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On a Generalization of Tripled Fixed or Best Proximity Points for a
Class of Cyclic Contractive Maps
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Abstract. We enrich the known results about tripled fixed points and tripled best proximity points. We
generalize the notion of ordered pairs of cyclic contraction maps and we obtain sufficient conditions for the
existence and uniqueness of fixed (or best proximity) points. We get a priori and a posteriori error estimates
for the tripled fixed points and for the tripled best proximity points, provided that the underlying Banach
space has modulus of convexity of power type in the case of best proximity points, obtained by sequences
of successive iterations. We illustrate the main result with an example.

1. Introduction and Preliminaries

The Banach contraction principle states that in a complete metric space (X, ρ) any contraction map
T : X → X has a fixed point, i.e. min{ρ(x,Tx) : x ∈ X} = 0. A lot of results in modeling real world
processes in applied mathematics lead to the problems, where T depends on two or more variables, e.g.
T : X × X × X → X. The theory of coupled [13], tripled [1, 8, 19], qudripled [18] and n–order (n–tuples)
[19] fixed points. In many kinds of modeling, a crucial point, is the finding of min{ρ(x,Tx) : x ∈ X}. It
may happen that the above minimum is greater than zero. One approach for solving the above mentioned
problems uses the notion of a best proximity point is introduced in [11], where a sufficient condition for
the existence and the uniqueness of best proximity points in uniformly convex Banach spaces is obtained.
Combining both mentioned cases we got to the idea of tripled fixed (or best proximity points).

Coupled fixed points defined in [13] and coupled best proximity points defined in [14, 20] are widely
investigated recently. Deep results in the theory of coupled fixed points can be found for example in [4–6].
The notion of coupled fixed is as follows: F : X × X→ X and we are searching for a couple (x, y), such that
x = F(x, y) and y = F(y, x) and the notion of coupled best proximity points – (F,G), F : A×A→ B, G : B×B→
A, where A,B ⊂ X we are searching for a couple (x, y), such that ρ(x,F(x, y)) = ρ(y,F(y, x)) = dist(A,B). In
the mentioned above classical definition of coupled fixed (or best proximity) points the solutions reduce
to the point (x, x), provided that the map F or the ordered pair (F,G) be a cyclic contractions [22]. The
same observation is made in [4, 7] for coupled fixed points for maps with the mixed monotone property
in partially ordered metric spaces. The draw back of the classical technique about coupled fixed (or best
proximity) points is that it can be applied only for solving of symmetric linear or nonlinear systems of
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equations. This gap has been filled in [22] by generalizing the defined maps F or the ordered pair of maps
(F,G).

There are many problems about fixed points and best proximity points that are not easy to be solved or
can not be solved exactly. One of the advantages of the Banach fixed point theorem is the error estimates
of the successive iterations and the rate of convergence. That is why an estimation of the error, when an
iterative process, is used is of interest, when fixed points or best proximity points are investigated. An
extensive study about approximations of fixed points can be found in [3]. A first result in the approximation
of the sequence of successive iterations, which converges to the best proximity point for cyclic contractions,
is obtained in [21]. This result was expanded for a coupled fixed (or best proximity) points in [16, 22].

The generalization made in [22], was to replace the ordered pair (F,G), F : A × A → B, G : B × B → A
an ordered pair (F,G) of ordered couples of maps F = (F1,F2) and G = (G1,G2), such that F1 : A1 ×A2 → B1,
F2 : A1 × A2 → B2, G1 : B1 × B2 → A1, G2 : B1 × B2 → A2 is considered. Examples are presented in [22] to
show that it is possible to apply the coupled fixed (or best proximity) points for solving of non–symmetric
systems of equations. If F2(x, y) = F1(y, x), G2(x, y) = G1(y, x), A1 = A2, B1 = B2, the investigated maps in
[22] reduce to the known examples [4–6, 13, 14, 20].

The same observations can be made and for tripled fixed (or best proximity) points investigated in [1, 19].
We will try to generalize the notion of tripled fixed (or best proximity) points following the technique from
[22]. The notion of tripled fixed points proposed in [8] is a little bit different. Our main result will cover just
some of the cases of the considered maps in [8]. We will discus in the last section a possible generalization
that will cover and the case investigated in [8].

Let (X, ρ) be a metric space. If (X, ‖ · ‖) be a norm space we will consider the metric to be endowed by
the norm, i.e. ρ(·, ·) = ‖ · − · ‖. Let every where in the text Ai, Bi for i = 1, 2, 3 be subset of X. Let us denote,
just to simplify the notations, A3 = A1 × A2 × A3 and B3 = B1 × B2 × B3.

Definition 1.1. Let Ai,Bi, i = 1, 2, 3 be six sets. We say that the ordered pair (F,G) of triples of maps F = (F1,F2,F3)
and G = (G1,G2,G3) be a cyclic ordered pair of triple of maps if Fi : A3

→ Bi, Bi : B3
→ Ai for i = 1, 2, 3.

