, then (22) holds.
(i1) Let (22) be satisfied. If A is convex, then the RHS of (22) is non-negative and we have

f {Z Wz‘] - flqa) = Z [f (Qiai) — f (Qi-1ai)] - (28)

(b) Let 0 < g; <1 (1 <i<m)andlet S(q), ;1 log<;—l), Q; log(%), Qi log(%) € s tlforalli€f2,...,m}. Let
the sequence {g;}""; C R be ™\
(@) If f : [s,t] = R is r-convex, then (24) holds.
(ii) Let (24) be satisfied. If A is convex, then the RHS of (24) is non-negative and we have

o) o0 £ffome) o)

(c) Let g > 1 (1 <i<m)and let =S(q), q11ogq1, Qilogqi, Qi-1logg; € [s,t] forall i € {2,...,m}. Let the
sequence {g;}!', C Rbe ™.
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(@) If f : [s,t] = R is r-convex, then (26) holds.
(ii) Let (26) be satisfied. If A is convex, then the RHS of (26) is non-negative and we have

f=S@) - flarloga) = ), [ (Qlogg) - £ (i1 log ). (30)

Proof. By using Lemma 1.7, it is obvious that 9 (x):= (x — u) "k (u, x) is convex for even r, where r > 2.

(@) (i) As the sequence {a;}"", is ™\, in WM, use the convex function 9 (x) in (4), inequality (21) is
immediate for even 7, where v > 2. Now as f is r-convex for even r, apply Theorem 2.2 (i), we
obtain (22).

(ii) It is obvious that the inequality (22) is equivalent to

f[i q:‘ai] - f(qm) - 2’”; [f (Qiai) = f(Qi1a)]
i=1 i=2

Z qid;

i=1

~ A@am) - ) IA(Qa) - A(Qia)].

i=2

> A

As the sequence {a;}; is ™\, in WM, replace f by A in Theorem 1.2 (i), the non-negativity of the
RHS of (22) is immediate and we have (28).

(b) (i) As thesequence {g;}!";, C Ris *\,, use the convex function 9 (x) in (6), we obtain (23) for even r,
where r > 2. Use the r-convexity of f for even r and apply Theorem 2.2 (ii), we have (24).

(i1) Itis clear that the inequality (24) is equivalent to

o) s fo-onf ) fome)
S e RS » Y RV |

As the sequence {g;}?", is \, replace f by A in Theorem 1.4 (a) (i), the RHS of (24) is non-negative
and we have (29).

(c) (i) Use the convex function 9 (x) in (8), we obtain (25) for even r, where r > 2. As f is r-convex for
even r, apply Theorem 2.2 (iii), we have (26).

(i) Clearly (26) is equivalent to

f=S@)~f@logam) = Y, [f (Qlogq) - f (Qr-1log )]

> A(-S(q) - Alqilogq) - ) [A(Qilogq:) — A(Qi-1logy)].

i=2
Replace f by A in Theorem 1.4 (b) (i), the RHS of (26) is non-negative and (30) is immedjiate.
O

Remark 2.4. For an arbitrary 2-convex, that is convex, function f, A from (27) takes the form

AG) = = (= Df0) - (=96

As this function is linear, it is both convex and concave. Clearly Theorem 2.3 provide generalizations of the inequalities
(10) - (12).
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3. Griiss type inequalities by the Fink’s identity

In this section we present some new bounds for the remainder in the obtained identities. We denote

" -1 m "
a(u) = (2 qiai = u] k[u, Y qiai] — (o =)k (w,quar) = Y (Quai = 1) K (, Qi)
i=1 i=1

i=2
+ Y Qg =) ke (, Qiaa), (31)
i=2

where 141, Z?il qiai, Qiai, Qia;, u € [s, t] foralli e {2,...,m},

pu= (mog()- u)rl el og 1)) - s @ = 0 ks @)

m r—1
L (on(z)-] efwenn)
m 1 r—1 1
Elosft)o o)

where S(q), f1 log(ql]), Q; log(%), Qi log(%), uelstlforallie(2,...,msuchthat0 < g, <1 (1 <i<m)
and

yw = (-S(q@) -u)"k(u,~-S(q) - (q1logq — u)" k(u,q1log 1)

- Z (Qiloggi — u) 'k (u,Qilogq;) + Z (Qi-1logg; — u)r_1 k(u,Qi-110gq:), (33)
i=2 i=2

where -S(q), q1log g1, Qilogqi, Qi—1logg;, u € [s,t] foralli € {2,...,m} such thatg; > 1 (1 <i<m) and in
addition k (u, .), appearing in (31) - (33), is defined in (14).

Theorem 3.1. Let f : [s,t] — R, f) be absolutely continuous for r > 1 with (- —s) (t — -) (f(”l))2 € Ly [s,t] and let
T be the same as defined in (15).

