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Abstract. This paper deals with the study of a class of perturbed nonlinear fractional p-Laplacian differ-
ential systems, where by using the variational method, two control parameters together with recent three

critical points theorem by Bonanno and Candito for differentiable functionals for perturbed systems, the
existence of three weak solutions has been proved.

1. Introduction

The application of fractional calculus can be used to generally regard fractional differential equations
as the study of differential equations, as natural phenomena and mathematical models in many fields of
science and engineering can be accurately described.

Partial differential equations have many uses in different fields such as engineering, chemistry, physics,
biology, biophysics, mechanics, and other fields. (see [13-19]). As a result, many improvements have been
made in the theory of partial calculus and partial and ordinary differential equations. ([2-9, 12, 14, 17]).
Many studies have explored the existence of different solutions of nonlinear elementary and boundary
value problems through the use of various nonlinear analysis tools and techniques. (see [20, 23, 27-29]).
Some of these methods are fixed point theories, monochromatic iterative methods, critical point theory,
coincidence theory degree, and modalities of change. Motivated by the various papers interested in this
field, we are interested in this article with results of the following perturbative fractional differential system:

(D5 (70 (w1 (00 Dy )+l (OF 2 1)

=AF, (t,u(t),v(t) + 060G, (t,u(t),v(t) ae. t€[0,T],

D} (s (w2 (00 Dl ) + o OF 0 ®
= AF, (t,u(t),v(t)) + 0G, (t,u(t),v(t)) a.e. t €[0,T],

u=u(T)=0, v(0)=0v(T)=0,
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where A, u, 6 are positive real parameters, a, § € (0,1], oDy, ;D7 and on , tDﬁT are the left and right Riemann-
Liouville fractional derivatives of order a, § respectively. @, (s) = |s]P~2 s,p>1,wi(t),w (t) € L* [0, T] with
w? = ess infjo, w1 (t) > 0 and w) = ess info 7y w, (£) > 0.
(FO) F: [0, T] X R? - R is a function such that F(-, u,v) is continuous in [0, T] for any (4, v) € R?, F(t,,") is
a C! function in IR?, and F; is the partial derivative of F with respect to s ;
(G0) G : [0, T] x R* — R is measurable with respect to ¢ for every (#,v) € R?, continuously differentiable
in R? for a.e. t € [0, T], and G,, G, denote the partial derivatives of G that satisfy the following condition:

sup max {lGM(/ u, 'U)l ’ |Gv('/ u, U)l} € Ll ([0/ T]) for all (S > 0. (2)
Viz+v2 <&

2. Preliminaries

To apply the critical point theory to explore the existence of weak system solutions (1.1), we introduce
some basic notifications and notices and create a changing framework. Let X be a real Banach space, and
let Yx denote the class of all functionals ¢ : X — R that possess the following property: if {w,} is a sequence
in X converging weakly to w € X and il_r& inf ¢(w,) < P(w), then {w,} admits a subsequence converging

strongly to w. For instance, if X is uniformly convex and S : [0, +o0) — R is a continuous strictly increasing
function, then the functional w — S(||w||) belongs to the class Yx.

Definition 2.1. (Kilbas et al. [16]) Let u be a function defined on [a,b]. The left and right Riemann-Liouville
fractional derivatives of order a > 0 for a function u are defined by

D (f) = d 2 DI (t) = s f (t=9)""* " u(s)ds,
(n—a) dt"
and

D2 (f) := (-1)" D“ B = DA f( —5)" y (s) ds,

dn I'(n-a) dan

for every t € [a, b], provided the right-hand sides are pointwise defined on [a, b], wheren —1 < a <nand n € N.
Here, T () is the standard gamma function given by

+00
T'(a):= fz“‘le_zdz.
0

Set AC" ([a, b], R) the space of functions u : [a,b] — R such that u € C"~* ([a,b],R) and u"~D € AC' ([a,b],R) .
Here, as usual, C"~* ([a, b], R) denotes the set of mappings having (n — 1) times continuously differentiable on [a, b] .
In particular, we signify AC ([a,b],R) := AC! ([a,b],R).
Definition 2.2. [32] Let 0 < a <1, for 1 < p < oo.the fractional derivative space

El = {u(t) € L ([0, TT, R)ly Dfu (t) € L ([0, TT, R),u (0) = u(T) = 0},

then, for any u € E',, we can define the weighted norm for EV, as

T T ;
||u||a=( fo lu(t)P dt + fo wi () |opDSu (O dt| . 3)
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Lemma 2.3. [15] Let 0 < a < 1and 1 < p < oo.For any u € E}, we have

T(X
< -
Il < s |

|0D(txu“m :
Also, if @ > p and ’1—7 + }] = 1,then
TP

llulleo < 1
Ir')T((a-1)g+1)

loD?ull,, -

From Lemma 1, we clearly observe that

To-P T » p
llullp < T+l (L w1 (f) 'OD?” (t)| dt) .
for 0 <a<1,and

1/p
Ta-p ( fOT wi () [oDu ()] dt)
llulleo <

P @) (@)’ ((@-1)q + 1)

fora>pand ; + [11 =1.
By using (6) , the norm of (3) is equivalent to

T z
luall = (f wi(t) |oDfu (B dt) ,VuekE,
0

For0< B <1,1<p < oco.analogous to the space E!, we define the fractional derivative space E; as

{o() € L7 (10, T], Ry Dv () € LF ([0, T], R),0(0) = o (T) = 0},

then , forany v € EZ, the norm of EZ is defined by

T T 5
||v||ﬁ=(f |v(t)|”dt+f wz(t)|onv(t)|pdt) Vo eE,
0 0

Similar with (6) and (7) , we get

1/
TP ( [T wa(t) oD 1) dt) ’

[ :
T(g+1)(wd)
for0<p<1,and

. 1p
Ta-p ( [T wa(®) oo ()] dt)
Il < .

