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Abstract. In this paper, we introduce the concept of topological Γ-semihypergroups as a generalization
of topological semihypergroups and topological semigroups. Also, we present the new connection be-
tween topological Γ-semihypergroups and topological semihypergroups by a special equivalence relation.
Moreover, we define and consider quotient maps and homomorphisms on topological Γ-semihypergroups.

1. Introduction

Algebraic hyperstructures represent a natural generalization of classical algebraic structures. In a classi-
cal algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure,
the result of this composition is a set. Hyperstructure theory was born in 1934, when Marty, a French
mathematician, at the 8th Congress of Scandinavian Mathematicians gave the definition of hypergroup and
illustrated some of their applications, with utility in the study of groups, algebraic functions and rational
fractions. A comprehensive review of the theory of hyperstructures appears in [1, 2].

The concept of Γ-semigroup introduced by Sen [16] as a generalization of semigroup . We note that
many classical notions and results of the theory of semigroups have been extended and generalized to
Γ-semigroups[11–13, 15]. Davvaz et. al. [9], introduced the notion of Γ-semihypergroup as a generalization
of a semigroup, a generalization of a semihypergroup, and a generalization of a Γ-semigroup. They defined
the notion of ideal, prime ideal, extension of an ideal in Γ-semihypergroups and proved some results
in this respect and present many examples of Γ-semihypergroup. Also, they introduce the notions of
quotient Γ-semihypergroup by using a congruence relation, and introduce the notion of right Noetherian
Γ-semihypergroups. Also, we can see another Γ-hyperstructure in [4–7].

Let G be a semigroup and T be a topology on G such that the mappings (x, y) 7−→ xy from G×G to G be
continuous. Hence a topological group is a set endowed with two structures, namely that of a topological
space and that of a group. These structures are connected in such a way that algebraic properties of the
group affect topological properties of the space, and vice versa[10]. The concept of topological polygroups
introduced by Davvaz et. al. [8] as a generalization of topological group is a nonempty set endowed with
two structures, that of a topological space and that of a hypergroup.

In this paper, we introduce the concept of topological Γ-semihypergroups as a generalization of topo-
logical semigroups and consider connection between topological Γ-semihypergroups and topological semi-
hypergroups. Also, we prove some properties about them. Finally, we define and consider quotient maps
on topological Γ-semihypergroups.
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2. Preliminaries

In this section, we introduce some preliminaries theorems and definitions of semihypergroups and
topological semigroups.

Let H be a nonempty set and ◦ : H × H −→ P∗(H) be a hyperoperation, where P∗(H) is the set of all
nonempty subsets of H. Then, couple (H, ◦) is called a hypergroupoid. For any two nonempty subsets A
and B of H and,Corsini and Leoreanu Book x ∈ H, we define

A ◦ B =
⋃

a∈A,b∈B

a ◦ b, A ◦ {x} = A ◦ x, {x} ◦ B = x ◦ B.

A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of H, we have (a ◦ b) ◦ c = a ◦ (b ◦ c), which
means that ⋃

u∈a◦b

u ◦ c =
⋃

v∈b◦c

a ◦ v.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a of H, we have a ◦H = H ◦ a = H.

Definition 2.1. ([2]) A hypergroupoid (H, ◦) which is both a semihypergroup and a quasihypergroup is
called a hypergroup.

Definition 2.2. ([2]) Let (H1, ◦) and (H2, ∗) be semihypergroups. Then, a map ϕ : H1 −→ H2 is called a
homomorphism if it satisfies the following condition:

ϕ(x ◦ y) = ϕ(x) ∗ ϕ(y),

for every x, y ∈ H1.

Definition 2.3. ([3]) A nonempty subset B of a semihypergroup H is called a subsemihypergroup of H if
B ◦ B ⊆ B.

Definition 2.4. ([3]) A nonempty subset I of a semihypergroup (H, ◦) is called a right (left) ideal of H if for
all x ∈ H and r ∈ I,

r ◦ x ⊆ I(x ◦ r ⊆ I).

Definition 2.5. ([14]) A topological semigroup is a semigroup G together with a topology on G such that
the mapping p : G×G −→ G defined by p(1, h) = 1h is continuous when G×G is endowed with the product
topology.

We remark that the map p : G×G −→ G is continuous if and only if whenever U ⊆ G is open, and 11, 12 ∈

U, then there exist open sets V1,V2 such that 11 ∈ V1, 12 ∈ V2, and V1V2 = {v1v2 : v1 ∈ V1, v2 ∈ V2} ⊆ U.

3. Topological Γ-Semihypergroups

In this section, we present the concept of topological Γ-semihypergroups as a generalization of topolog-
ical semigroups. Also, we connect topological Γ-semihypergroup to topological semihypergroup and we
present a connection between them.

Definition 3.1. ([9]) Let H and Γ be nonempty sets. Then, H is called a Γ-semihypergroup if for every α ∈ Γ,
there exists a hyperoperation ⊕α : H ×H −→ P∗(H), where P∗(H) is the set of all nonempty subsets of H and
for every α, β ∈ Γ and x, y, z ∈ H,

(x ⊕α y) ⊕β z = x ⊕α (y ⊕β z),

which means that ⋃
u∈x⊕αy

u ⊕β z =
⋃

v∈y⊕βz

x ⊕α v.
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Let H be a Γ-semihypergroup and for every α ∈ Γ, there exists eα ∈ H such that

∀x ∈ H, x ∈ (x ⊕α eα) ∩ (eα ⊕α x) , ∅.

