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Strong Super Convergence of the Balanced Euler Method for a Class of
Stochastic Volterra Integro-Differential Equations With Non-Globally
Lipschitz Continuous Coefficients

Wei Zhang?®

?School of Mathematical Sciences, Heilongjiang University, Harbin, Heilongjiang, China

Abstract. In this paper, we propose the balanced Euler method of a class of stochastic Volterra integro-
differential equations with non-globally Lipschitz continuous coefficients. The moment boundedness is

studied and the strong convergence is shown to be 1. Moreover, the theoretical results are illustrated by a
numerical example.

1. Introduction

Volterra integral equation (VIEs) has been widely used in many fields. Due to the effects of random
noise and uncertain factors, such problems are modeled by stochastic Volterra integral equations (SVIEs).
Recently many researchers have paid great interest in the theoretical analysis of SVIEs (see [13] and the
references cited therein). However, most of SVIEs can not obtain the theoretical solutions because of the
complexity of such equations, numerical methods become an important tool. The numerical solutions of
SVIEs have been studied by many authors (see [1],[2], [8], and more references cited in it).

Especially recently, some researchers have paid more attention to stochastic Volterra integro-differential
equations (SVIDEs). In 2000, Mao [9] considered the stability of a SVIDE as follows:

t
ax(t) = f(X(t), t)dt + g(f G(t,s)X(s)ds, t) dw(t).
0
Mao and Riedle [10] later studied the stability of a more generalized type of equation as follows:

t t
AX(t) :[ X, 1) + g( fo G(t,5)X(s)ds, t)] dt+h( fo H(t,5)X(s)ds, t) dw(t).

SVIDEs can be regarded as the more generalized type of SDEs. The theoretical and numerical analysis of
SDEs have been well investigated (see, for example, [5-7, 11, 12, 17]). Up to now, there are some numerical
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results about SVIDEs (see [3, 4, 15] and references cited therein). In 2020, we (see [18]) considered the
Euler-Maruyama method for generalized SVIDEs

t t
ax(t) =f(X(t),j; kl(t,s)X(s)ds,f(; 01(t,s)X(s)dw(s)) dt

+9(Y<t>, fo alt, $)X(s) ds, fo Gz(f,S)X(S)dw(S)) du),

under global Lipschitz condition and showed that the strong convergence order is 1/2. In the same year,
the convergence of the truncated Euler-Maruyama method for a class of SVIDEs is studied (see [19]) under
non-globally Lipschitz condition and its strong convergence is close to 1/2. In 2019, Yang et al. (see [16])
studied the semi-implicit Euler method for the following nonlinear SVIDEs:

d t
T = ey + [ ot 9x@) 0

for t € [0, T] with initial data X(0) = Xy € R. Here f : R — R. The kernel 0: D — R are continuous on
D:={(t,s):0<s<t<T} Set|ollc = (rtn)aélo(t,s)l.
S)E

In this paper, we will further consider SVIDE (1), the classical Euler methods of SDEs can not converge
when the coefficients do not satisfy the linear growth conditions (see [5]), due to the cheap computation
costs and acceptable convergence orders of explicit methods and motivated by [14] and [20], the balanced
Euler method of SVIDE (1) is proposed in Section 3. Its boundedness is considered in Section 4 and its
strong convergence rate is shown to be 1 in Section 5. Finally, we will give an example in Section 6 to
illustrate the theoretical results of SVIDE (1).

2. Preliminary

Let (QQ,F AF i}i=0,P) denote a complete probability space with a filtration {F}»o satisfying the usual
conditions (i.e, it is right continuous and increasing while ¥y contains all IP-null sets), and let [E be the
expectation corresponding to IP. Let w(t) be a 1-dimensional Brownian motion defined on the probability
space. The family of R-valued F;-adapted processes {x(t)}tc[o,r] such that E|x(#)]’ < co (p > 1) is denoted by

L7([0, TI; R). Let M?([0, T]; R) be the family of processes {x(t)}tejo,r] in L*([0, T]; R) such that E fOT |x(t)]Pdt <
0. Fora,b € R, weusea Vv banda A Db for max{a, b} and min{a, b}, respectively. If G is a subset of ), let x¢
denote its indicator function. |-| denotes the greatest-integer function.