Just for the the sake of simplicity we will assume for the rest of the article that the pair of maps (F,G) be
a cyclic ordered pair of triple of maps.

Following [1, 19] we will give the following definition.

Definition 1.2. We say that (ξ1, ξ2, ξ3) ∈ A3 is a tripled fixed point for the ordered pair of triple of maps (F,G) if
there holds ξi = Fi(ξ1, ξ2, ξ3), for i = 1, 2, 3.

If A1 = A2 = A3 = B1 = B2 = B3 and F2(x, y, z) = F1(y, z, x), F3(x, y, z) = F1(z, x, y) and Gi(x, y, z) = Fi(x, y, x)
for i = 1, 2, 3 we get the definition of tripled fixed points from [1, 19]. If A1 = A2 = A3 = B1 = B2 = B3 and
F2(x, y, z) = F1(y, x, y), F3(x, y, z) = F1(z, y, x) and Gi(x, y, z) = Fi(x, y, x) for i = 1, 2, 3 we get the definition of
tripled fixed points from [8].

The concept of coupled best proximity points is introduced in [20]. We will generalize this concept from
[20, 22] for tripled best proximity points.

Define a distance between two subsets A,B ⊂ X by dist(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}. Let Ai,Bi,
i = 1, 2, 3 be subsets of a metric space (X, ρ). Let us denote di = dist(Ai,Bi) for i = 1, 2, 3.

Definition 1.3. Let Ai,Bi, i = 1, 2, 3 be subsets of a metric space (X, ρ) and let (F,G) be a cyclic ordered pair of triple
of maps. We say that (ξ1, ξ2, ξ3) ∈ A3 a tripled best proximity point of F if ρ(ξi,Fi(ξ1, ξ2, ξ3)) = di, for i = 1, 2, 3.

If A1 = A2, B1 = B2, A3 = B3 = ∅, F2(x, y) = F1(y, x) we get the definition for a coupled fixed point from
[20].

We will use the classical technique of successive iterations for the investigations of tripled fixed (or best
proximity) points [8, 9].
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Definition 1.4. Let Ai,Bi, i = 1, 2, 3 be six sets and let (F,G) be a cyclic ordered pair of triple of maps. For any triple(
x(1), x(2), x(3)

)
∈ A3 we define the sequences

{
x(i)

n

}∞
n=0

, for i = 1, 2, 3 by x(i)
0 = x(i) for i = 1, 2, 3 and

x(i)
2n+1 = Fi

(
x(1)

2n , x
(2)
2n , x

(3)
2n

)
, x(i)

2n+2 = Gi

(
x(1)

2n+1, x
(2)
2n+1, x

(3)
2n+1

)
, for i = 1, 2, 3

and for all n ≥ 0.

If we consider A1 = A2 = A3 = B1 = B2 = B3 and F2(x, y, z) = F1(y, z, x), F3(x, y, z) = F1(z, x, y) and
Gi(x, y, z) = Fi(x, y, x) for i = 1, 2, 3 we get the sequence defined in [1]. If we consider A1 = A2 = A3 = B1 =
B2 = B3 and F2(x, y, z) = F1(y, x, y), F3(x, y, z) = F1(z, y, x) and Gi(x, y, z) = Fi(x, y, x) for i = 1, 2, 3 we get the
sequence defined in [8].

Whenever we consider the sequences
{
x(i)

n

}∞
n=0

, for i = 1, 2, 3 we assume that they are the sequences
defined in Definition 1.4.

The best proximity results need norm-structure of the space X. We will denote the unit sphere and the
unit ball of a Banach space (X, ‖ · ‖) by SX and BX respectively.

The assumption that the Banach space (X, ‖·‖) is uniformly convex plays a crucial role in the investigation
of best proximity points.

Definition 1.5. Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2] we define the modulus of convexity of ‖ · ‖ by

δ‖·‖(ε) = inf
{
1 −

∥∥∥∥∥x + y
2

∥∥∥∥∥ : x, y ∈ BX, ‖x − y‖ ≥ ε
}
.

The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space (X, ‖ · ‖) is then called a uniformly
convex space.

Indeed, there are results about existence and uniqueness of best proximity points, stated in complete
metric space X, where the ordered pair (A,B) of sets A,B ⊂ X satisfies the properties UC and UC∗ [14, 20],
but these assumptions are just a replacement of the next two lemmas.

Lemma 1.6. ([11]) Let A be a nonempty closed, convex subset, and B be a nonempty closed subset of a uniformly
convex Banach space. Let {xn}

∞

n=1 and {zn}
∞

n=1 be sequences in A and {yn}
∞

n=1 be a sequence in B satisfying:
1) limn→∞ ‖xn − yn‖ = dist(A,B);
2) limn→∞ ‖zn − yn‖ = dist(A,B);
then limn→∞ ‖xn − zn‖ = 0.