P @) (0d)’ ((B=1)q +1)F

Moreover, if 0 < <1and ; + L = 1,then, based upon (10) , the weighted norm

mm=(£zmmkD%a$wy,

2829

)

(10)

(11)

(12)
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is equivalent to (9) , for every v € Eg.
In the following discussion, for any u € EL, v € EZ denote the space of X = Ef, x EZ with the norm

I, )i = (llly + 10I)", ¥ (u,0) € X,
where ||ull, and llvlls is defined in (8) and (12) respectively,
Obviously, X is compactly embedded in C°([0, T], R) x C°([0, T], R).

Lemma 2.4. [33] For 0 < o, < 1and 1 < p < oo. The fractional derivative space X is a reflexive separable Banach
space.

Definition 2.5. [15] We refer to a weak solution of system (1) ,any (u,v) € X such that

T

f chp (w1 (B D (), Dfx (1) it
1

T
f 50 p (s (D Do (1), DYy () dt
0
+pf|u(t)|p 2u(t)x(t)dt+yf|v(t)|” 2o () y (1) dt
-2 f (Fu by, 0(0) X (1) + (60 6), 0.0) (1)
0

T
-0 f (Gutu),v®)x )+ Gy (tu(t),v(t)y(t)dt =
0

for every (x,y) € X.

Lemma 2.6. [35] Let A : X — X*be a monotone, coercive and hemicontinuse operator on the real, separable, reflexive
Banach space X. Assume {w1, wy...}is a basis in X. Then the following assertion holds: (d) Inverse operator.If A is
strictly monotone, then the inverse operator A~ : X* — X exists. This operator is strictly monotone, demicontinuous
and bounded. If A is uniformly monotone, then A~ is continuous. If A is strongly monotone, then is Lipschitz
continuous.

Let C([0, T1,RN) be the set of all functions x € C3 ([0, T1, RN) with

x(0) = x(T) = 0 and the norm

lIxlleo = max Jx(t)].
[0,T]

Denote the norm of the space LF([0, T], RN) for 1 < p < o0 by

r :
llxlly = (f(; lx (s)I” ds) .

Lemma 2.7. Assume that % < a < land the sequence {u,} converges weakly to u in E' s up — uin C([0, T, R), that
is, ||ux — ullo = 0ask — oo,
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Our main tool is a three critical point theorem due Bonanno and Candito that we recall here.
Let X be a nonempty setand ¢, ¥ : X — R be two functions. For all , 2,73 > infx ¢, 12 > r1, 3 > 0, we
define

(Supv@q(,m,n 4 (ZJ)) -V (u)

- inf :
@ (r) UE(D}{(‘_OOJ) r—¢ (1)
. W (v) -V (u)
B (r1,12) = u@}lf(lfm,r) SUPwealin) 6 (o) = b (1)’
su ~1(—00,r2+13
y(ro,m3) @ = —puetb o )'

3
a(r1,72,73) 1= max {(P (r),p(r2),y (r2,13)}

Theorem 2.8. ([37, Theorem 3.3]). Let X be a reflexive real Banach space; ¢ : X — IR be a convex, coercive
and continuously Gateaux differentiable and sequentially weakly lower semicontinuous functional whose Giteaux
derivative admits a continuous inverse on X* where X* is the dual space of X, { : X — R be a continuously Gateaux
differentiable functional whose Gateaux derivative is compact, such that

(a1) infxp = ¢ (0) = ¢ (0) = 0;

(a2) for every uy,up € X such that ¢ (u1) > 0 and ¢ (142) = 0, one has

inf ¥ (sug + (1 —s)up) > 0.
s€[0,1]

Assume that there are three positive constants rq, 1, r3 with r; < r,, such that
(@3) ¢ (r1) < B(r1,m2);
(ag) @ (r2) < B(r1,m2);
(as) y (r2,13) < B(r1,12).
1

Then, for each A € ]’m, m[ the functional ® — AW admits three distinct critical points 1, uy, U3

such that u; € ¢! (=co,71), 1ty € p71[ry,72) and uz € ¢! (-0, 12 +13).
We refer the interested reader to the papers [4,27] in which Theorem 1 has been successfully employed
to the existence of at least three solutions for boundary value problems.

3. The main results

In this part, we explore the existence of at least three weak solutions for problem (1) . For better
understanding, we define the functionals ¢, : X — R as

¢ (1,0) = % Jull, + % ol , o) €X, (13)

¥ (,0) = fo TF(t,u(t),v(t))dt+§ fo TG(t,u(t),v(t))dt (14)
and we put

I (14,0) =  (1t,0) — A (1, 0) . (15)

Clearly, ¢ is well-defined continuously Gateaux-differentiable functional at any (,v) € X, and this
Gateaux derivatives is
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T
v'(u,0)(x,y) = fo (Fu(t,u(®), o) x () +Fy (b, u(t), v () y(t)dt

6 T
+2 [ Gultu®, 0020+ Gt u ), 0 O)y ()
0

respectively, for every (x,y) € X.