Define

Zy(2) = f ) 0(z, 5) Xy, (s)dw(s).
0

The integration of SVIDE (1) is written as the following form
£ £ Z
Xy (1) =x0 + f f (X (2)) dz + f ( f 0(z,8) Xy, (s)dw(s) | dz
0 0 \Jo

¢ ¢
=xg + f f (X (2))dz + f Zy,(z)dz, te[0,T]. ()
0 0

We impose three assumptions as standing hypotheses:

Assumption 2.1. There is a pair of constants y > 1 and Ky > 0 such that

F@) = FP <Ky (1+ =2 + [y =2) | - yP? 3)

forallx, y e R
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Remark 2.2. Due to (3), we have
)P < K (1+ )

for all x € R, where Ky = (2|f(0)|2) v 2K1()«:/+1)‘

Assumption 2.3. There is a constant K, > 0 such that

(x = YLFE) = f(y)] < Kalx = yP?
forallx, y € R.

Remark 2.4. See from Assumption 2.3, we have

xf(x) < Ko (1 + [P

for all x € R, where Ky = (%If(O)lz) v (Kz + %)
Assumption 2.5. There exists a constant Kz > 0 such that
lo(t,s) — a(t,8)] < Ks(|t — H +|s — §])
for all (t,s), (£,3) € D. Moreover, set o(t, t) = 0, for (t,t) € D.
A known result (see [16]) is stated as the following lemma.

Lemma 2.6. Let Assumption 2.1 and Assumption 2.3 hold. If X, (t) is a solution of SVIDE (1), for p > 1, then
E| X, () < KElxol?, t€[0,T],
where K depends on o, T, Ky, Ky (but independent of h later) and its value may change between occurrences.

Let X, (t + h) denote the solution of (1). Then

t+h t+h
X (t+h)=x+ f f(Xx(s))ds + f Z.(s)ds,
t t

where x = X, () and

Zx(s) := j; S 0(s, 2) X, (z)dw(z). 4)

Remark 2.7. Due to the flow property of SVIDE (1), under Assumption 2.1 and Assumption 2.3, for p > 1, SVIDE
(1) has a unique global solution X,(s) = X,(s) and, moreover,

EX.(s)” <K(1+Ex¥), Vt<s<T.

3. The balanced Euler method

Let the step size h € (0,1), T = Nh, t, =nh,n=1,2,--- ,N and N € IN. Motivated by [20], we introduce
the one-step approximation Y,(t + h), for the solution X,(t + 1), which is defined as follows

Yt + ) = Xo(#) + sin(hf(Xo(t))) + sin (hZ, (b)),
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for 0 < n < N — 1, with the initial point x, a time step /1, where
s :=ty, for s€ [ty ty1),

XX(E) =Y,, for s e [tn/ tn+1)/

f
2.0 = fo o(t, )X (de0(s). ©)

We propose the following balanced Euler scheme Yy, (t,) = Y, ~ Xy, (t,) for t, = nh by setting Yo = xo
and computing

Yp = ng(tn+1) =Y, + Sin(hf(yn)) +sin (hZ,), (6)
where
n-1
Zy =) oty t)YiAwy, ()

1=0

where Aw; = w(t;,1) — w(f) are Gaussian N(0, Vh) ii.d. random variable.

4. Moment boundedness of the balanced Euler method

Define
QR,H = {(t) : |Yk| < R(h)/ k = 0/ 1/ 21 Tty n}/

where y > 1 and R”(h) < 1/h.
In order to obtain the moment boundedness of the balanced Euler method, we present the following
lemma.

Lemma 4.1. Let Assumption 2.1 and Assumption 2.3 hold. For p > 1, then we have

n—-1

WE (xay, (@)Za?) <KIoIZ T 1 Y E (xa,, @)Yi¥)
1=0

and

n—-1 n-1

WVE (g, (@)IZP) <KI0IZ T Y E (xq,, (@)IYiP).