Lemma 1.7. ([11]) Let A be a nonempty closed, convex subset, and B be a nonempty closed subset of a uniformly
convex Banach space. Let {xn}

∞

n=1 and {zn}
∞

n=1 be sequences in A and {yn}
∞

n=1 be a sequence in B satisfying:
1) limn→∞ ‖zn − yn‖ = dist(A,B);
2) for every ε > 0 there exists N0 ∈N, such that for all m > n ≥ N0, ‖xn − yn‖ ≤ dist(A,B) + ε,
then for every ε > 0, there exists N1 ∈N, such that for all m > n > N1, holds ‖xm − zn‖ ≤ ε.

For obtaining error estimates for the sequence of successive iterations that approximates the best prox-
imity point, which is generated by a cyclic contraction, the modulus of convexity δ(X,‖·‖) is used [21]. That is
why we could not replace the uniform convexity of the Banach space with a metric space and the properties
UC and UC∗.

For any uniformly convex Banach space X there holds the inequality∥∥∥∥∥x + y
2
− z

∥∥∥∥∥ ≤ (
1 − δX

( r
R

))
R (1)

for any x, y, z ∈ X, R > 0, r ∈ [0, 2R], ‖x − z‖ ≤ R, ‖y − z‖ ≤ R and ‖x − y‖ ≥ r [11].
If (X, ‖ · ‖) is a uniformly convex Banach space, then δX(ε) is a strictly increasing function. Therefore if

(X, ‖ · ‖) is a uniformly convex Banach space, then there exists the inverse function δ−1 of the modulus of
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convexity. If there exist constants C > 0 and q > 0, such that the inequality δ‖·‖(ε) ≥ Cεq holds for every
ε ∈ (0, 2], we say that the modulus of convexity is of power type q. It is well known that for any Banach
space and for any norm there holds the inequality δ(ε) ≤ Kε2. The modulus of convexity with respect to the

canonical norm ‖ · ‖p in `p or Lp is δ‖·‖p (ε) = 1− p
√

1 −
(
ε
2

)p
for p ≥ 2 and for 1 < p < 2 the modulus of convexity

δ‖·‖p (ε) is the solution of the equation
(
1 − δ + ε

2

)p
+

∣∣∣1 − δ − ε
2

∣∣∣p = 2. It is well known that the modulus of
convexity with respect to the canonical norm in `p or Lp is of power type and there hold the inequalities

δ‖·‖p (ε) ≥ εp

p2p for p ≥ 2 and δ‖·‖p (ε) ≥ (p−1)ε2

8 for p ∈ (1, 2) [17].
An extensive study of the Geometry of Banach spaces can be found in [2, 10, 12].

2. Triple fixed (or best proximity) points for cyclic ordered pair of triple of maps

Definition 2.1. Let (X, ρ) be a metric space. We say that the cyclic ordered pair of triple of maps (F,G) be a generalized
cyclic contraction of type 1 if there holds

3∑
i=1

ρ
(
Fi

(
x(1)

i , x
(2)
i , x

(3)
i

)
,Gi

(
y(1)

i , y
(2)
i , y

(3)
i

))
≤

3∑
j=1

3∑
i=1

α( j)
i ρ

(
x( j)

i , y
( j)
i

)

for some constants α( j)
i ∈ [0, 1) for i, j = 1, 2, 3, such that k = max

 3∑
i=1

α(1)
i ,

3∑
i=1

α(2)
i ,

3∑
i=1

α(3)
i

 < 1 and any(
x(1)

i , x
(2)
i , x

(3)
i

)
∈ A3,

(
y(1)

i , y
(2)
i , y

(3)
i

)
∈ B3 for i = 1, 2, 3.

Theorem 2.2. Let Ai,Bi, i = 1, 2, 3 be nonempty, closed subsets of a complete metric space (X, ρ). Let the ordered
pair (F,G) be a generalized cyclic contraction of type 1. Then

(I) There exists a unique triple (ξ1, ξ2, ξ3) in (A1 ∩ B1) × (A2 ∩ B2) × (A3 ∩ B3), which is a common triple fixed
point for the maps F and G. Moreover the iteration sequences

{
x(n)

i

}∞
n=0

, for i = 1, 2, 3, defined in Definition 1.4

converge to ξi for i = 1, 2, 3 respectively for any initial guess triple
(
x(0)

1 , x
(0)
2 , x

(0)
3

)
;

(II) a priori error estimates hold

max
{
ρ(x(n)

i , ξi) : i = 1, 2, 3
}
≤

kn

1 − k

3∑
i=1

ρ
(
x(1)

i , x
(0)
i

)
; (2)

(III) a posteriori error estimates hold

max
{
ρ(x(n)

i , ξ) : i = 1, 2, 3
}
≤

k
1 − k

3∑
i=1

ρ
(
x(n−1)

i , x(n)
i

)
; (3)

(IV) The rate of convergence for the sequences of successive iterations is given by

3∑
i=1

ρ
(
x(n)

i , ξi

)
≤ k

3∑
i=1

ρ
(
x(n−1)

i , ξi

)
. (4)

In what follows we will use the notation d =
∑3

j=1 d j =
∑3

j=1 dist(A j,B j).
Just to fit some of the formulas in the text field we will denote Pn,m(x, y, z) = ‖xn−xm‖+‖yn−ym‖+‖zn−zm‖

and Wn,m(x, y, z) = Pn,m(x, y, z) − d = ‖xn − xm‖ + ‖yn − ym‖ + ‖zn − zm‖ − d, where {xn}
∞

n=0, {yn}
∞

n=0 and {zn}
∞

n=0
be three sequences.