Lemma 3.1. The functional ¢ is sequentially weakly lower semicontinuous and bounded on X, and ¢’ admits a
continuous inverse on X,

Proof. Let {(un,v,) C X, (Uy,vy) = (4,0) in X. From Lemma 5, (u,, v,) converges uniformly to (1, v) on [0, T],
and
Timiinf (i, 0,)lly > i@, 0)llx Thus

1 1
lim inf d(u,, v,) lim inf(— ulll, + = ||v||p)
n—oo ¢) n—oo P p B

1 1
> = lully + = Ilolly = ¢, ).
I
So ¢ is a sequentially weakly lower semicontinuous functional.

Moreover, let Q be a bounded subset of X, that is, there is a constant ¢ > 0 such that [|(u,v)||x < ¢ for
any(u,v) € Q. By (6), (10) and Lemma 5, we have

— 1 4 1 4
G0) = Il + el
— 1 14 14
= ;;(||u||a+||v||ﬁ)
cP
< —.
p

Hence ¢ is bounded on each bounded subset of X.
Next, we will show that ¢’ : X — X* admits a Lipschitz continuous inverse. Obviously, ¢ € C}(X,R)
and

T
(¢'wo),(x,y) = f ! @, (w1 (1) Dfu (), Dfx (8) dt
0

w (£

T
+ f ! @, (w2 () Df'o (1), DYy (1) dt
0

T T
p—2 p—2
+y(f|u(t)| u(t)x(t)dt+y0f|v(t)l v(t)y(t)dt

= <(;[)1 (u),x> + <<P2 (U)/y>r

where

T T
1
,X) = Dy Dix(t)d p- dt  VxeE,
(¢1 (), x) Of - (t)p,zcbp(wl (t)o Dfu (1)), Dfx (Bt + p Of P2 u@®x (Bt Vxe
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T

(CPZ (v), y> = f W@p (wz (t)O DfU (t))O
0

Forany u,x € Eg , it follows from (6), that

T

(1) -1 (), u—x) = f mcpp (en (B0 DY (1), Df (e () = x (8)) dlt
0

T
"y f e (OF 2 0 8) (e (1) — x (1) dt
0

T
_ f 1
J Wy (P2

T
v [ O x 0600 - xO)
0

According to the well-known inequality

) )
(|51|p 51— Isol 52)(51 —5p)

ls1 —sof, p=>2
Is1 =52 1< p< )

2-p 7/

>

(Is1]+ls21)

We have
(@ (w1 (0o D (1)), D 2t (1) = x (1))

7 p=2,

1w 0uDpu
@ (Jor oD uo])”"”

o w1 () Dfu (b
>
h l<p<2.

Hence, when 1 < p < 2, one has

T
p
[ 'wl () (5021 (1) — Dix (t))| dt
0
14
< A Jwr () D u(t) — oD x(B)| :
3 w1 (B(|wn (D DEu(®)|+|wn (DEx(B)])*

T 14
( Jwr 07 (Jeor (0 D ()] + feor () DI (1)])] dt]
0

which means that

T fwr (9 Dfui (1) — w1 (B Dex ()]

T
Dy (tydt +u f o (O o () y (t)dt, Vy € E},
0

@, (wy (£), Df'x (t))0 D (u (f) — x () dt

0wy (1) (Jwn () D (1)) + |wn () Dyx (1))

A=) p-2
X -
> 2 = 20 (1l + 1) 7

2833

(16)

(17)

(18)

(19)
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Then, we deduce

T
Of (@, (1 (1) D (1)) = @y (w1 () Dix (t))0 D¢ (u —x)) dt
2(p-1) (20)

op-2(y 0P 5 p=2
> P T 2 (1l + 1) T > 0.

wy

When p > 2, we get
T

Of (@, (w1 () D (t)) = @ (w1 (D Dyx (1)), DY (1 = x)) dt

p-2
> ()" " flu = x|l > 0.

(21)

Further, denote

T T
A= Of lu (OF 2 u (b) (u— x)dt + Of lx (OP 2 x () (u — v) dt.

Then , reapplying inequality (16) , we always have
A>|u—x| >0, forp > 2
and

p=2
A2 27 (I =i, (el + )7 ) > 0, forl <p <2.

Thatis, A > 0 forevery 1 < p < oo.

thus ¢1is a uniformly monotone operator.

Similarly, it is easy to show that ¢, is also a uniformly monotone operator. So ¢’ is uniformly monotone.

Furthermore, in view of X is reflexive, for (u,,v,) — (4,v) in X strongly, as n — oo, one has ¢’ (u,,v,) —
¢’ (u,v) in X* as n — oo.