1=0 1=0
Zp]

Proof. By the definition of o and (7), we get

n—-1

Z Y, Aw,

WYE (Yo, (@)1Z4%) <llolldh 1 E [mR,,, (@)
=0

It is known that [E (Awy) = 0,

0, if i#],
IE(AwiAw]-):{h, if i

and E (|Aw*") = (2n - 1)1,
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Zp]
n—-1

<lolZn? 1Y (i, (@)E [YiAaw )
1=0
n—1
2, _
<KllolZn? " h 1Y (xo,, (@)EY¥)
1=0

Hence, we have

n-1

Z‘ Y;Aw,

=0

WE (o, (@)|Za) <lloll T E [mR,,, (@)

n-1
<KIlolZ T2 ) (xa,, @)EY¥).
1=0
Therefore, we get
n—1
W (X, (@NZal?) <A T2 Y (X, (@)Yi) 8)
and
n—1 n—1 I-1
2, —
HUE (Yo, @)V Za) <KIoIZT 2 Y Y E (xa,, @)Y, )
1=0 =0 r=0
n-1
2, _
<KllolZ T 12 Y E (X, @)IVi¥)
1=0
n-1
2,
<Kol T?1 ) | E (xo,, @)IVi¥).
=0
O

In the similar way of [20], we obtain the following lemma.

Lemma 4.2. Let Assumption 2.1 and Assumption 2.3 hold. Define G(y) = max {2()/ = 1), Xp>1 3()/2‘1) }, forp>1, we

have

EJY,[* < K(1+ Elxo/**),

where f > 2 + w.

Proof. We divide the proof into two cases. 5
Case (I) If y > 1, let Ag, denote the compliments of Qg .
By (6), we have

1Y i1l < 1Yol +2 < |xol +2(n + 1). )

For any integer p > 1, we get
E (., @Y1 P") <E (i, @)Y 1)
E (Yo, (@) (Yt = o) + Y, )
=E (xqy,, (@)Yal) + E (xa,, (@)Yl 2B)
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2p

+K Y E(xap, @Yl Yot = Yal),
=3

where B:= xg, E[20Yu(Yus1 = Yo) + p@p = DY i1 = YaPIF, .
Since Aw, are independent of ¥; , we have

X, (E (12,

Xo, (WE (12,

7i.) =0,

Tin) =X, @ IZ,F 12

Using the asymmetry of the sine function, we get

oy, (W)E (sin (12,)

ﬁ,,) 0.

Noting that | sin x| < |x| and for some 0 € [0, 1],

|x —sinx| = |(1 — cos(6x))x| < 2|x]|

2

7

sin(%)
2

together with the elementary inequality, we have

B

IA

2p-1
2

ZPXQR,,I (a))IE |:(YTL(Y}’H—1 - Yn) + |Yn+1 _ Yn|2) 7jt,,:|

20X, <m>1E[(Ynf<Yn>h + @ 1) |sin(FY D) + 2p 1) Isin (hzn>|2)

+2pXOM (w)E [(Yn (_f(yn)h + Sin(f(Yn)h))) ﬁn:|

2 X6y, (@)E [(nﬂn)h +2p - DIZP + || hz)

7:tn:|

+4pXe, ()E (|Yn £ h|7—;n) .

Applying Assumption 2.3 and Remark 2.2, we get

B < Kxey,, (@) (1+ Yol + 1Yo R+ R1Z4 ).

Consequently, we have

E (Yo, @)IYa¥2B) < KHE|xe,, @) Yal? 2 (1+ YR + Yl + h1Z,P))].

Using (6) and Remark 2.2, we obtain

E (X, (@)Yul Y1 = Yal')

IA

KE [xay,, @)Y (IFQG)I + Zal')|
KE [xay,, @)Y 71 (1+ 1Y, +1Z4]')].