B. Zlatanov / Filomat 35:9 (2021), 3015–3031 3019

Just to simplify some of the statements let us agree that every where (F,G) be an ordered pair of ordered
triples of maps, such that F = (F1,F2,F3), Fi : A1 ×A2 ×A3 → Bi and G = (G1,G2,G3), Gi : B1 × B2 × B3 → Ai,
for i = 1, 2, 3, where Ai, Bi for i = 1, 2, 3 be nonempty subsets of the underlying space X, metric or normed
space.

Definition 2.3. We say that the ordered pair (F,G) of ordered triples of maps is a generalized cyclic contraction of
type 2 if there holds

3∑
i=1

ρ
(
Fi

(
x(1)

i , x
(2)
i , x

(3)
i

)
,Gi

(
y(1)

i , y
(2)
i , y

(3)
i

))
≤

3∑
j=1

3∑
i=1

α( j)
i ρ

(
x( j)

i , y
( j)
i

)
+

3∑
j=1

1 −
3∑

i=1

α( j)
i

 d j

for some constants α( j)
i ∈ [0, 1), i, j = 1, 2, 3 such that k = max

{∑3
i=1 α

( j)
i : j = 1, 2, 3

}
< 1 and any

(
x(1)

i , x
(2)
i , x

(3)
i

)
∈

A3, (y(1)
i , y

(2)
i , y

(3)
i ) ∈ B3 for i = 1, 2, 3.

Theorem 2.4. Let Ai, Bi, for i = 1, 2, 3 be nonempty, closed and convex subsets of a uniformly convex Banach space.
Let the ordered pair (F,G) of ordered triples of maps be a generalized cyclic contraction of type 2. Then F has a unique
tripled best proximity point (ξ1, ξ2, ξ3) ∈ A3 and G has a unique tripled best proximity point (υ1, υ2, υ3) ∈ B3, i.e.
(‖ξi − Fi(ξ1, ξ2, ξ3)‖ = di, ‖υi − Gi(υ1, υ2, υ3)‖ = di, i = 1, 2, 3) and

Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) = ξi,
Fi(G1(υ1, υ2, υ3),G2(υ1, υ2, υ3),G3(υ1, υ2, υ3)) = υi

(5)

for i = 1, 2, 3. Moreoverυi = Fi(ξ1, ξ2, ξ3) andξi = Gi(υ1, υ2, υ3) for i = 1, 2, 3. For any arbitrary point
(
x(0)

1 , x
(0)
2 , x

(0)
2

)
there hold limn→∞ x(2n)

i = ξi, limn→∞ x(2n+1)
i = υi for i = 1, 2, 3 and

∑3
i=1 ‖ξi − υi‖ = d.

If in addition the modulus of convexity δ is of power type with constants C > 0 and q > 1 then there holds the
error estimates:

(i) a priori error estimates hold

max
{∥∥∥ξi − x(2m)

i

∥∥∥ : i = 1, 2, 3
}
≤ P0,1(x1, x2, x3)

q

√
W0,1(x1, x2, x3)

Cd
·

(
q√

k2
)m

1 −
q√

k2
; (6)

(ii) a posteriori error estimates hold

max
{∥∥∥ξi − x(2n)

i

∥∥∥ : i = 1, 2, 3
}
≤ P2n,2n−1(x1, x2, x3)

q

√
W2n,2n−1(x1, x2, x3)

Cd
·

q√
k

1 −
q√

k2
, (7)

where xi = {x(n)
i }
∞

n=0 for i = 1, 2, 3 are the sequences defined in Definition 1.4.

3. Auxiliary results

Lemma 3.1. Let (X, ρ) be a metric space and the ordered pair (F,G) of ordered triples of maps be a generalized cyclic
contraction of type 2. Then there holds lim

n→∞
ρ
(
x(n)

i , x
(n+1)
i

)
= di, i = 1, 2, 3 for an arbitrary chosen

(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3.