(i) Let qia1, Y.izq qiai, Qiai, Qimra; € [s,t] forall i € {2,...,m}. If a is defined in (31), then
f [Z ‘71“11'] - fqpam) - Z [f (Qiai) = f (Qi-1a:)]
i=1 i=2

r—1 m n "
- ti_s Z r;ln [f(n_l) (s) [(ql’ll —s)" - [Z qiai — S] - Z (Qiq1a; —s)"
! A L

n=1

+ Z (Qia; —s) ] JAR() [(qm —-t)" - [Z qia; — t] - 2 (Qimai — t)"
=2 =2

(r 1) _ £(r-1)
S WA
(t—-s)y (-1 s

M§

a@)du+ A (st f), (34)

i=2

where the remainder A, (s, t; f) satisfies the estimation

t
[5G0l < oy - (“2((?_’3)(”)) : \/ f (=) (£ = ) (O (u))? . (35)
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(ii) Let S(q), ;1 log(qll), Qilog( ) Qi 1log( ) €ls tlforallie{2,..., m}, where 0 < q; <1 (1 <i<m). Ifp
is defined in (32), then

e e+ Z o (7)) sl )
- ) ’;,”[ﬂ” “(s)[(sm)—s) -(wios(-) o) + X3 (oevin(7)-)
X (@es()- )] 70 (5@ - - (rtog( 1))

+Zm"(Qlllog( ) ) g(@l‘)g( ) )ﬂ

(r-1) (r-1)
o ; (ts)) (f © f B(u)du+E, (s, f), (36)

r ’
|2 .t f)] < v 11)!\/ (52(5)_12)(@) \/f ) (= 1) (FOD ()Y du.

(iif) Let =S(q), g1log g1, Qilogqi, Qi—1loggi € [s,t] foralli € {2,...,m}, where q; 2 1 (1 < i < m). If y is defined
in (33), then

where

f(=S (@)~ f(grlogar) = ), [f (Qilog) - £ (Qi-1log )]

r—1 m
= tL Z . [f “D (s) [(q1 log g1 —s)" = (=S(q) —9)" - Z (Qi1loggi —s)"

-5 n! ;
n=1 =2

+)(Qilogg; - ) ) A0 [(ql logqi )" = (=S(q) - )" - Z (Qi-1loggi— )"
i=2

JAIOE A (S)
(t=9)°(r -

=1

+ y(u)du+Y s.5)), (37)

1

(Qiloggi —t)" ]l

I
N

where

T
58] < gy \/ (yz(fﬁ) Z(u» \/ f = 9 — ) (£ ()

Proof. (i) Apply Theorem 1.8 for C — a and & — f), we have

¢ g '

%fs‘ a(u)f(r) (u) du — %jg a(u)du - %js‘ f(r) (u) du
T , t
%- \/f (1= ) (£ = ) (0D () )
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Divide both sides of (38) by (r — 1)! and in the obtained expression denote

fy = 1 t ” OO -6 [
Ar(S,t,f)— mfs a(u)f (u)du_ (t—S)z(T’—l)! s

(35) is immediate. Now take the value of —;— YD) 1),(t 3 f a (1) fO(u)du from (39) and substitute in (18), we
have (34).

a(u)du, (39)

(iiy Apply Theorem 1.8 for { — g and & — f, follow the proof of (i) and denote

_ 1 t ; f(r 1)( f(r 1)
flai (S, t; f) = m j; ﬁ(u) f( ) (u) du — ( f ﬁ (40)

Here we use identity (19) instead of (18).

(iii) Apply Theorem 1.8 for C — y and & — ), follow the proof of (i) and denote

o i e frE = () [
CEEN= oy ) 70 W e | ywae (a1)

Here we use identity (20).
|

Theorem 3.2. Let f : [s,t] = R, f) be absolutely continuous for r > 1 and let f7*V > 0 on [s,t]. Let T be the same
as defined in (15).

(i) If ais the same as defined in (31), then we obtain (34) and the remainder A, (s, t; f) satisfies

[ lloo (r— 1)()_,_ (r— 1)(t) (r—2)(t)_ (r—2)()
| < Ll (0270 L0 0),

42)

(it) If B is the same as defined in (32), then we obtain (36) and 2, (s, t; f) satisfies

Ilﬁ Wl (7D )+ f00 @) fr2 @) = f02s)
B (5, f)] < - ( > o )

(ii) If y is the same as defined in (33), then we obtain (37) and Y, (s, t; f) satisfies

HV ( )”oo f(r D S)+f(r 1) t) f(’—z) (t)_f(r—Z) (S)
Y6t 0l < =, ( - _ - )

Proof. (i) Apply Theorem 1.9 for { — @ and & — ), we have

¢ ¢ ¢
%foz(u)f(r)(u)du—%fa(u)du-%ff(r)(u)du

< 2(t )Ila (u)||m(f (u—s)(t —u) fO (u du) (43)
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Now divide (43) by (r — 1)! and use
¢
f (u—s) (t—u) £ (u) du
S

= ft Qu-—(s+ t))f(r) (u) du
t=9)(F0 @)+ 0 0) =22 - 7 5)

and in addition use the notation A, (s, ; f) as defined in (39), we have

e (0 [l

IAr(s,t;f)lsz(f_s) oo (O O)-2(f P 0= ). @

After simplification, (44) reduces to (42) and by inserting the value of m fs ‘o (u) £ (u) du from
(39) into (18), we have the representation (34).