IA

Substituting (12), (13) into (10), by the Young inequality, we have

2p
E (Xeyg,, @Y1 ) <E (xao,, @)Yal?) + K Y E Xy, @)Yl 1 (14 1Yol +1Z,/')]

1=3
+ KKE Xy, @)Yl 2 (14 1Y, + 1Y, PR+ 11Z, )]

7:1‘71]

3002

(10)

(11)

(12)

(13)
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<E (XQR,,, (@)Yl ) + KhE (XQR,n (w)|yn|2v) + Kh
+ KIPUE (g, (@2 ) + KHE (X, @)Y ~2h)

2, 2,
+K Zp: E (Yo, (@)Ya/¥ ') + K™t i E (Xay, (@) Z.7)
=3 =3

2p
+ K Y E (xa,, @Y, P00
=3

<E (XQR,, (@)Yul? ) + KhE (XOR,H (w)|yn|2p) + Kh
+ KW'*E (XQR/‘ (a))|Zn|2P) + KhE (XQR,, (w)|Yn|2p+2y—2h)

2p

+ Kh Z E ()(QR',1 (a))|yn|2p+l(y—1)h1_1) '
=3

Choose R = R(h) = h™/¢0), where G(y) = max {2()/ - 1),)(,,>1@}, we get,

X, (@)Y 2h <xg (@)Yl
X, (@Y PO DR <x (@)Yl
Consequently, we have
E (Xt (@Y1 ) <E (X, @)Yal?) + KHE (xo,, (@) Yal?)
+ KIPUE (X, (@)1 Z4f) + K,
Using Lemma 4.1, we obtain

E (X, @)Y [?) <E (xq, (@)IYal?) + KHE (xq,, @)IYal*) + Kh

n—1
+ Ko Y E (xy,, (@)Yl
1=0

n
<|xo|? + Kh Z E ()(QM (a))|Yl|2p) + Kh
1=0
n r—
+ K|o|Z T 112 Z

1
E (Xa, (@)Vi¥)
r=0 [=0

n
<ol + Kt ) E (xy,, (@)YiF?) + K
1=0
n
2 _
+ Kol TH 00 ) E (v, @)if?)
1=0

n
<o + K ) (xq, (@i + K
1=0

The well-known Gronwall inequality yields that

E (1o, @IY,f*) < K(1 + Elaf?).
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Noting that (see [14])

Xigy =1 = X, = 1= Xag, Xivilsr
n
“XAgpor T XOpua XIVul>R =270 = Z X XIYil>Rs
k=0
where we put x, | =1, and using (9), the Holder inequality and the Markov’s inequality, we get

1/2
(I (Yo, (@)Y PEHDED))
R(h)@r+1G0)

Elxa,, (@)YaP?] < (E (ol + 2m)*) Y
k=0

1/2 1/2
<K (E (ol +2m)*) " (L + ol 220060 e

<K (1+Elx[*),
where f > 2 + GG

Case (II): If y = 1, it can be proved in the similar way of the case (I).
The proof is complete. [

Remark 4.3. Due to the flow property of the SVIDE (1), under Assumption 2.1 and Assumption 2.3, for p > 1, we
have

- t
E|Yy, (t)? < K(1+Elxo/¥F), v {ZJ <u<N,

where xop € Rand > 2 + QPHP)GO/)‘

5. Convergence order of the balanced Euler method

Lemma 5.1. Let Assumption 2.1 and Assumption 2.3 hold. Then forall1 <land 0 <t <s < T, we have
E|f(Xu(s)) = FX®)] < K(1+ @) s - 1), (14)

where x € R.

Proof. Forall1 <!landt <s, by Assumption 2.1, we have

A

1
Elf(X(s) = f@®) < KE[(1+1Xc(6)P ™" + XD ) [Xe(5) — XuB)]

ft f(Xx(2))dz

1

IN

KlE[(1 + Xe(s)P ! + |Xx<t>|’/-1)( +

)|

ft‘s Z(z)dz

Applying Holder inequality and Remark 2.7, we get

E|f(X:(s)) - f0)] <K (1+ EXo(s)20) + EX, ()20 )"

. (1[3 j; S Z(z)dz

Due to the Holder inequality and Remark 2.7, we obtain

2\ 1/2 s 1/2
[]E J < ((s—t)ZHIE f |f(Xx(z))|21dz)

1/2

2
) . (15)

21
+E

f FXa @)z

f F(Xo(2))dz
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< K((s — -1 ft s (1+ lE|Xx(z)|217’)dz)1/2
< K- (1+12)". (16)
By (4), we get
Z.(z) = j{; ) 0(z, )Xy, (s)dw(s).
Using the It6 isometry, we have
EIZ:(z)* <llol?T sup E[X,(u)/* < K sup E|X,(u)* < Klx[*. (17)