Proof. Let us choose arbitrary
(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3 and let us define the sequences

{
x(n)

i

}∞
n=0

, i = 1, 2, 3.
Using the cyclic contraction condition we get that for all n ∈N there holds

3∑
i=1

ρ
(
x(2n+1)

i , x(2n+2)
i

)
=

3∑
i=1

ρ
(
Fi

(
x(2n)

1 , x(2n)
2 , x(2n)

3

)
,Gi

(
x(2n+1)

1 , x(2n+1)
2 , x(2n+1)

3

))
≤

3∑
j=1

3∑
i

α( j)
i ρ

(
x(2n)

j , x(2n+1)
j

)
+

3∑
j=1

1 −
( j)∑
i

α( j)
i

 d j
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Thus we get

3∑
i=1

(
ρ
(
x(2n+1)

i , x(2n+2)
i

)
− di

)
≤

3∑
j=1

3∑
i

α( j)
i

(
ρ
(
x(2n)

j , x(2n+1)
j

)
− d j

)
≤ k

3∑
j=1

(
ρ
(
x(2n)

j , x(2n+1)
j

)
− d j

)
≤ k2

3∑
j=1

(
ρ
(
x(2n−1)

j , x(2n)
j

)
− d j

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ k2n+1
3∑

j=1

(
ρ
(
x(0)

j , x
(1)
j

)
− d j

)
(8)

After taking limit in (8), when n→∞we get

lim
n→∞

 3∑
i=1

(
ρ
(
x(2n+1)

i , x(2n+2)
i

)
− di

) = 0

and thus from ρ
(
x(2n+1)

i , x(2n+2)
i

)
≥ di for i = 1, 2, 3 we obtain lim

n→∞
ρ
(
x(2n+1)

i , x(2n+2)
i

)
= di for i = 1, 2, 3. �

It is easy to see that inequality (8) holds also for indexes m > n, such that n + m is an odd number

3∑
i=1

(
ρ
(
x(n)

i , x
(m)
i

)
− di

)
≤ kn

3∑
i=1

(
ρ
(
x(0)

i , x
(1)
i

)
− di

)
. (9)

Lemma 3.2. Let (X, ρ) be a metric space and the ordered pair (F,G) of ordered triples of maps be a generalized cyclic
contraction of type 2. For any arbitrary chosen

(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3 the sequences

{
x(2n)

i

}∞
n=0

,
{
x(2n+1)

i

}∞
n=0

, i = 1, 2, 3
are bounded.

Proof. Let
(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3 be arbitrary chosen and fixed. From Lemma 3.1 we have that there hold

limn→∞ ρ
(
x(2n+1)

i , x(2n+2)
i

)
= di, for i = 1, 2, 3 and thus it will be enough to prove that only the sequences{

x(2n+1)
i

}∞
n=0

, i = 1, 2, 3 are bounded.
Let as choose

M >
d + (1 + k)k2 ∑3

i=1 ρ
(
x(0)

i ,Fi

(
x(0)

1 , x
(0)
2 , x

(0)
3

))
1 − k2 .

Let us suppose that at least one of the sequences
{
x(2n+1)

i

}∞
n=0

, i = 1, 2, 3 is not bounded. Then there exists
n0 ∈N, such that there hold

3∑
i=1

ρ
(
x(2)

i , x
(2n0−1)
i

)
=

3∑
i=1

ρ
(
x(2)

i ,Fi

(
x(2n0−2)

1 , x(2n0−2)
2 , x(2n0−2)

3

))
≤M

and

3∑
i=1

ρ
(
x(2)

i , x
(2n0+1)
i

)
=

3∑
i=1

ρ
(
x(2)

i ,Fi

(
x(2n0)

1 , x(2n0)
2 , x(2n0)

3

))
> M. (10)
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From inequality (10) after using (9) with n = 2 and m = 2n0 + 1 we get

M − d
k2 <

∑3
i=1 ρ

(
x(2)

i , x
(2n0+1)
i

)
− d

k2 =

∑3
i=1 ρ

(
Fi

(
x(1)

1 , x
(1)
2 , x

(1)
3

)
,Fi

(
x(2n0)

1 , x(2n0)
2 , x(2n0)

3

))
− d

k2

≤
∑3

i=1 ρ
(
x(0)

i ,Fi

(
x(2n0−2)

1 , x(2n0−2)
2 , x(2n0−2)

3

))
− d

≤
∑3

i=1 ρ
(
x(0)

i , x
(2)
i

)
− d +

∑3
i=1 ρ

(
x(2)

i ,Fi

(
x(2n0−2)

1 , x(2n0−2)
2 , x(2n0−2)

3

))
≤

∑3
i=1 ρ

(
x(0)

i , x
(1)
i

)
+

∑3
i=1 ρ

(
x(1)

i , x
(2)
i

)
− d + M

≤
∑3

i=1 ρ
(
x(0)

i , x
(1)
i

)
+ k

(∑3
i=1 ρ

(
x(0)

i , x
(1)
i

)
− d

)
+ M

= (1 + k)
∑3

i=1 ρ
(
x(0)

i , x
(1)
i

)
− kd + M < (1 + k)

∑3
i=1 ρ

(
x(0)

i , x
(1)
i

)
+ M

which inequality can hold true only if the inequality

M ≤
d + (1 + k)k2 ∑3

i=1 ρ
(
x(0)

i , x
(1)
i

)
1 − k2 ,

holds, which contradicts with the choice of M. �

Lemma 3.3. Let (X, ‖ · ‖) be a uniformly convex Banach space and the ordered pair (F,G) be a generalized cyclic
contraction of type 2. Then for every ε > 0 there is n0 ∈N so that the inequality

3∑
i=1

∥∥∥x(m)
i − x(n+1)

i

∥∥∥ < d + ε

holds for any m > n > n0 and m + n + 1 be an odd number.