Thus, we say that ¢’ is demicontinuous. Then, according to lemma 3, we obtain that the inverse operator

-1
(qb’) of ¢’ exist and is continuous.
Moreover, let

T

il = [ (o1 @ D7 @ + o),
0
and
T
il = [ (w2 OLDFo ] + o o),
0

owing to the sequentially weakly lower semicontinuity of ||u||fm and IIuIIZ swe observe that ¢ is sequentially
weakly lower semicontinuous in X. [

Lemma 3.2. The functionals 1 and | are continuously Gateaux differentiable in X, and their derivatives {’, | 'are
compact.
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Proof. Considering the functional ¢, we will point out that i is a Gateaux differentiable, sequentially weakly
upper semicontinuous functional on X. Indeed, for (u,, v,) C X, assume that (u,,v,) = (4,v) inX,i.e. (u,,vy)
uniform converge to (1,v) on [0, T] as n — co.

Hence

IA

lirP inf ¥ (un, vy)

T
T
f lim (ian(t,un t), v, (t))dt+§f G(t,u, (t),v,())|dt
n—+oo 0
0
T

5 (T
= fF(t,u(t),U(t))dt+K£ G(tu(t),o(t)dt =¢ u,0),
0

which implies that 1) is sequentially weakly upper semicontinuous. Furthermore, since F and G are
continuously differentiable with respect to 1 and v for almost every t € [0, T].we have F (¢, u, (t), v, ()) +
%G (t, un (t),v,(8)) = F(t,u(t),v() + /Q\G(t,u (t),v(t)) as n — +oco . Then , based on the Lebesgue control
convergence theorem, we obtain that ¢/ (u,,v,) = ¢ (1, 0) strongly , that is ¢/" is strongly continuous on X.
Hence, we confirm that ¢’ is compact operator.

Moreover, it is easy to prove that the functional with the Gateaux derivative ¢’ (1,v) € X* at the point
(u,v) e X

T
P (u,0)(x,y) = f(;((Fu(flu(t),v(t))x(f)+Fv(t,u(t),v(t))y(t)))df

5 T
+5 [ (Gultu),00) 0+ G, (), 00Dy ) @)
0

for any (x,y) € X.
The proof is completed. [

Put in this section, we formulate our main results on the existence of at least three weak solutions for
the system (1.1).

For any ¢ > 0, we denote by Q (¢) the set {(xl,xz) e R?: % Z?:l P < g} .
For positive constants 0 and 7 set

T
G? :=f max G (t, x1,xp)dt,
0 (r1,x2)eQ(0)

and

GW = inf G(i’, xl,xz) dt.
[0,T1x[0,r2-a)n]x[0.T(2—p)n]

In the remainder of this article, for positive constants 6 and 7, let ® and 7 be the vectors in R? defined
by

©=(Vo,¥0) and 7= T 2-a)n,T2-P)n),

respectively.
Set
1 yT (1—)/)T La\P
Ay =~ [ [ e - - ynY @
P(VT)p{ 0 yT ( )

T 1— 1-a 1-a]P
+f( w1 O] =t =yD) ) =1- (@ -)T) ]},

1-y)T
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1
PEY) = p(TY {

T (1-y)T
fV w, (1) tP(l—ﬂ)dt + f ! ws () (tl—ﬁ —(t- )/T)l_ﬁ)p it

0 yT

l—;/)T

+L‘ ‘”@ﬂﬁ“ﬁ—u—yn1%—1—«1—wT¥ﬁr}

1
for0<y<p,

Ky =min{A(a,y),B(B,7)},

and

Ky = max{A(a,y),B(B,7)},

M = max{ e Ll }
T @) o (@-1)g+1)" TEY(B-1)g+1)7)

Fixing four positive constants 01, 8>, 03 and 7, put

T
) . . 1 . 9? - PMA j(; P(t, @1)dt QZ_PMAIUTF(t,@z)dt
AG . = min pM min G01 , GQZ ,
(04-62)-pMA [ F(t,©3)dt
Gos ’
1-y)T — T
2Ky — A (f(T T E (1, Ryt - I; F(t,@l)dt) 3
TG, — G (23)
forO<y< %.

Theorem 3.3. Let F: [0, T] X R?> — R be non-negative. Assume that there exist positive constants y < %, 01,605, 03
and nwith 6, < (2pMK2)"? 1 and 2pMK1)"? 1 < 0, < O3 such that

(A1)

7

T T T
Jy F(t,@)dt [ F(t,©y)dt [ F(tOs)dt
max P ’ 4 eF —o°
6 0, 37 2

L LS R ey ar
p]_VI 2K117p N

Then, for every

2Ky 1 A 0, 6, -0,

A€ )T " ,ﬂmin{ T ' P
IR G N I CICAT Jy F&©ndt [ F(t,©y)dt [ F(t0s)dt
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and every non-negative function G : [0, T] x R? — R satisfying G? > 0, there exists 6, > 0 given by
(3.1) such that, for each 6 € [0,0,¢|, the system (1.1) has at least three solutions u;, u, and u3 such that
maXge(o,r] [u1 (H)] < 01, maxiejo 1) [z (B)] < 62, and maxiejo,1) [uz ()| < Os.