Then, G is said to be an unitary Γ-semihypergroup.

Example 3.2. Let H and Γ be nonempty subsets. Then, H is a Γ-semihypergroup by following hyperopera-
tions:

x ⊕α y = {x, α, y},

where x, y ∈ H and α ∈ Γ.

Example 3.3. Let (H, ◦) be a semihypergroup and Γ = {α, β}. Then, H is a Γ-semihypergroup by following
hyperoperations:

x ⊕α y = H, x ⊕β y = x ◦ y,

where x, y ∈ H.

Example 3.4. Let G be a semigroup and Γ be a nonempty subset of G and H =
⋃
1∈G A1, where {A1 : 1 ∈ G}

be a family of disjoint nonempty sets. Then, H is a Γ-semihypergroup by following hyperoperations:

x ⊕α y = A1,

where x, y ∈ H, x ∈ A1x , y ∈ A1y and 1 = 1xα1y.

Definition 3.5. Let H be a Γ-semihypergroup and I be a nonempty subset of H. Then, I is called a left(right)
Γ-hyperideal if for every r ∈ I, x ∈ H and α ∈ Γ,

r ⊕α x ⊆ I(x ⊕α r ⊆ I).

Example 3.6. In Example3.4, let G = (Z, ·) and Γ be a nonempty subset of Z. Then, R =
⋃

n∈Z An, where
An = [n,n + 1) is a Γ-semihypergroup. Also, for every m ∈ Z, I = {An : n ∈ mZ} is a Γ-hyperideal.

Let (H, ◦) be a Γ-semihypergroup, R be an equivalence relation on H, and A,B be two nonempty subsets
of H. Hence, ARB, meanies that for all a ∈ A there exists b ∈ B such that aRb and for all b ∈ B there exists
a ∈ A such that aRb. Also, ARB, meanies that for all a ∈ A and for all b ∈ B we have aRb.

Definition 3.7. Let H be a Γ-semihypergroup. Then, the equivalence relation R on H is called:

(1) Regular on the right (on the left), if for all x ∈ H andα ∈ Γ, aRb, it follows (a⊕αx)R(b⊕αx)((x⊕αa)R(x⊕αb));

(2) Strongly regular on the right (on the left), if for all x ∈ H and α ∈ Γ, aRb, it follows (a ⊕α x)R(b ⊕α
x)((x ⊕α a)R(x ⊕α b));

(3) R is called regular (strongly regular), if it is regular (strongly regular) on the right and on the left.

Definition 3.8. Let H be a Γ-semihypergroup and n ∈N. Then, we define

xβny⇐⇒ ∃xi ∈ H, αi ∈ Γ, 1 ≤ i ≤ n − 1 : {x, y} ⊆
n−1∏
i=1

(xi ⊕αi xi+1),

also, define β =
⋃

n≥1 βn and denote β∗ as a fundamental relation.

Theorem 3.9. Let H be a Γ-semihypergroup. Then, the relation β∗ is a smallest strongly regular on H.
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Proof. Suppose that aβ∗b, α ∈ Γ and x be an arbitrary element of H. It follows that there exist x0 =
a, x1, ..., xn = b such that for every 1 ≤ i ≤ n, we have xiβxi+1. Let u ∈ a ⊕α x and u2 ∈ b ⊕α x. Then, there
exists a hyperproduct Pi such that {xi, xi+1} ⊆ Pi and so xi ⊕α x ⊆ Pi ⊕α x and xi+1 ⊕α x ⊆ Pi ⊕α x. Hence,

(xi ⊕α x)β(xi+1 ⊕α x). Also, for every 0 ≤ i ≤ n − 1 and si ∈ xi ⊕α x, we have siβsi+1. We consider s0 := u1 and
sn := un, then we obtain u1β∗u2 and the relation β∗ is a right strongly regular relation. Similarly, it is strongly
regular on the left.

Let R be a strongly regular relation on H. Then, we have β1 = {(x, x) : x ∈ H} ⊆ R, since R is reflexive.
Suppose that βn−1 ⊆ R and aβnb. Then, there exist x1, x2, .., xn ∈ H and α1, α2, ..., αn−1 ∈ Γ such that

{a, b} ⊆
n−1∏
i=1

(xi ⊕αi xi+1).

Hence, there exists u, v ∈
∏n−2

i=1 (xi ⊕αi xi+1) such that a ∈ (u ⊕αn−1 xn) and b ∈ (v ⊕αn−1 xn). We have uβn−1v and
according to the hypothesis, we obtain uRv. Since R is strongly regular, it follows that aRb. Hence, βn ⊆ R
and it follows that β ⊆ R. Therefore, β∗ ⊆ R.

Definition 3.10. Let H be a Γ-semihypergroup and C be a nonempty subset of H. Then, C is called a
complete part when,

C ∩
n∏

i=1

(xi−1 ⊕αi−1 xi) , ∅ =⇒

n∏
i=1

(xi−1 ⊕αi−1 xi) ⊆ C,

where xi ∈ H and αi ∈ Γ.

Theorem 3.11. Let H be a Γ-semihypergroup and R be an equivalence relation on H.

(1) If R is a regular, then H/R is a Γ-semihypergroup, with respect to the following hyperoperation:

R(x) ⊗α R(y) = {R(z) : z ∈ x ⊕α y},

where R(x),R(y) ∈ H/R and α ∈ Γ.

(2) If the above hyperoperation is well defined on H/R, then R is regular.