Proof. From Lemma 3.1 we get

lim
n→∞

∥∥∥x(n)
i − x(n+1)

i

∥∥∥ = lim
n→∞

∥∥∥x(n+2)
i − x(n+1)

i

∥∥∥ = di

for i = 1, 2, 3.
By Lemma 1.6 after using the uniform convexity of (X, ‖ · ‖) it follows that limn→∞

∥∥∥x(n)
i − x(n+2)

i

∥∥∥ = 0 for
i = 1, 2, 3.

Let us suppose that there exists ε > 0 such that for every j ∈ N there are m j > n j + 1 ≥ j so that∑3
i=1

∥∥∥∥x(m j)
i − x(n j+1)

i

∥∥∥∥ ≥ d + ε. Let us choose m j to be the smallest integer so that the above inequality is
satisfied, i.e.

3∑
i=1

∥∥∥∥x(m j−2)
i − x(n j+1)

i

∥∥∥∥ < d + ε.

Thus we get

d + ε ≤
∑3

i=1

∥∥∥∥x(m j)
i − x(n j+1)

i

∥∥∥∥ ≤ ∑3
i=1

(∥∥∥∥x(m j)
i − x(m j−2)

i

∥∥∥∥ +
∥∥∥∥x(m j−2)

i − x(n j+1)
i

∥∥∥∥)
<

∑3
i=1

∥∥∥∥x(m j)
i − x(m j−2)

i

∥∥∥∥ + d + ε.
(11)

Letting j → ∞ in (11) we get lim j→∞
∑3

i=1

∥∥∥∥x(m j)
i − x(m j−2)

i

∥∥∥∥ = d + ε. Using the boundedness of the se-

quences
{
x(n)

i

}∞
n=0

for i = 1, 2, 3 it follows that there exists M ≥ d =
∑3

i=1 di, such that the inequality
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M ≥
∑3

i=1

∥∥∥∥x(0)
i − x(n j−m j+1)

i

∥∥∥∥ holds for every j ∈N. The inequality

3∑
i=1

‖x(m j)
i − x(n j+1)

i ‖ − d ≤ km j

 3∑
i=1

‖x(0)
i − x(n j−m j+1)

i ‖ − d

 ≤ km j (M − d)

holds. For any ε > 0 there exists j0 ∈ N, such that k j(M − d) < ε for every j ≥ j0. Therefore for any

m j > n j + 1 ≥ j0 there holds
∑3

i=1

∥∥∥∥x(m j)
i − x(n j+1)

i

∥∥∥∥ < d + ε, which is a contradiction. �

Lemma 3.4. Let (X, ‖ · ‖) be a uniformly convex Banach space and the ordered pair (F,G) be a generalized cyclic
contraction of type 2. For an arbitrary chosen

(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3 the sequences

{
x(2n)

i

}∞
n=0

,
{
x(2n+1)

i

}∞
n=0

for i = 1, 2, 3
are Cauchy sequences.

Proof. We will prove that
{
x(2n)

i

}∞
n=0

is a Cauchy sequence. The proofs for the other five cases are similar. By
Lemma 3.3 we have that for every ε > 0 there is n0 ∈N, so that for all 2m > 2n + 1 ≥ n0 holds the inequality

3∑
i=1

∥∥∥x(2m)
i − x(2n+1)

i

∥∥∥ < d + ε.

From the inequalities di ≤
∥∥∥x(2m)

i − x(2n+1)
i

∥∥∥ for i = 1, 2, 3 it follows that the inequality
∥∥∥x(2m)

1 − x(2n+1)
i

∥∥∥ < d1 + ε

holds for all 2m > 2n + 1 ≥ n0. From Lemma 3.1 it follows that limn→∞

∥∥∥x(2n)
1 − x(2n+1)

1

∥∥∥ = d1. According to
Lemma 1.7 it follows that for every ε > 0 there is N0 ∈ N, so that for all m > n ≥ N0 holds the inequality∥∥∥x2m

1 − x2n
1

∥∥∥ < ε and consequently
{
x(2n)

1

}∞
n=0

is a Cauchy sequence. �

Lemma 3.5. Let (X, ‖ · ‖) be a uniformly convex Banach space and the ordered pair (F,G) be a generalized cyclic
contraction of type 2. Then for any 1 ≤ l ≤ 2n there hold the inequalities∥∥∥x(2n+1)

i − x(2n)
i

∥∥∥ ≤ klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
+ di

for i = 1, 2, 3.

Proof. By Lemma 3.1 we have the inequality

W2n+1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
≤ kW2n,2n−1

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
.

and therefore W2n+1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
≤ klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
.