0<u<s 0<u<s

Hence, we get

[]E ftSZx(z)dz

Substituting (16), (18) to (15), we have (20). The proof is complete. O

21\1/2 1/2
] S(K(s—t)zl‘l f 1E|zx(z)|21dz)
t

<K(s — t)|x|". (18)

Lemma 5.2. Let Assumption 2.1, Assumption 2.3 and Assumption 2.5 hold. Then for p > 1 and s > t, we have
E|Z.(s) - Ze([” < K(1+ <P W%, (19)

where x € R.

Proof. Using o(t,t) = 0, we have

2p

E =0.

f "ot )X, (o)
t

By (2), the elementary inequality, Remark 2.2 and (17), we get

fo E f uf(Xx(z))dz+ f ' Z.(2)dz

Kn#-1 f s f ' E (| (X (2)* + IZx(z)lz”) dzdu
0 Ju

2p
du

f " EIX (1) - X, ()Pdu
0

IA

IA

Kn#1 f f ]E(l+|Xx(z)|2”y+|Zx(z)|2”)dzdu
0 Ju

K(1+ [P ).

IA

Applying (4), (5), the elementary inequality and Assumption 2.5, we get

2p

S t
E|Z.(5) - Z.®|” IE‘ fo o(s, 1) X (1Wdeo(u) - fo o(t, 1) Xe(wdeo(u)

2p
5% 1R

IA

fs o(s, u) Xy (u)dw(u) — fs o(s, u) Xy (u)dw(u)
0 0

2p
+5%71E

f " o(s, 1) X, (0)deo(u) — f " o(s, )X, (W)
0 0
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2p

51 f " (s, 10X (o) — f (s, 10X, (i)
0 0

2p

4571 f " o(s, 10X (o) - f "ot WX (i)
0 0

2p

451 f "ot 1)X, (o)

2p
5%-1E

IA

f lo(s, u) = a(s, W] X (u)dw(u)

0

S Zp
L1 f (5, 1) [ X (1t) — Xo(10) e ()
0

s 2
+5%7 1R f [o(s, 1) — o(s, W)X (w)dw(u) p
0

2p

+5%'E f s[a(g, ) — o(t, WX (wdw(u)
0

2p

+571E f ot )X, (W)
t

2p

IA

5%71E 'fb Ks(u — u) Xy (u)dw(u)
0

+52p—1”0||(2)§hl’ f ]Elxx(u) - XX(E)deu
0

S 2
+5%7'E f Ks(s — )X (u)dw(u) '
0

s 2p
5% f Kas - DX, ()dwo(u)
0

2p

+571E f "ot )X, (W)
t

IA

S
(14 ) 2 4 5 ol [ B0 - XG0P
0

IA

K(1+ ) .
The proof is complete. [

Lemma 5.3. Let Assumption 2.1, Assumption 2.3 and Assumption 2.5 hold. Then we have

=0, (20)

t+h
‘E f [Z:(5) = Zo(B)] ds
t

where x € R.

Proof. Applying (4), (5), the elementary inequality, Assumption 2.5 and the properties of the Paley-Wiener-

Zygmund integral, we get
t+h S t
= ‘IE‘[ (f a(s,u)Xx(u)dw(u)—fa(t,u)XX(u)dw(u))ds
t 0 0

t+h
‘E f [Z,(5) - Z,(H)] ds
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E j: ! j; s X (u)dw(u)ds
E j; " f(; S dw(u)ds

IA

2|jolleo

IN

2||0lle sup E[X,(1)]

0<u<s

= 0.

The proof is complete. [
Theorem 5.4. Let Assumption 2.1, Assumption 2.3 and Assumption 2.5 hold. For p > 1, we have

[IE [Xo(t + 1) = Yot + )] < Ki? (1 + x) 1)
and

E [X,(t + 1) = Yot + 1)|” < Kn* (1+x%). 22)
where Y(t) = X(t) = x € R.
Proof. We divided the proof into to three steps.

Step 1: We consider the one-step approximation to the explicit Euler scheme:
Xt +h) = Xu(t) + R (Xo(8)) + hZx (D).