Proof. The proof is straightforward.

Theorem 3.12. Let H be a Γ-semihypergroup and R be an equivalence relation on H.

(1) If R is a strongly regular, then H/R is a Γ-semigroup, with respect to the following operation:

R(x) ⊗α R(y) = R(z), z ∈ x ⊕α y,

where R(x),R(y) ∈ H/R and α ∈ Γ.

(2) If the above operation is well defined on H/R, then R is strongly regular.

Proof. The proof is straightforward.

We present a connection between Γ-semihypergroups and semihypergroups as follows:
Let H be a Γ-semihypergroup and the relation ρ defined on

H × Γ = {(x, α) : x ∈ H, α ∈ Γ},

as follows:
(x, α)ρ(y, β)⇐⇒ ∀z ∈ H, x ⊕α z = y ⊕β z.
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This relation is an equivalence. Also, the set Ĥ = {ρ(x, α) : x ∈ H, α ∈ Γ} is a semihypergroup by following
hyperoperation:

ρ(x, α) ◦ ρ(y, β) = {ρ(z, β) : z ∈ x ⊕α y}.

Hence, (Ĥ, ◦) is a semihypergroup.
There is a connection between nonempty subsets of H and Ĥ as follows:

Definition 3.13. Let H be a Γ-semihypergroup and A ⊆ H, B ⊆ Ĥ. Then, we define

Â = {ρ(x, α) : x ∈ A, α ∈ Γ},

B
′

= {x ∈ H : ∃α ∈ Γ, ρ(x, α) ∈ B}.

Proposition 3.14. Let H be a Γ-semihypergroup. Then:

(1) if I is a Γ-hyperideal of H, then Î is a hyperideal of Ĥ.

(2) if H is an unitary Γ-semihypergroup and Î is an ideal of Ĥ, then I is a Γ-hyperideal of H.

(4) when H is an unitary Γ-semihypergroup and A ⊆ H and C ⊆ Ĥ, then (Â)
′

= A, (̂C′ ) = C.

(5) ÂΓB = Â ◦ B̂.

Proof. The proof is straightforward.

Proposition 3.15. Let H be a Γ-semihypergroup and A,B ∈ P∗(Ĥ). Then, (A∪B)′ = A′∪B′ and (A∩B)
′

= A′

∩B′ .

Proof. Since A,B ⊆ A ∪ B, implies that A′

,B′ ⊆ (A ∪ B)
′

. Hence A′

∪ B′ ⊆ (A ∪ B)
′

. Let x ∈ (A ∪ B)
′

. Then,
for some α ∈ Γ such that ρ(x, α) ∈ A ∪ B. Hence ρ(x, α) ∈ A and ρ(x, α) ∈ B, implies that x ∈ A′

or x ∈ B′ .
Therefore, A′

∪ B′ = (A ∪ B)
′

. Similarly, we can see (A ∩ B)
′

= A′

∩ B′ .

Proposition 3.16. Let H be an unitary Γ-semihypergroup and {Ui}i∈I be family of Γ-hyperideals of H. Then,⋃̂
i∈I Ui =

⋃
i∈I Ûi.

Proof. Suppose that ρ(x, α) ∈
⋃̂

i∈I Ui. Then, for some x1 ∈
⋃

i∈I Ui and α1 ∈ Γ such that ρ(x, α) = ρ(x1, α1).
Hence, for every z ∈ H, x⊕α z = x1 ⊕α1 z. Also, x ∈ x⊕α eα = x1 ⊕α1 eα ⊆ Ui. This implies that ρ(x, α) ∈ Ûi, for
some i ∈ I and

⋃̂
i∈I Ui ⊆

⋃
i∈I Ûi. In the same way,

⋃
i∈I Ûi ⊆

⋃̂
i∈I Ui and this completes the proof.

Proposition 3.17. Let H be an unitary Γ-semihypergroup and U1,U2 be two Γ-hyperideals of H. Then, ̂U1 ∩U2 =

Û1 ∩ Û2.

Proof. Suppose that ρ(x, α) ∈ ̂U1 ∩U2. Hence ρ(x, α) = ρ(x1, α1), for some x1 ∈ U1 ∩U2 and α1 ∈ Γ. Then, for
every z ∈ H, x ⊕α z = x1 ⊕α1 z. Since H is an unitary Γ-semihypergroup, we have x ⊕α eα = x1 ⊕α1 eα, which
implies that x ∈ x1 ⊕α1 eα. Since x1 ∈ U1 ∩ U2 and U1,U2 are Γ-hyperideals of H, we have x1 ∈ U1 ∩ U2.
Hence, ̂U1 ∩U2 ⊆ Û1 ∩ Û2. Now, let ρ(x, α) ∈ Û1 ∩ Û2. Then, ρ(x, α) ∈ Û1, ρ(x, α) ∈ Û2 and by a similar
argument x ∈ U1 and x ∈ U2. Therefore, Û1 ∩ Û2 ⊆ ̂U1 ∩U2.

Proposition 3.18. Let H be an unitary Γ-semihypergroup and A,B be non-empty subsets of H such that B be a
Γ-hyperideal. Then, A ⊆ B⇐⇒ Â ⊆ B̂.

Proof. Suppose that ρ(x, α) ∈ Â. Then, there exist x1 ∈ A and α1 ∈ Γ such that ρ(x, α) = ρ(x1, α1). Since
x1 ∈ A ⊆ B, then x1 ∈ B and ρ(x, α) ∈ B̂. we conclude that ρ(x, α) ∈ B̂ and this means that Â ⊆ B̂.