Consequently using the inequalities di ≤
∥∥∥x(2n+1)

i − x(2n)
i

∥∥∥ for i = 1, 2, 3 and for any n ∈Nwe get

∥∥∥x(2n+1)
i − x(2n)

i

∥∥∥ ≤ klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
+ di +

3∑
j=1
j,i

(
d j −

∥∥∥∥x(2n+1)
j − x(2n)

j )
∥∥∥∥)

≤ klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
+ di.

�

Lemma 3.6. Let (X, ‖ · ‖) be a uniformly convex Banach space and the ordered pair (F,G) be a generalized cyclic
contraction of type 2. Then there holds the inequalities

δ‖·‖


∥∥∥x(2n+2)

i − x(2n)
i

∥∥∥
di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)  ≤ klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
for i = 1, 2, 3.
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Proof. From Lemma 3.5 we have the inequalities∥∥∥x(2n+1)
i − x(2n)

i

∥∥∥ ≤ di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
,∥∥∥x(2n+2)

i − x(2n+1)
i

∥∥∥ ≤ di + kl+1W2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
≤ di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
and ∥∥∥x(2n+2)

i − x(2n)
i

∥∥∥ ≤ ∥∥∥x(2n+2)
i − xi(2n + 1)

∥∥∥ +
∥∥∥x(2n+1)

i − x(2n)
i

∥∥∥ ≤ 2
(
di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

))
for i = 1, 2, 3.

After substituting in (1) with x = x(2n)
i , y = x(2n+2)

i , z = x(2n+1)
i , R = di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
and

r =
∥∥∥x(2n+2)

i − x(2n)
i

∥∥∥ and using the convexity of the set Ai we get the chain of inequalities

di ≤

∥∥∥∥∥ x(2n)
i +x(2n+2)

i
2 − x(2n+1)

i

∥∥∥∥∥
≤

(
1 − δ‖·‖

( ∥∥∥∥x(2n+2)
i −x(2n)

i

∥∥∥∥
di+klW2n+1−l,2n−l

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

))) (di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)) (12)

for every i = 1, 2, 3. Thereafter we obtain the inequality

δ‖·‖


∥∥∥x(2n+2)

i − x(2n)
i

∥∥∥
di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)  ≤ klW2n+1−l,2n−l(x, y)

di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
for i = 1, 2, 3. �

4. Proof of the Main Results

Proof of Theorem 2.2. It is easy to observe that for any n ∈N there hold the inequalities

3∑
i=1

ρ
(
x(2n+1)

i , x(2n)
i

)
=

3∑
i=1

ρ
(
Fi(x

(2n)
1 , x(2n)

2 , x(2n)
3

)
,Gi

(
x(2n−1)

i , x(2n−1)
i , x(2n−1)

i

)
≤

3∑
i=1

3∑
j=1

α(i)
j ρ

(
x(2n)

i , x(2n−1)
i

)
≤ k

3∑
i=1

ρ
(
x(2n)

i , x(2n−1)
i

)
.

Consequently

3∑
i=1

ρ
(
x(2n+1)

i , x(2n)
i

)
≤ kl

3∑
i=1

ρ
(
x(2n+1−l)

i , x(2n−l)
i

)
. (13)

(I) Let
(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3 be arbitrary chosen. Let

{
x(n)

i

}∞
n=0

for i = 1, 2, 3 be the sequences defined in Definition
1.4. Then from (13), because one of n + 1 or n is even and the other is an odd number, applied for l = n we
have

max
{
ρ
(
x(n+1)

i , x(n)
i

)
: i = 1, 2, 3

}
≤ kn

3∑
i=1

ρ
(
x(0)

i , x
(1)
i

)
.

Thus

ρ
(
x(n)

i , x
(n+m)
i

)
≤

n+m−1∑
j=n

ρ
(
x( j)

i , x
( j+1)
i

)
≤

n+m−1∑
j=n

k j
3∑

i=1

ρ
(
x(0)

i , x
(1)
i

)
≤ kn 1 − kn+m

1 − k

3∑
i=1

ρ
(
x(0)

i , x
(1)
i

)
.

(14)
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Since k ∈ (0, 1) it follows that the sequences
{
x(n)

i

}∞
n=0

, i = 1, 2, 3 are Cauchy sequences in Ai ∪Bi, respectively.

Consequently any of the sequences
{
x(n)

i

}∞
n=0

, i = 1, 2, 3 converges to some ξi ∈ Ai ∩ Bi. However any of the

sequences
{
x(n)

i

}∞
n=0

has an infinite number of terms in Ai and in Bi for i = 1, 2, 3, respectively and therefore
ξi ∈ Ai ∩ Bi, i = 1, 2, 3. So Ai ∩ Bi , ∅ for i = 1, 2, 3.