Define
p(t+h) == Xo(t + h) — Xi(t + h).

By Lemma 5.1 and Lemma 5.3, we have

t+h t+h
Ept+h)| < |JE [ veeor - oo+ e [ 2.0 -z
t+h
< E ft FOX () — F(Xo(B)lds
< Kh2(1+|x|27). (23)

Using Lemma 5.1 and Lemma 5.2, we obtain

2p 2p

E|p(t+ )| + KE

IA

t+h
E f [Z.(5) — Zx(b)]ds

t+h
[ [FX(9)) — FOS(0))ds

IA

t+h t+h
kit f EIf(X,(5)) — FOS,()PPds + Kn2r f EIZ.(s) - Z:(P"ds
+ t

Ki* (1 + [x@r-D) (24)

IA

Step 2: We give the one-step approximation to the balanced Euler scheme
Yot +h) = Xe(t) + sin(nf(Xe())) + sin (hZ, (b))
Define

p(t + 1) =X (t+h) = Yot + 1)
=hf(X(t)) = sin(hf(X:(1))) + hZ() = sin (hZ.(0)).
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Using (11), we get
Ept + 1) = [ELFXu(t)h — sin(hfX(1))]]
KE|f(X:()h[’
Ki® (1 + x) (25)

IA

IN

and

Elp(t + h)[*

IA

27 E (X () — sin(h FGON]” + 27 E 12,0 - sin (1Z,0)|

KE|f(X(t)h|” + KEhZ, (D]
KR (1 + ). 26)

IA

IN

Step 3. Define

p(t+h):= Xo(t+h) = Yi(t +h) = p(t + h) — p(t + h).
Applying (23) and (25), we get

[Ep(t + b)| <[Ep(t + h)| + [Ep(t + h)|

<KK?(1+ |xP).

Using (24) and (26), we have

E|o(t + h)[* <22 E|p(t + b)Y + 227 E|p(t + h)|

<KR¥ (1+ |x|%7).

The proof is complete. [
Lemma 5.5. Let Assumption 2.1, Assumption 2.3 and Assumption 2.5 hold. Define

Xi(t+0) - Xy (t+0)=x—y+ Uyy(t+0) (27)
for 0 € [0, h], where X(t) = x € R, X(t) = y € R. For p > 1, we have

IE [X(t + h) — X, (t + h)|2” < v — y#(1 + Kh), (28)

E|Usy(t+ WY < K(1+ w2+ 12 2) " x -y, (29)
Proof. Define

Sey(®) = 5(5) 1= Xa(s) = X, (6): (30)
Hence , Using the Holder inequality, (27) and (30), we have Uy ,(s) := U(s) := S(s) — (x — v).

t+0 t+0 s S
_ 2 —
ft E |Z:(s) = Z,(s)| " ds ft ]E‘ fo (s, 2) X (z)dw(z) fo a(s,2) Xy (2)dw(2)

2p
ds

2p
ds

IA

ftﬁe . ‘ fo 0(5,2)(Xx(2) — Xy(2))dew(z)

—_— t+0 S
llolls ™ s/ f f E |S(z)/* dzds
t 0

IA
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t+0
< |lo|® ts@r-22T f E|S@s)? ds.
t

Applying the It6 formula, Assumption 2.3 and the Young inequality, for 6 > 0, we get
E|S(t + O)[

< M—m”+MﬁlwﬂﬂﬂW*G@ﬂﬂX&»—f@ﬂm]

+2p2_ ! 1Z.(5) = Z,(s)[° )ds
< -y +2pE ft - IS(s)I?P2 (Kz [X:(5) = X, 9| + sz—_l |Z4(5) = Zy(5>|2)d5
< -y +@p-2K j: " E|S(s)[*ds + 2K ft " E |Z«(s) - Zy(S)Izp ds

t+60
< -y +K f E|S(s)|*ds.
t

By the Gronwall inequality, we have (28).
Applying the It6 formula and Assumption 2.3, for 6 > 0, we get