Conversely, let x ∈ A. Then, for every α ∈ Γ, ρ(x, α) ∈ Â ⊆ B̂. Hence, ρ(x, α) ∈ B̂. So, there exist x1 ∈ B
and α1 ∈ Γ such that ρ(x, α) = ρ(x1, α1). Hence, for every z of H, x ⊗α z = x1 ⊗α1 z. We set z := eα, then
x ⊗α eα = x1 ⊗α1 eα and so we obtain x ∈ x1 ⊗α1 eα ⊆ B ⊗α1 H ⊆ B. Therefore, x ∈ B and we conclude that
A ⊆ B.
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Corollary 3.19. Let A and B be an unitary Γ-hyperideals of Γ-semihypergroup of H. Then,

A = B⇐⇒ Â = B̂.

Definition 3.20. Let H be an unitary Γ-semihypergroup and T is a topology on H such that every element
of T is a Γ-hyperideal of H. Then, T is called ideal topology on H.

In this paper, T is an ideal topology on Γ-semihypergroup H.
Every topology on Γ-semihypergroup H induce a topology on Ĥ as follows:

Proposition 3.21. Let H be a Γ-semihypergroup and T be a topology on H. Then, T̂ is a topology on Ĥ.

Proof. By Proposition 3.14, for every Γ-hyperideal A ∈ T, Â is a hyperideal of Ĥ. Let Â, B̂ ∈ T̂ and {Âi}i∈I be
a family of T̂. Then, by Proposition 3.16 and Proposition 3.17, Â ∩ B̂ = Â ∩ B ∈ T̂ and

⋃
i∈I Âi =

⋃̂
i∈I Ai ∈ T̂.

Also, ∅ ∈ T̂ and Ĥ ∈ T̂. This complete the proof.

Lemma 3.22. Let T be a topology on Γ-semihypergroup H. Then, the family ∆ consisting of all

SV̂ = {Û ∈ P∗(Ĥ) | Û ⊆ V̂, V̂ ∈ T̂},

is a base for a topology on P∗(Ĥ), where V ∈ T.

Proof. Suppose that SV̂1
,SV̂2

∈ ∆, where V1,V2 ∈ T. Since, SV̂1
∩ SV̂2

= SV̂1∩V2
as ̂V1 ∩ V2 ∈ T̂ and SĤ = P∗(Ĥ),

implies that ∆ is a base for a topology on P∗(Ĥ).

The topology on P∗(Ĥ) defined by Lemma 3.22, denoted by T̂∗.

Definition 3.23. Let T be a topology on Γ-semihypergroup H. Then, H is called topological Γ-semihypergroup,
when for every α ∈ Γ, the hyperoperation ⊕α : H × H −→ P∗(H), such that (x, y) 7−→ x ⊕α y is continues. A
topological Γ-semihypergroup is said to be with unit, when H is an unitary Γ-semihypergroup.

Proposition 3.24. Let H be a topological Γ-semihypergroup. Then, ŜV = SV̂.

Proof. The proof is straightforward.

Proposition 3.25. Let H be a topological Γ-semihypergroup and τ be a topological space on H. Then, (SV̂)′ = SV.

Proof. The proof is straightforward.

Every regular relation on Γ-semihypergroups, induces a regular relation on associated semihypergroups
as follows:

Proposition 3.26. Let H be a Γ-semihyperroup and R be a regular relation on H. Then, R̂ is a regular relation on Ĥ,
where

ρ(x1, α1)R̂ ρ(x2, α2)⇐⇒ ∀z ∈ H, (x1 ⊕α1 z)R(x2 ⊕α2 z).

Proof. Suppose that R be a regular relation on H. Obviously, R̂ is an equivalence relation on Ĥ. Let
ρ(x1, α1), ρ(x2, α2), ρ(x, α) ∈ Ĥ such that ρ(x1, α1)R̂ρ(x2, α2). Then, for every z1 ∈ H, (x1 ⊕α1 z1)R(x2 ⊕α2 z1). Let
z1 := x ⊕α z, where z ∈ H. Then,

(x1 ⊕α1 (x ⊕α z))R(x2 ⊕α2 (x ⊕α z)).

This implies that for every z ∈ H,

((x1 ⊕α1 x) ⊕α z))R((x2 ⊕α2 x) ⊕α z)).

Hence,

(ρ(x1, α1) ◦ ρ(x, α))R̂(ρ(x2, α2) ◦ ρ(x, α)).

This implies that R̂ is a right regular relation. Similarly, the relation R̂ is a left regular relation.
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Corollary 3.27. Let H be a Γ-semihypergroup and R be a strongly regular relation on H. Then, R̂ is a strongly
regular relation on Ĥ.

Definition 3.28. Let H be a topological Γ-semihypergroup and R be a regular (strongly regular) on H. Then,
we have the projection mapπ : H −→ H/R, withπ(x) = R(x). We equip H/R by the topology, where O ⊆ H/R
is open when π−1(O) is an open subset of H.

Lemma 3.29. Let H be a topological Γ-semihypergroup such that every open subsets be complete parts and β∗ be a
fundamental relation on H. Then, the projection map π : H −→ H/β∗, with π(x) = β∗(x) is an open map.