Proof. Our aim is to apply Theorem 1 to the system (1.1). We take X = Ef, x E; and introduce the functionals

¢, ¥ and I, as in (3.1), (3.2) and (3.3) respectively, for (1, v) € X. We easily observe that
infx = ¢ (0) = W (0) = 0. Obviously according to lemmas 5 and 6, the functionals ¢ and v’ are satisfy
the required conditions in Theorem 1. Moreover

im ¢ u,0) = (3.2)

ll(u,0)l|>+00

namely ¢ is coercive.
ForO0<y < ’1] define

z = (z1,22) by

re-o
Tt te[0,T[,

z1(t) = F(2 a)yn, telyT,1-y)T],
“)" (T—t),t€l(1-9)T,T]

and

r(z ﬁ)”t te[0,yTl,
)= T(2- ﬁ)n,te[yT(l Tl

D (1 — 1), tel(1 - )T, T]

Clearly z1 (0) = z1 (T) = 22 (0) = z (T) = 0 and (21, 22) € (L* ([0, T1))?. A direct calculation shows that
),Ttl @ tel0,yT|,
0§z (f) = L(A—(t-y1) "), tepT,a-NT],
T 1-a 1-a
E(A = =yT) = (t-(1-9T) ), teld =T, T].
and
P, e [0,)TI,

oDizy () = y’—'T(tl-ﬁ—(t—yT)l”‘) teyT,-p)T]
L(AF—t—yT) " = (t-A-»T) "), teld-NT,TL

Furthermore,
T P yT  (A-pT T
it = [oohomzola=( [+ [+ [ oohomof
0 v 0 yI  (1-))T
= pA(ay),
and
T p yI A-pT T
P B P n 8 14
ikt = [eoppizofa=(L3 [+ [+ [ eoppEola
0 0 yI  (A-p)T

pPB(B,7)-
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Thus, z = (z1,22) € X. By using (3.2) we have

2Kn7 < ¢ (2) < 2Ky

P i3
1

Choose r1 = peM, = ;TZA and 73 = o (6’37 - 65). From the conditions 03 > 05, 0; < (ZpMKz)l/p n and

(2pMK1)1/ P1n < 6, we achieve r; > 0, and r; < ¢(z) < rp. From the definition of ¢ and considering Egs.
(2.3), (2.5) and (3.4) one has

¢ (—eoir) = {0 eX: ¢ u0)<n|

1 1
c {(M,U)EXI—IIMHZ+EIIUI|Z Sﬁ}

N

N

{a,0) € X llully + oIt < pr:

{(  C@’ei(@-1g+ 1)

Tra-1

T p_0 -1 1 %
sl %;if_l V1D sprl}

N

il +

{(w,0) € X - |ulf + o] < Mpr1}
{,0) € Xt luf + ol < 07}

Hence, since F is non-negative, one has

IA

T
f max F(t,x1,xp)dt
0 (x1,x2)eQ(61)

T
f F(t,0,)dt.
0

T
sup f F(t,u(t),v(t)dt

uep=1(—oo;ry) YO0

IA

In a similar way, we have

T T
sup fF(t,u(t),v(t))Sf F(t,0,)dt
0

uep=1(—o0;r2) JO

and

T T
sup fF(t,u(t),v(t))Sf F(t,®;)dt.
0

uep=1(—oo;rp+r3)
Therefore, since 0 € gb‘1(—oo; r1) and @ (0) = W (0) = 0, one has

o (P ) - W )
T : = m
Pin uep=1(—o0,ry) rn-—¢ (u)
Supuap*l(—oo,rl) W (u)
"
T
SUP,p 1(eop o |F (b1 (1), 0(0) + 3G (t,u(t), v ()] dt

"n

(24)

IA

IA

7

y ) F(t,©1)dt + 2GO
pIVL

P
91



IA

@ (r2)

IA

and

y (ra,13)

<
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Supueqﬁﬂ(—oo,m) W (Ll)

72
SUP, e 1(coorm) o |[F (62 (1), 0(0) + 2G (¢, u (1), 0 (1)] dt

2
y ) E(t,©)dt + 2G

p
62

7

Supuajfl(—oo,rzwg) W (M)
r3
T
SUP 51 (cooraery o |F (b4 (), 0(0) + 8G (tu (t), v ()] dt

r3

) E(t,©3)dt + 2GO
0, - 0,

pM.

On the other hand, for each u €, q5‘1 (—c0, 1) one has

ﬁ (7’], 72)

v

S gt [[F6.00 4 (76, ")
¢ (2) = ¢ (u,v)

fy(Tl—V)TF (t,m)dt - fOTF(t, ©)dt+ 2 (TGn _ Gal)

ZKlnp .

Since 6 < 6,6, one has

1 6 —pMA [ F(t,©)dt

6 < — 7
pM G
this means
) E(t,©)dt + 26 1
1 P :
o A
Furthermore,

2Ky — A (fy(Tlf‘V)TF(t,ﬁ) dt — foTF(f, @1)dt)

o<

this means

T

[ U p (¢ myde - [ E® @ dt+ 2 (TG, - G*)

TG, - GO

1
ZKlT]p > X

2839

(25)

(26)

(27)
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Then,
1-y)T — T
J Et©)dt+2GH 4 (T ") F(t,mdt— [) F(t,©)dt+$ (TG, - G*) 6.10)
< =< = . .
pLMGF; A ZKlnp

In a similar way, we have

. 1-y)T — T
) E(t,©)dt + 2Ge: 1 y(T DR Mt - [} F 00t + 2 (TG, - G*) (3.11)
16 1 2Kyrp

and

. 1-9)T — T
[TF@,05)dt+ 26 1 LSRG M- [ F0nde+ 8 (TG, - 6%)
SICECI iy

(3.12)

Hence from (3.6) — (3.12), we get
a(ri,ra,13) <B(ri, ).