t+0
EwwﬁﬁﬂNWW@MMM#WM
t

2p-1

+
2

|A@—@@ﬂm

t+0
wmﬂ‘wwﬂwMMw#mw

2p—-1

+
2

|a@—4@ﬂ@

t+0
~2pE [ O ) [F060) - F0X,6)] s

2p

t+6 —
<2pKiE f |U(s)|2”_2(|5(5)|2+ 5 - IZx(s)—Zy(S))Z)dS
t

t+0
—MIHMWWMWM#%M%

Using the Young inequality, we obtain
t+0
@&pf UGP2 (ISP +1745) - Z,()P) ds
t
t+6 t+0
<K f E|U(s)[*ds + K f E|S(s)|*ds
t t

t+6
<K f E|U(s)*ds + Klx — .
t

Applying the Holder inequality, Assumption 2.1 and Lemma 5.1, we get

t+60
Qﬁ[umwwwmwmﬁmwm

3009
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t+0
<2pE f [UE)PP2Ix = yllf (Xe(s)) — F(Xy(s))lds
t
o 2p\P-1/p 1/p
<iie-yl [ (EOR) " (B000) - fuEr) s
t

t+60 5 (p-1)/p 22
<Kix—yl | (BuE)" ™ (B[ + X))
t
— /2 \1/p
+ |Xy(s)|2} 2yp/2 (|Xx(5) _ Xy(s)|2)p ]) s
t+0 2 (-1/p 2 » 1/2p
<K|x -y (ElU(s)P) (BIX.(5) — X, (&) + EIZy(s) ~ Z,(s))
t
X [E(1+ X (s)¥07D + |Xy(s)|2p(y—1))]1/2’” Js
t+60 .
<K =y (14 P2 4y 2) f (B )" ds.
t

Hence, we have

t+0
1/2 -1)/,
E|U(t+60)P < Kix—yP (1+ P72 + [y ?) f (Elur)”" ds
t

t+6
+K f E|U(s)[*ds. (31)
t

By the Young inequality and the Gronwall inequality, we get (29).
The proof is complete. [

Theorem 5.6. Let Assumption 2.1, Assumption 2.3 and Assumption 2.5 hold. For some p > 1, we have

E [Xs (00) = Yoo ()| < K (1 + Blro[297) 12772, 32)
Proof. Define
Put = Xyy(tna1) = Yo (bus1) = X (1) (bne1) — YYxO(tn)(tn+1)
= (Xt (1) = Xy, (b11)) + (X, (bns1) = Yy, (br11)) - (33)
Recalling (33), we get
Sps1 = SXxo(tn),YxO(tn)(t"“) = XX,.O(t,Z)(an) - XYxo(tn)(t"H)

= (XX(](tl’l) - ng(tn)) + uXXO(t,,),YxD(t,,)(tn+1)
= (Xxo(t") - Y") + uxxo (t,,),Y,,(trH-l)
Pn t+ U1

Define
tus1 == Xy, (1) = Yy, (tns1)-
See from Theorem 5.4, for [ > 2, we have
Elrnl < K (1+EY,P)
Ki? (1 + Elxo ') (34)

A

IN

and

Elrpa| < Kh2(1+1E|Yn|3V)
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< K2 (1+ Elxo[F). (35)
Hence, we get

2,
IEISI’H—l + rn+l| i

2p
E |pn+1|
P
= E(ISual? +2Suarrus + IruaP)

EISu1? + 29 [ISu1 2 (0 + U1 )|

IA

P
+K Y E(1Sna Pl (36)
=2

Applying Lemma 5.5, we have
E|S.al* < Elp,*(1 +Kh) (37)
and
E(ISna P 2(pn + Unit)rnn1) = E(louP? 2purnat) + E[(1S51 2 = 1pul~2) purisa |
+IE (1S1 ¥ 2 Unsatnsa ) (38)

Due to ¥;,-measurability of p,, by the elementary inequality, the Young inequality, (34) and (35), we get

E(lonP2purnn1) < E[lpu?E (rnaliF,)]
< E[lpa (1+ Elxo ) |12
< KHE|pa? + K (1 + Elxo [ ) 12+ (39)
Noting that
|Sn+1|2p_2 - |Pn|2p_2 = Ipn + Lln+1|2p_2 - |pn|2p_2
2p-2
= 1P+ Y Una PP ol = o P2
=1
2p-2