Proof. Suppose that O is an open subset of H and x ∈ π−1(π(O)). Hence, π(x) ∈ π(O) and there exists a ∈ O
such that π(x) = π(a). Since O is open so there exists an open subset O1 of H such that a ∈ O1 ⊆ O. Also,
π(x) = π(a), implies that β∗(x) = β∗(a). So there exist a nonzero natural n and x1, x2, ..., xn of H such that
x1 = x, xn = a and xiβnxi+1, where 1 ≤ i ≤ n − 1. It follows that, there exists a hyperproduct Pi such that,
{xi, xi+1} ⊆ Pi. Hence, O1 ∩ Pn , ∅. Since O1 is a complete part, {xn−1, xn} ⊆ Pn ⊆ O1. After a finite number of
steps, we obtain that x = x1 ∈ O1 ⊆ O. Hence, x ∈ O1 ⊆ π−1(π(O)). Thus, x is an interior point of π−1(π(O))
and π−1(π(O)) is open in H. Therefore, π is an open map.

Example 3.30. Let (G,T) be a topological semigroup and H be a Γ-semihypergroup defined in the Example
3.4. Then, (H,TH) is a topological Γ-semihypergroup, where TH =

{⋃
1∈O A1 : 1 ∈ O,O ∈ T

}
∪ {∅}.

Example 3.31. The total Γ-semihypergroup H (the combination of any two elements is the set H) with every
arbitrary topology T, is a topological Γ-semihypergroup.

Example 3.32. Let H be a Γ-semihypergroup and T = {∅,X}. Then, for every α ∈ Γ, the map ⊕α : H ×H −→
P∗(H) is continues.

Proposition 3.33. Let H be a topological Γ-semihypergroup with unit. Then, there is a corresponding between open
subsets H and Ĥ.

Proof. Suppose that O ⊆ H is an open subset of H. Then, O =
⋃

i∈I Oi, where Oi ∈ T. By Proposition 3.14,
Ô =

⋃̂
i∈I Oi =

⋃
i∈I Ôi. Since Ôi ∈ T̂, implies that Ô is an open subset of Ĥ. Conversely, assume that O is an

open subset of Ĥ. Then, O =
⋃

i∈I Ôi, where Ôi is an open subset of T̂. Hence, by Proposition 3.14,

O
′

=

⋃
i∈I

Ôi


′

=
⋃
i∈I

(Ôi)
′

=
⋃
i∈I

Oi.

Therefore, O′

is an open subset of H.

There is a connection between topological Γ-semihypergroups and topological semihypergroups as
follows.

Theorem 3.34. Let H be a topological Γ-semihypergroup with unit. Then, Ĥ is a topological semihypergroup.

Proof. By Proposition 3.21, it is sufficient for every α ∈ Γ, the hyperoperation ⊕α : Ĥ × Ĥ −→ P∗(Ĥ)
is continuous. Let O ∈ P∗(Ĥ) be an open. Then, by Proposition 3.22, O =

⋃
υ̂∈T̂ Sυ̂. By Proposition

3.25, O′

= (
⋃
υ̂∈T̂ Sυ̂)

′

=
⋃
υ∈T Sυ. Hence, O′

is an open subset of P∗(H). Since ⊕α : H × H −→ P∗(H) is
continuous, ⊕−1

α (O′

) = B ⊆ H × H is an open subset. By Proposition 3.33, B̂ is on open subset of Ĥ ×H.
Since Ĥ ×H2 � Ĥ1 × Ĥ2, implies that B̂ is an open subset of Ĥ1 × Ĥ2. Therefore, Ĥ is a topological
semihypergroup.

Proposition 3.35. Let H be an unitary Γ-semihypergroup and A,B be Γ-hyperideals of H. Then, Â − B = Â − B̂.
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Proof. Suppose that ρ(x, α) ∈ Â − B. Hence, ρ(x, α) = ρ(y, β) for some y of A − B and β of Γ. Then, for every
z ∈ H, x ⊕α z = y ⊕β z. Since, H is an unitary Γ-semihypergroup, we obtain x ⊕α eα = y ⊕β eα. It follows
that x ∈ A. Let ρ(x, α) ∈ B̂. Then, ρ(x, α) = ρ(x1, α1), for some x1 ∈ B and α1 ∈ Γ. Hence, for every z ∈ H,
x⊕α z = x1 ⊕α1 z. Thus, x1 ⊕α1 z = y⊕β z. Since H is an unitary Γ-semihypergroup, we obtain y ∈ B, which is
a contradiction. Thus, ρ(x, α) < B̂. Thus, Â − B ⊆ Â− B̂.Now, suppose that ρ(x, α) ∈ Â− B̂. Thus, ρ(x, α) ∈ Â
and ρ(x, α) < B̂. Hence, ρ(x, α) = ρ(x1, α1), for some x1 ∈ A, α1 ∈ Γ. Then, for every z ∈ H, x ⊕β z = x1 ⊕α1 z.
Since H is an unitary Γ-semihypergroup and A,B are Γ-hyperideals of H, we obtain x ∈ A. If x ∈ B, then,
ρ(x, α) ∈ B̂, which is a contradiction. Therefore, Â − B̂ ⊆ Â − B.

Proposition 3.36. Let H be a topological Γ-semihypergroup with unit and F be a closed subset of H . Then, F̂ is
closed.

Proof. Suppose that F is closed subset of H. Then, Fc is an open subset of H. By Proposition 3.33, F̂c is an
open subset of Ĥ. By Proposition 3.35, F̂c = Ĥ − F = Ĥ − F̂ = (F̂)c. This implies that (F̂)c is an open subset of
Ĥ. Therefore, F̂ is a closed subset of Ĥ.