Now, we show that the functional I satisfies the assumption (a,) of Theorem 1. Let u* = (u* uy, ..., u;)

1 Wy e
and u™ = (u;*, Uy, .y u;*) be two local minima for I;. Then u* and u™ are critical points for I,, they are weak
solutions for the system (1.1). Since we assumed F is non-negative and since G is non-negative, for fixed
A>0and u >0 we have

F(t,su*+ (1 —s)u™) + %G (t,su* + (1 —=s)u™) = 0, and consequently, W (¢,su* + (1 —s)u™) > 0 for all s €
[0,1]. Hence, Theorem 2 implies that for every

2Kq1pP 1 6 6) 0 — 0]

A€ (1—))T - ,—Mmin T ' T ' T
L F@ - [ Fenar P Jy Ft,©)dt [ F(t,©)dt [ F(t,0s)dt

and 6 € [0, 6, ¢[ the functional I has three critical points u;,i = 1,2, 3, in X such that ¢ (u1) <1, ¢ (u2) <1
and ¢ (u3) < ry + r3, that is, maxeejo,r7 [11 ()] < 01, maxeepo,7 [u2 (£)] < 02, and maxeo,77 [us ()] < O3. Then,
taking into account the fact that the weak solutions of the system (1.1) are exactly critical points of the
functional I we have the desired conclusion. [J

For positive constants 01, 84 and 7, set

M GO 4 Oy
p T

T
6;\,6 = min , HZ’Z”MAC!(;:(L@OW } ) (313)

2k =A( [ Bk Fe. 00
TG,-G%

, p_ T, 94 04
L i {QIl—pM/\ [T Eey)ar O4-2pMA Ly F (’" A %)ﬂ“

where 0 < y < %.

Theorem 3.4. Let F: [0, T] X R" — R satisfy the condition F (t,x1,x3) > 0 for all (t,x1,x2) € [0, T] X R?. Assume
that there exist positive constants y < %, 61, 04 and n with 61 < min =n, (ZpMKz)l/ b r]} and (4pMK1)1/ P < 04 such
that
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(A2)
1-9)T —
[ E@®)dt 2 [ F(t,©y)dt 1 y(T T E (8, 7)dt
max , < .
971’ QZ 1+ 2pMK; n?
Then, for every
(1+2pMKy) 1 1 . eri QZ

AeAN =

N R e
pryT F(t,m)dt Jy F(¢,©y) |y F(¢,0y)

and every non-negative function G : [0,T] X R" — R satisfying G? > 0, there exists &} . given by
(3.13) such that, for each 6 € [0,0, [, the system (1.1) has at least three solutions u5, up, and u3 such that

maxepo,r [1 (£)] < 01, maxseqo,r |tz ()] < %, and maxiego 1y |43 (£)] < 64

Proof. Choose 0, = f,—é and 03 = 04. So, by using (A2) one has

T T o o
Freena 207G )
0, GZ
2 [ F(t, 0 dt
< QZ
1-)T B
L R §
L+ ZPMKl r]P (
and
T T
J(; F(t,©3)dt ZJ(; F(t,©,)dt
0% - 65 o
1-9)T _
L S e
1+ 2pMK; 7 .

Moreover, taking into account that 6, < n?, by using (A2) we have

[ U E ¢ 7y e ) E(t,©1)dt

T
2pMK; P
f(l_}’)TF(t —= T
1y mdt - [TF(6y)dt
7 2pMK; 7 T oMK, 6
. ) UNTE 1 7 ar
2pMK; P

1-y)T —
) fy(r ) F(t,7)dt
2pMK; (1 + 2pMKj) 0P
1-y)T —
1 fy(T ) F(t,n)dt
1+2pMK; 7 ‘
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Hence, from (A2), (3.14) and (3.15), it is easy to see that the assumption (A1) of Theorem 2 is satisfied,

and since the critical points of the functional ¢ — AW are the weak solutions of the system (1.1) we have the
conclusion. [

Now, we present the following example in which the hypotheses of Theorem 2 are satisfied.

Example 3.5. Consider the following system

DY (5 ®s (w1 (99 DYy (1)) + |y = AFy, (w1, u) + Gy, (111, 12) £ €[0,1],
DY (g5 ®s (w2 (g DYz (1)) + a1z = AF, (11, 12) + 6Gy, (111, u2) £ € [0,1], (3.16)

ur (0) =u1 (1) =0,u2(0) =2 (1) =0,

where

_ 1 _ 1
e Ml +e kel ifx;x, #0,
1
Tl i =
F(xllxz) — e I ifx; =0, xp #0,

1
e il ifx; #0, xo =0,
0 ifx1=0,x2:0.