(i1) Apply Theorem 1.9 for C — fand & — f(’), follow the proof of (i) and use the notation E, (s, t; f) as
defined in (40). Here we use identity (19) instead of (18).

(iii) Apply Theorem 1.9 for L — y and & — f1, follow the proof of (i) and use the notation Y, (s, t; f) as
defined in (41). Here we use identity (20).
O

4. Ostrowski type inequalities by the Fink’s identity

Theorem 4.1. Let all the assumptions of Theorem 2.1 be satisfied and let o, f and y be the same as defined in (31) -
(33). Let p,q € [1, o] such that % + % = 1and let |fO) : [s,t] — R be an R-integrable function for some r > 2.

(i) Let quay, Y1 qiai, Qiai, Qira; € [s,t] foralli € {2,...,m). Then

‘f [zm: qiai] - f(qa) - XZ‘ [f Qi) = f(Qi-aai)]

_% : ;;!n [f(n_l) () [(Wll —s)" - [lZ:: qi; — S]n - lZ::‘ (Qi-1a; = )"

+ Z (Qiai — S)"] - f"0 () {(qlﬂl -t - [2 qia; — f]n - Zm; (Qi-1ai — )"

+ 2 (Qia; — t)”H < ( f t |FO @l du)p ( f t & ()| du)q ) (45)

a (1)
r=D!(t-s)
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(i) Let S(q), g1 log(qll), Qi log(%), Qi1 log(%) €[s,t] forallie€ {2,..., m} such that 0 < g; <1 (1 <i<m).

()l

‘f(ql o)) - £ s @) +2

r—

LT [ﬂ”—”(s)[(sm)—s)”—(qllog(qll)‘s)n : [0tes(7) )

n=

- fos2)o |- oo -foes(2)-
Efesof2) ) -Eforft)]

1

¢ 5ot H
s( f |FO @)l du) ( f |ﬁ(u)1qdu) , (46)

NMS 7

where
Bu) = %
(iii) Let —S(q), q1log g1, Qilogqi, Qi1 log q; € [s, t] for all i € {2, ..., m} such that q; > 1 (1 < i < m). Then
‘f (=5(q)) - f(q1logq1) - Zmz‘ [f (Qilogqi) — f (Qi-1log gi)]
_% n: T [f D (s) [(171 logq1—5)" = (=S(q) ~s)" - ,ZZ (Qi-1log g; — )"
+ g‘ (Qiloggi — S)"] - ) [(ql logq —)" = (=S(q) - 1)" - g‘ (Qi-1loggi —t)"
+2(Qi log qi —t)”ﬂ < (f £ ! du); (f 1;7(u)(qdu)$, (47)
where
=

The constants (f & w)|? du) ( ﬁ u)(q du)a and (fst |7? (u)|q du)ﬁ in (45), (46) and (47) respectively are sharp for
1 < p < oo and best possible for p = 1.
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Proof. (i) From identity (18), we have

‘ [i zaz] - f(qm) - i [f (Qiai) = f(Qim1a)]
1 r—1

s L — [f(” D (s) [(qm )" - [Z giai — S] - ;(Qi—lﬂi ~s)"

+ Z (Qiai — ) ] =D (¢) {(qml -t - [Z qia; — t] — Zm: (Qiqa; — t)"
=2
+Y (Qai- t)”ﬂ =
i=2

On the RHS of (48), we apply Holder’s inequality for integrals as follows

¢ ; t :
S(f |f(r) (u)|pdu) (f |d(u)|qdu) . (49)

Now inequality (49) together with (48) implies (45).

(48)

f(’) (u) & (u) dul .

t
fﬂ%mmmm

For the proof of the sharpness of the constant ( fs t & ()" du)a, we define
f(r) (1) = sgna W)la @)=, 1<p<oo,
Sgnd (1/[) 7 p = 0

such that the equality in (49) holds.

For p = 1, we will prove that the following inequality

t
s%wmmkaWMw (50)
ue(s, S

t
fﬂ%mmmm

is the best possible inequality.

Let |& (1)| attains its maximum at 1 € [s, t].

(Case 1) When & (ug) > 0. For small enough €, we define

0’ S<u<u0’
fe(u)z #(u—uo)r, uyg <u<uy+e,
(r—ll)l (w—up)™, up+e<sust.

Clearly

f fer) (u) & (u)du| = %fuﬁed(u) du (51)

f £ ()| du = f:ﬁe du=1. (52)
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Now use (51) and (52) in (50) and use the fact that |& (u)| attains its maximum at ug € [s, t], we
have

1 Up+€
—f & (u)du < a(up) -1 =a(ug).

€ Ju

Uy +€

As lim,_, % f a (u) du = & (up), the statement follows.

Up

(Case 2) When & (1) < 0, we define

-1
oo (—uo—€)", s<u<u,
few) =3 —Lw-uy—e), o <u <up+e,

er!

0, up+esu<st
and the remaining part is the same as above.
(i1) Use identity (19) and follow the proof of (i).

(ii)) Use identity (20) and follow the proof of (i).
|
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