Proposition 3.37. Let H be a topological Γ-semihypergroup with unit and F be a nonempty subset of H such that F̂
be a closed subset of Ĥ. Then, F is a closed subset of H.

Proof. Suppose that F̂ is a closed subset of Ĥ. Hence, Ĥ− F̂ is open subset. By Proposition 3.35, Ĥ− F̂ = Ĥ − F
and this implies that F̂c is closed. By Proposition 3.33, (F̂c)

′

= Fc is an open subset of H. Therefore, Fc is an
open subset of H and this implies that F is closed.

Theorem 3.38. Let H be a topological Γ-semihypergroup with unit and B ⊆ H. Then, (̂B◦) = (B̂)◦.

Proof. Suppose that B is a nonempty subset of H. Since, B◦ is an open subset of H, by Proposition 3.33, (̂B◦)
is an open subset of Ĥ. Also, B◦ ⊆ B, implies that (̂B◦) ⊆ B◦. Let O be an open subset of Ĥ and O ⊆ B̂. Then,
O′

⊆ (B̂)
′

= B. By Proposition 3.33, O′

is an open subset of H. It follows that O′

⊆ B◦. Hence Ô′

⊆ B̂◦ and
O ⊆ B̂◦. Therefore, (̂B◦) = (B̂)◦.

Proposition 3.39. Let H be a topological Γ-semihypergroup with unit and A ⊆ Ĥ. Then, (A◦)′ = (A′)◦.

Proof. Suppose that A is a subset of Ĥ. Then, A◦ is an open subset of Ĥ. Hence, by Proposition 3.33, (A◦)′

is an open subset of H. Since A◦ ⊆ A, implies that (A◦)′ ⊆ A′. It follows that, (A◦)′ ⊆ (A′)◦. Since (A◦)′

is an open subset contained A′. Let O be an open subset contained A′. Then, Ô ⊆ Â′ = A. Since O is an
open subset of H, implies that Ô is an open subset contained A. Thus, Ô ⊆ A◦. Also, by Proposition 3.14,
O = Ô′ ⊆ (A◦)′. Therefore, (A◦)′ = (A′)◦.

Definition 3.40. A topological Γ-semihypergroup H is called compact, when each open covering, contains
a finite subcovering.

Example 3.41. Let G be a compact topological semigroup and H be a topological Γ-semihypergroup defined
in the Example 3.4. Then, H is a compact Γ-semihypergroup.

Proposition 3.42. Let H be a topological Γ-semihypergroup with unit and C ⊆ H be compact. Then, Ĉ is also,
compact.

Proof. Suppose that Ĉ ⊆
⋃

i∈I Oi, where Oi are open subsets of Ĥ. Then, by Proposition 3.14, C = (Ĉ)′ ⊆
(
⋃

i∈I Oi)′ ⊆
⋃

i∈I O′i . Since, C is compact, C = (Ĉ)′ ⊆
⋃n

k=1 Oik . This implies that Ĉ ⊆
⋃n

k=1 Ô′ik =
⋃n

k=1 Oik .

Therefore, Ĉ is a compact subset of Ĥ.
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Theorem 3.43. Let H be a topological Γ-semihypergroup such that every open subsets are complete part and R be a
regular relation on H. Then,

(1) if H is a compact space, then H/R is compact;

(2) if H/β∗ is a compact space, then H is compact.

Proof. (1) Suppose that H is compact and H/R =
⋃

i∈I Oi, where for every i ∈ I, Oi are open subsets of H/R.
Hence, for every i ∈ I, π−1(Oi) are open subsets of H. Also,

H = π−1(H/R) = π−1

⋃
i∈I

Oi

 =
⋃
i∈I

π−1(Oi),

where π : H −→ H/R is a projection map. It follows that H =
⋃n

k=1 π
−1(Oik ), since H is compact. Therefore,

H/R =
⋃n

k=1 Oik and H/R is compact.
(2) Let H/β∗ be compact and H =

⋃
i∈I Oi, where Oi are open subsets of H. This implies H/β∗ =

⋃
i∈I Oi/β∗.

By Lemma 3.29, Oi/β∗ are open subsets of H/β∗. Hence, H/β∗ =
⋃n

k=1 Oik/β
∗. Let x ∈ H. Then, β∗(x) ∈ H/β∗

and for some 1 ≤ k ≤ n, β∗(x) = β∗(a), where a ∈ Oik . Hence, there exist x = x0, x1, ..., xn = a, such that xiβxi+1,
for 0 ≤ i ≤ n. Since xn−1βxn = a, there exists a hyperproduct Pn−1 such that {xn−1, a} ⊆ Pn−1. This implies
that Oik ∩ Pn−1 , ∅. The open subset Oik is a complete part. Hence Pn−1 ⊆ Oik and xn−1 ∈ Oik . After a finite
number of steps, we obtain that x ∈ Oik . Therefore, H =

⋃n
k=1 Oik and H compact.

Definition 3.44. A connected topological Γ-semihypergroup is a space that cannot be expressed as a union
of two disjoint open subsets.

Example 3.45. Let G be a connected topological semigroup and H be a topological Γ-semihypergroup
defined in the Example 3.4. Then, H is a connected topological Γ-semihypergroup.

Proposition 3.46. Let Ĥ be a connected topological semihypergroup with unit. Then, Ĥ is a connected Γ-
semihypergroup.