For simplicity we choose w; (t) = wy (t) = 1, = 1. Choosing y = i, 6, =10 604 =10% and n = 1, we
clearly observe that all assumptions of Theorem 2 are satisfied. Hence, for every

2 1 1
0.5(I'(0.85) (1 T 1051185 5x105(F(0.85))2)
A € - -
¢ TaD 4 ¢ TaD
1 1
+0'6188 (1 + 106(I'(1.85))% + 5x105(r(0.85))2)

7

1 1
e’ T(135) 4 ¢ T3

1- L - - 8
105(1(1.85))>  5x105(0(0.85)> 10
(T (0.85))° de” it

for every non-negative function G : R? — R satisfying G® > 0, there exists &/ . > 0 such that, for each
0 € [0,05cl, the system (3.16) has at least three solutions u1, 13, and u3 such that maxejo, 1y [u1 ()| < 1074,

maxe[o,1] lu2 ()| < %, and maxefo,1j |13 ()] < 108.

Remark 3.6. When F does not depend on t, in Theorem 2 the assumption (A1) can be written as

max ) £©) F©) F@©) | 1 (1-2))TF() — TF(©1)
o " o "o-e) pM 2Ky '

as well as

A=

2Ky L (8 e e-a
— ’ min ’ ’
(1-2))TE() - TE(©y) pTM " | F(@,) F(©,)’ F(©5)
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and
s . 1 . {eﬁ—pMATF((al) 6,~pMATE(®2)
LG ¢ =min oM min oo , oo ,
(65-65)-pMATF(©3)
Go !
2KinP = A((1 =2y)TF(,7) - TF (©1))
TG, - G '

In this case, in Theorem 3 the assumption (A2) follows the form

7

{H@l) oF (@u)} 1 (1-2))TF®)
ax < .

9’1’ QZ 1+ 2pMK; ne
as well as
1+ 2pMKy) P o’ 0"
A = ( p 1)'7_’ 1 min 1 ) 4
pM(1-2y)TF () pTM F(©,)" 2F (©y)
and
, |1 | e-pmTaR@) 0, -2 TMAF(1 75 7%
o G = min<{ — min oo , oo ,

6 ~2pTMAF(©y)
2KinP = A((1 = 2y) TE(77) — TF (t,©1))
TG, - G% '

Remark 3.7. We observe that, in our results, no asymptotic conditions on F and G are needed and only algebraic
conditions on F are imposed to guarantee the existence of solutions. Moreover, in the conclusions of the above results,
one of the three solutions may be trivial since the values of F, (t,0,0) and G, (t,0,0) for every t € [0,T], 1 <1 < n,
are not determined.

As an application of Theorem 2, we consider the following problem

D 2=y (00 Du®)) + e (OF 21 ) = £ 1) + 59 (1, £ € 0,71, .

u0)=u(T)=0,

where % <a<1,Au>0620T>0,0Df and ;D7 denote the left and right Riemann-Liouville

fractional derivatives of order a, respectively, w (t) € L* [0, T] with
w® = ess infjoryw (t) > 0.

Put
F(t,x) = ff(t, &)dt forevery (t,x) € [0, T] X R,
0
G(t,x) = fg(t, &)dt forevery (t,x) € [0, T] xR.
0
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Set
_ a—1
M= 4 >
W (T (@) ((a-1)g+1)1
and
1 T (l—y)T Lea\P
C(a,y) = f -9t 4 f t — (t—yT) ) dt
Y P(VT)p{ 0 )T ( )4 )

! 1- 1-a 1-aP
+f(1_y)T[(t = (t=yD)) -1-((1-)T) ]},

1
for 0 <y <, We suppose that

For positive constants 0 and 7 set
T

GY = max G (t,x)dt and G, := inf
0 I<¥o [0,TIX[0,T(2—a)]

Obviously, if g changes sign on [0, T] then clearly G’ > 0.
Now, we give the following straightforward consequences of Theorems 2 and 3, respectively.

Theorem 3.8. Let f : [0, T] X R — R be a non-negative L*-Carathéodory function. Assume that there exist positive
— 1 — 1
constants y < %, 61,02, 05 and n with 03 > 6, 61 < (pMC (o, )/)) U nand (pMC (a, y)) U 1 < 0y such that

IF (t, /81) dt fOTF(t, {82) dt IE (¢, /85) dt

N S T
1-y)T T
1 fy(T 7) F(tTQ@-a)n)dt— [ F(t,{/0r)dt
p]\_/IC(a,y) Uls '

Then, for every

” n
A e AN :=|(C(a,y) o - ,
Ly E@T@-amdt - | E(t, 4/07)dt
ok o, 0, - 05

rJ_Mmin IE( Ve_l)dt’foTF(t, x"/e_z)dt'fOTF(t, {/05) dt

and every non-negative L'-Carathéodory function g : [0, T] X R — R, there exists 6’;? > 0 given by

5*  : =mi 1 0 —pMA [ F(t, XO7)dt 05—pMA [ F(t, §/07)dt
by 1 =min v min = , = ,
(65-0)-pMA [[" F(t, {05 )at
GO ‘

Clay) —A(fy(Tl_V)TF(t,I“(Z—a)ﬁ)dt— [ (e o) at)
TG, - GO
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such that, for each 6 € [0, 6} cl, the system (3.17) has at least three solutions u;, u, and u3 such that
max;eo, 7 |1 (H)] < 61, maxieo,1y [uz (H)] < 62, and maxe(o,ry | (H)] < O3.
Proof. By a similar argument as given in the proof of Theorem 2 we ensure the existence of the weak
solutions uy, 1>, and u3 such that maxefo,r) [111 (£)] < 61, maxeepo,7] [u2 (t)] < 02, and maxejo,ry [us ()| < 63. O
Theorem 3.9. Let f : [0, T] X R — R be a non-negative L*-Carathéodory function.Assume that there exist positive
— 1 — 1
constants y < %, 01, 04 and n with 61 < min {17, (pMC (a,)/)) 4 17} and (ZpMC (a, 7/)) 4 n < B4 such that

I F(e REn)ar 2 [ F(, 3/6) dt 1 fy(Tl_")TF(t,r(Z—a) n)dt
X .