2p—2—
Y a2,
=1

together with the elementary inequality and the Young inequality, we have

E (<|Sn+1|2p_2 - |Pn|2p_2) Pnrml)

2p-3
E[|un+1||pn rasal Y WP, |’]

<
1=0
2p-3
= E[|rn+1| Y U P2,
P73 1/4 1/4
< ZJE[ e DI7,) B (U207, ) (47, ) |
1=0
-3
< K E [IpaP 7 (1+ Xy, (bas)0 V2 + Xy, ([ DIOD72) (1 + Blro#7)+1712]
1=0
< KE[lpaP ™ (1 + Xy, (bren)O D2 4 Xy, (b DIO2) (1 + Bl )]
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2p-1 _ 2p
L @p-1)/2
K]E[ 2 (o) ]

1 _ - i 2p
+K1E[§((1+|Xyn<tn+l>|<y D2 1%y, ([t DI D) (1 + Eleg P7)5/2-Cr0/27) ]

< KHE|p,[% + K (1 + ElxoPP@ =) n¥+1, (40)
E (IS 2 Uni17nen)
. 1/2 1/4 1/4
< JE[lE(|sn+1|4P 47,) E(Unal'F,) B (Iral'i,) ]
_ _ 174 \1/4
<[P (14 B (e DO + I PO0) ™ (1 Bl ) 2
< KHE|p,[* + K (1 + ElxpP 1) i#r+? (41)
and
S 2p-1 ! - -2~ |2 a4 \M?
KY E(ISeaP ral) < Y E[E(Sunl217,) " E (irali7s,) |
=2 =2
i 1/2
< K)E [|p,l|2f’*’(1 + Ki) (1 + Epxol ) h2l]
=2
< KEhlp,[* + K (1 + Elxo|'## ) n#+1, (42)

Substituting (37) — (42) into (36), we obtain
Elpunl? <Elpa? + KHE|p,[? + K (1 + Elxol'2#) h27+2.

By the Gronwall inequality, we get (32).
The proof is complete. [

6. A numerical example

In this section, a numerical example is given to illustrate the result of Theorem 5.6. We use discrete
Brownian paths over [0,1] with A = 2715, Let Xj(T) be the numerical solution of the balanced Euler

method along the ith sample path at t = T with step size h. Let X/ (T) be the numerical solution to be an
approximation of the analytic solution and compare this with the numerical approximation using h = 23A,
h=2*\h=2Aand h = 2°A over N = 500 sample paths. Here the mean-square error is denoted as follows:

L& 12
~ S
Errory, := (N Y I -xynf|
i=1

The strong convergence order is defined numerically by

Errory,
Errory,

Order = log /log(2).

Consider the following example:

Example 6.1. Consider the following SVIDE

¢
% =-X3(t) + fo sin(t — s)X(s)dw(t) (43)

on t > 0 with initial data Xy = 1, where w(t) is a 1-dimension Brownian motion.



Here o(t,s) = sin(t — s), f(x) = —x>. It is obvious that all the assumptions are fulfilled.
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Define the balanced method as follows:

Y1 =Y, +sin(f(Yn)h) + sin(hZ,,),

where

n—1

Zy = Z sin(t, — 1)Y,Aw,.

=0

Table 1: Strong convergence order for Example 6.1.

step size Error  order
2°At 0.0518 -
20At 0.1110  1.0995
27 At 0.2295 1.0479
28At 0.4667 1.0240
10° :
—#— Balanced Euler method
Reference line with order = 1/2
— — — Reference line with order =1
107
10} //
10°F - -
-7 *
- 7
K
107 A
-
1(‘)’4 10 107
Stepsize

Figure 1: Mean square errors of the balanced Euler method of SVIDE (43)

3013

In Table 1 and Figure 1, we can see that the strong convergence order of balanced method for SVIDE

(43) is 1.

7. Conclusion

In this paper, we present the balanced Euler method of the nonlinear SVIDE (1). We give its moment
boundedness and show a strong convergence order of 1 under polynomial growth coefficients and one-sided

Lipschitz condition. Moreover, the theoretical results are illustrated by a numerical example.
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