Proof. Suppose that H is not connected. Hence, there exist nonempty open subsets O1 and O2 such that
H = O1 ∪ O2 and O1 ∩ O2 = ∅. By Proposition 3.14, Ĥ = ̂O1 ∪O2 = Ô1 ∪ Ô2. Now, let Ô1 ∩ Ô2 , ∅.
Then, there exists ρ(x, α) ∈ Ô1 ∩ Ô2, such that ρ(x, α) ∈ Ô1 and ρ(x, α) ∈ Ô2. Hence, ρ(x, α) = ρ(x1, α1) and
ρ(x, α) = ρ(x2, α2), for some x1 ∈ O1, x2 ∈ O2 and α1, α2 ∈ Γ. Then, for every z ∈ H, x ⊕α z = x1 ⊕α1 z. Since H
is an unitary Γ-semihypergroup, x ⊕α eα = x1 ⊕α1 eα. Also, O1 is a Γ- hyperideal of H, implies that x ∈ O1.
Similarly, we can see that x ∈ O2. Hence O1 ∩ O2 , ∅, which is a contradiction. By Proposition 3.33, Ô1

and Ô2 are open subsets. Hence, Ĥ is disconnected which is a contradiction. Therefore, H is a connected
Γ-semihypergroup.

Proposition 3.47. Let H be a topological connected space and R be a regular relation on H. Then, H/R is a connected
space.

Proof. Suppose that H/R is not connected. Hence, there exist nonempty open subsets O1 and O2 such that
H/R = O1 ∪ O2 and O1 ∩ O2 = ∅. This implies that π−1(O1) and π−1(O2) are open subsets of H, where
π : H −→ H/R is a projection map. Hence, H = π−1(O1)∪π−1(O2) and π−1(O1)∩π−1(O2) = ∅. Consequently,
we have H is disconnected which is a contradiction. Therefore, H/R is a connected space.

Theorem 3.48. Let H be a topological Γ-semihypergroup and every open subset of H be a complete part and H/β∗ be
a connected space. Then, H is a connected space.
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Proof. Suppose that H is not connected space. Hence, there exist nonempty open subsets O1 and O2 such
that H = O1 ∪ O2, where O1 ∩ O2 = ∅. Then, H/β∗ = O1/β∗ ∪ O2/β∗ and by Lemma 3.29, O1/β∗ and O2/β∗

are open subsets. Let O1/β∗ ∩ O2/β∗ , ∅. Then, there exists β∗(x) ∈ O1/β∗ ∩ O2/β∗ such that β∗(x) = β∗(a)
and β∗(x) = β∗(b), for some a ∈ O1 and b ∈ O2. Hence, there exist x1, x2, ..., x2 and t1, t2, ..., tm of H such that
x1 = x, xn = a, t1 = x, ..., tm = b and xiβxi+1, t jβt j+1, where 1 ≤ i ≤ n−1 and 1 ≤ j ≤ m−1. Hence, {xi, xi+1} ⊆ Qi
and {t j, t j+1} ⊆ ∆ j, where Q j and ∆ j are hyperproducts of H. Let j = m − 1. Then, Qm−1 ∩ O1 , ∅. Since O1
is a complete parts, implies that {tm−1, tm} ⊆ Qm−1 ⊆ O1. After a finite number of steps, x ∈ O1. In the same
way, we can see that x ∈ O2. Hence O1 ∩ O2 , ∅, which is a contradiction. Therefore, O1/β∗ ∩ O2/β∗ = ∅.
This complete the proof.

4. Homomorphisms and Quotient Map

In this section, we consider some results about homomorphism and quotient map of topological Γ-
semihypergroups.

Definition 4.1. Let H1 and H2 be Γ-semihypergroups. Then, a mapping ϕ : H1 −→ H2 is called homomor-
phism, when

ϕ(x1 ⊕α x2) = ϕ(x1) ⊕α ϕ(x2),

when x1, x2 ∈ H1 and α ∈ Γ.
A homomorphism ϕ : G1 −→ G2 is called an epimorphism if ϕ is onto. A homomorphism is a

monomorphism if it is one to one, and an isomorphism if it is both one to one and onto.

Every homomorphism of Γ-semihypergroups induces a homomorphism between associated semihy-
pergroups as follows:

Theorem 4.2. Let H1, H2 be Γ-semihypergroups and ϕ : H1 −→ H2 be a epimorphism. Then, there is a homomor-
phism ϕ̂ : Ĥ1 −→ Ĥ2. Also, when ϕ is an isomorphism the induced homomorphism ϕ̂ is an isomorphism.

Proof. Suppose that ϕ̂ : Ĥ1 −→ Ĥ2, defined by ϕ̂(ρ(x, α)) = ρ(ϕ(x), α). Let ρ(x1, α1) = ρ(x2, α2). Then, for
every z ∈ H1, x1 ⊕α1 z = x2 ⊕α2 z. It follows that, ρ(ϕ(x1), α1) = ρ(ϕ(x2), α2). Since, ϕ is an an epimorphism.
Hence ϕ̂ is well-defined. Let ρ(x1, α1) and ρ(x2, α2) be elements of Ĥ1. Then,

ϕ(ρ(x1, α1) ◦ ρ(x2, α2)) = {ϕ(ρ(t, α2)), t ∈ x1 ⊕α1 x2}

= {ρ(ϕ(t), α2), t ∈ x1 ⊕α1 x2}

= ρ(ϕ(x1), α1) ⊕α1 ρ(ϕ(x2), α2)
= ϕ(ρ(x1, α1)) ◦ ϕ(ρ(x2, α2)).