, <
97;’ Qi 1+ 2pMK; n¥

ma

Then, for every

(1 + pMC (a, y)) n’ o/ oh

Ae|— o ,L_min T » T
M (SR - aymar P | [TE (81 2 [ F (1, 48)

and every non-negative function g : [0, T] X R — R satisfying G? > 0, there exists 6;; > (0 given by

— — T 0,
6%* : =min L in 0,-pMA | F(t YBn)ar O4—2MA F(t’%)’ﬁ
N Vo GO e B
2
0% —2pMA [ F(t,04)dt
2GYs !

Canr-A(f 7 Fere-on - [ B o) @)
TG, - GO

such that, for each 6 € [0,6*’9‘[, the system (3.17) has at least three solutions w1, 1, and u3 such that

maxiejo, 1 11 (£)] < 61, maxiero,ry luz (D] < G, and maxero,ry Ju3 ()] < Oa.
Here, in order to illustrate Theorem 5, we present the following example

Example 3.10.

DY (5®s (w () oD (1)) + lu (t)| e (£) = Af (u) + 59 (u) £ € [0,1],

(3.18)
u@)=ul)=0,
where
4

By expression of we have

X, x<1,
F(x) _{ 5In(x)+1, x> 1.



J. Zuo et al. / Filomat 35:8 (2021), 2827-2848 2846

Taking y = }1, 6:=10"%0,=10*and w(t) = 1, u = 1,we clearly observe that all assumptions of Theorem
5 are satisfied. Then, for each

1 e 0.6(I (0'7))2 (1 - 108(r}1.7))2 - 3><1o7(1r(1.7))2)
(T (1.3))°
1.0110 (1 + 108(r}1.7))2 + 3><107(}“(1‘7))2)
(I (1.3))° '
1- 102(r}1.7))2 - 3><107(;(L7))2 104
1.2(T'(0.7))° 5In(10%) +1

and every non-negative continuous function g : R — IR, there exists S/Lg > 0 such that, for each
o € [0, SMJ[' the system (3.18) has at least three non-negative weak solutions u;,u, and u3 such that
maxefo,r] 11 ()| < 1074, maxeory luz (1) < % and maxqeqo,ry lu3 ()] < 10°.

Now, we list some consequences of Theorem 5 as follows.

Theorem 3.11. Let f be a non-negative continuous and nonzero function such that

tim 29~ i L9 (3.19)

x—0* |x|p_1 e |x|F7_1

for every A > A" where

A= inf{(lj PMC (e ) :
pMTE (I (2 - a) 1)

n>0, F(F(2—a)17)>0}.

Then there exists

R rV3 Oy
Qfl’ _ PM)\TF({/Q_l) GZ - ZpM)\TF(%)

6ry = ming-—min

pM GO ! ZG% ’
0, — 2pMATF (X/0s)
2GY: !
Cla,y) " = A((1-2y) TE(T (2 - @) - TF(4/01)) “
TG, - GO ' (30)
where 01, 64 and y are positive constants with y < %, such that for each 6 € [0, 5/\,9[, the problem
D2 (s ®p (w0 (B DI (D)) + ol (O (B) = Af (u) + 69 (), £ € [0,T],

(3.21)

u©0)=u(T) =0,

where g : R — R is a non-negative continuous and nonzero function, has at least two distinct positive
weak solutions.
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Proof. Fix A > A*, put F (x) = ff (&)dé for all x € R and let > 0 such that F(I' (2 — a) ) > 0 and
0

N (1 +pMC (a, )/)) nP
pMTF (T (2 - a)n)

. . — 1/p F
From (3.19) there is 6; > 0 such that 6; < min {17, (pMC (a, 7/)) 17} (W) < m and 6,4 > 0, such
K 2/4674) < . Therefore, Theorem 3 ensures the conclusion. [

that (ZpA_/IC (a, y))l/p n < 64 and ZPMTA

Finally, by the way of example, we point out the following simple consequence of Theorem 6 when
6=0.

Theorem 3.12. Lef f : R — Rbe a continuous function such that xf (x) > 0 for all x # 0 and

WO W

= lim
x—)()+ |x[P~ Tvp-1 Il —-+oo |x[P™ IplP-1
Then, for every A > A where

1+ 2pMC (,7)
pMT

— 14 P
A= X max {mf i i (=) }

inf
>0 F(T(2-a)n) n<0 F(T (2 - a)n)
the problem (3.21), in the case 6 = 0 has at least four distinct non-trivial weak solutions.

Proof. Setting

, if x <0,

h) = {f(x) if x> 0.
and

0, ifx <0,

fa(x) ={ —f(=x),if x> 0.

and applying Theorem 6 to f; and f, we have the result. [
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