This implies that ϕ̂ is a homomorphism. Let ϕ be one to one and ϕ̂(ρ(x1, α1)) = ϕ̂(ρ(x2, α2)). Then,
ρ(ϕ(x1), α1) = ρ(ϕ(x2), α2). Thus, for every z2 ∈ H2, ϕ(x1) ⊕α1 z2 = ϕ(x2) ⊕α2 z2. Also, for an arbitrary
element z1 ∈ H1, ϕ(z1) ∈ H2. Hence, ϕ(x1) ⊕α1 ϕ(z1) = ϕ(x2) ⊕α2 ϕ(z1). Since ϕ is a homomorphism, we have
ϕ(x1 ⊕α1 z1) = ϕ(x2 ⊕α2 z1). Thus, x1 ⊕α1 z1 = x2 ⊕α2 z1, for every z1 ∈ H1. Then, ρ(x1, α1) = ρ(x2, α2). Hence, ϕ̂
is a monomorphism. It is obvious that ϕ̂ is onto. This complete the proof.

Theorem 4.3. Let H1 and H2 be two topological Γ-semihypergroups with unit and ϕ : H1 −→ H2 be continuous.
Then, ϕ̂ : Ĥ1 −→ Ĥ2 is continuous.

Proof. Suppose that O is an open subset of Ĥ2. By Proposition 3.33, O′ ⊆ (Ĥ2)′ = H2 is an open subset of
H2. It follows that, ϕ−1(O′), is an open subset of H1. Since, ϕ is a continues map. Also, ̂ϕ−1(O′) = (ϕ̂)−1(O).
Indeed, ρ(x, α) ∈ ̂ϕ−1(O′). Hence, ρ(x, α) = ρ(x1, α1), for some x1 ∈ ϕ−1(O′) and α1 ∈ Γ. Then, for every
z ∈ H, x ⊕α z = x1 ⊕α1 z. Since H1 is a Γ-semihypergroup with unit, we have x ⊕α eα = x1 ⊕α1 eα. Hence,
ϕ(x) ∈ ϕ(x1) ⊕α1 ϕ(eα) ∈ O′. So, there exists α2 ∈ Γ such that ρ(ϕ(x), α2) ∈ O. Hence, ϕ̂(ρ(x, α2)) ∈ O,
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implies that ρ(x, α2) ∈ (ϕ̂)−1(O). Then, ̂ϕ−1(O′) ⊆ (ϕ̂)−1(O). Now, let ρ(x, α) ∈ (ϕ̂)−1(O). Then, ϕ̂(ρ(x, α)) ∈ O.
This implies that, ρ(ϕ(x), α) ∈ O. Hence, ϕ(x) ∈ O′ and x ∈ ϕ−1(O′). So, ρ(x, α) ∈ ̂(ϕ)−1(O′). Thus,
(ϕ̂)−1O ⊆ ̂(ϕ)−1(O′). Thus, (ϕ̂)−1(O) = ̂ϕ−1(O′). Since ϕ−1(O′

) is an open subset of H1, by Proposition 3.33,
̂ϕ−1(O′) is an open subset of Ĥ1. This implies that (ϕ̂)−1(O) is an open subset of Ĥ1 and this complete the

proof.

Definition 4.4. Let H1 and H2 be topological Γ-semihypergroup and ϕ : H1 −→ H2 be onto map. Then, ϕ is
called quotient map when ϕ−1(O) ⊆ H1 is an open set if and only if O ⊆ H2 is an open subset.

Example 4.5. Let G be topological Γ-semihypergroup and β∗ be a fundamental relation on G such that every
open subsets of G is a complete part. Then, the projection map π : G −→ G/β∗ is a quotient map.

The quotient mapping of Γ-semihypergroups, induces quotient mapping between associated semihy-
pergroups as follows:

Theorem 4.6. Let H1 and H2 be two topological Γ-semihypergroups with unit and ϕ : H1 −→ H2 be a quotient
mapping. Then, there is a quotient mapping ϕ̂ : Ĥ1 −→ Ĥ2.

Proof. Suppose that ϕ : H1 −→ H2 is a quotient mapping and ϕ̂ : Ĥ1 −→ Ĥ2 such that O is an open subset
of Ĥ2. By Theorem 4.3, ϕ̂−1(O) is open of Ĥ1. Conversely, let ϕ̂−1(O) is an open subset of Ĥ1. Then, by
Proposition 3.33 and Theorem 4.3, ϕ−1(O′

) = (ϕ̂−1(O))
′

⊆ (Ĥ1)
′

= H1 is an open subset of H1. It follows that
O′

is an open subset of H1. Since, ϕ : H1 −→ H2 is a quotient map. By Proposition 3.33, O = Ô′

⊆ Ĥ1 is an
open subset. Hence, ϕ̂ : Ĥ1 −→ Ĥ2 is a quotient map. Also, when ϕ̂ : Ĥ1 −→ Ĥ2 is a quotient map implies
that ϕ : H1 −→ H2 is a quotient map.

5. Conclusion

This paper deals with one of the newest argument from hyperstructure theory namely topological Γ-
semihypergroups as a generalization of topological semihypergroups. The structure of a Γ-semihypergroups
is more near to the structure of a semigroups. So, we introduced the concept of topological Γ-semihypergroups.
Also, we connect topological Γ-semihypergroup to topological semihypergroup and we present a connec-
tion between them. In a future study of topological Γ-semihypergroup, we consider connected and path
connected topological Γ-semihypergroups.
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