Now, we will prove that the pair (ξ1, ξ2, ξ3) is a tripled fixed point of F. Let ξi ∈ Ai ∩ Bi for i = 1, 2, 3.
WLOG we can assume that (ξ1, ξ2, ξ3) ∈ A3. It follows that (Fiξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) ∈ B3.
Then by the triangle inequality we get the chain of inequalities

3∑
i=1

ρ(ξi,Fi(ξ1, ξ2, ξ3)) ≤

3∑
i=1

(
ρ
(
ξi, x

(2n)
i

)
+ ρ

(
x(2n)

i ,Fi(ξ1, ξ2, ξ3)
))

≤

3∑
i=1

ρ
(
ξi, x

(2n)
i

)
+

3∑
i=1

ρ
(
Gi

(
x(2n−1)

1 , x(2n−1)
2 , x(2n−1)

3

)
,Fi(ξ1, ξ2, ξ3)

)
≤

3∑
i=1

ρ
(
ξi, x

(2n)
i

)
+

3∑
j=1

3∑
i=1

α( j)
i ρ

(
x(2n−1)

j , ξ j

)
.

Taking the limit when n→ ∞, we obtain
∑3

i=1 ρ(ξi,Fi(ξ1, ξ2, ξ3)) = 0, i.e ρ(ξi,Fi(ξ1, ξ2, ξ3)) = 0 for i = 1, 2, 3.
Thus the triple (ξ1, ξ2, ξ3) is a tripled fixed point of F = (F1,F2,F3).

The proof that the pair (ξ1, ξ2, ξ3) is a tripled fixed point of G = (G1,G2,G3) can be done in a similar
fashion by assuming that (ξ1, ξ2, ξ3) ∈ B3.

We still have to prove that (ξ1, ξ2, ξ3) is the unique tripled fixed point of F. Arguing by contradiction,
suppose there exists

(
ξ∗1, ξ

∗

2, ξ
∗

3

)
∈ (A1 ∪ B1) × (A2 ∪ B2) × (A3 ∪ B3) such that

(
ξ∗1, ξ

∗

2, ξ
∗

3

)
, (ξ1, ξ2, ξ3) and

ξ∗i = Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)
for i = 1, 2, 3. If we suppose that ξ∗1 ∈ A1 then by the definition of a tripled fixed point it

follows that ξ∗i ∈ Ai for i = 2, 3 and therefore ξ∗i = Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)
∈ Bi for i = 1, 2, 3. A similar argument holds

if we assume that ξ∗1 ∈ B1. Thus we can assume that if the pair
(
ξ∗1, ξ

∗

2, ξ
∗

3

)
is a tripled fixed point of F then(

ξ∗1, ξ
∗

2, ξ
∗

3

)
∈ (A1∩B1)× (A2∩B2)× (A3∩B3). Using the observation that (ξ1, ξ2, ξ3) and

(
ξ∗1, ξ

∗

2, ξ
∗

3

)
are tripled

fixed points and for G, we have the inequalities
3∑

i=1

ρ
(
ξ∗i , ξi

)
=

3∑
i=1

ρ
(
Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)
,Gi(ξ1, ξ2, ξ3)

)
≤

3∑
i=1

3∑
i=1

α( j)
i ρ

(
ξ∗j, ξ j

)
<

3∑
i=1

ρ
(
ξ∗i , ξi

)
.

It results that ρ
(
ξ∗i , ξi

)
for i = 1, 2, 3, which is a contradiction and therefore (ξ1, ξ2, ξ3) is the unique tripled

fixed point of F.
The proof that the pair (ξ1, ξ2, ξ3) is the unique tripled fixed point of G can be done in a similar way.
(II) Letting m→∞ in (14) we obtain the a priori estimate

ρ
(
x(n)

i , ξi

)
≤

kn

1 − k

3∑
i=1

ρ
(
x(0)

i , x
(1)
i

)
.

Therefore

max{ρ
(
xn

i , ξi

)
: i = 1, 2, 3} ≤

kn

1 − k

3∑
i=1

ρ
(
x(0)

i , x
(1)
i

)
.

(III) From the inequality (13) applied for l = k + 1 we get

ρ
(
x(n)

i , x
(n+m)
i

)
≤

m−1∑
j=0

ρ
(
x(n+ j)

i , x(n+ j+1)
i

)
≤

m−1∑
j=0

k j+1
3∑

i=1

ρ
(
x(n−1)

i , x(n)
i

)
≤

k
1 − k

(
1 − km+1

) 3∑
i=1

ρ
(
x(n−1)

i , x(n)
i

)
.
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Letting m→∞we obtain the a posteriori estimate

ρ
(
x(n)

i , ξi

)
≤

k
1 − k

3∑
i=1

ρ
(
x(n−1)

i , x(n)
i

)
and thus

max
{
ρ
(
x(n)

i , ξi

)
: i = 1, 2, 3

}
≤

k
1 − k

3∑
i=1

ρ
(
x(n−1)

i , x(n)
i

)
.

(IV) Considering that the triple (ξ1, ξ2, ξ3) is a tripled fixed point for F we have the inequalities

3∑
i=1

ρ
(
x(2n)

1 , ξi

)
=

3∑
i=1

ρ
(
Gi

(
x(2n−1)

1 , x(2n−1)
2 , x(2n−1)

3

)
,Fi(ξ1, ξ2, ξ3)

)
≤

3∑
j=1

3∑
i=1

α( j)
i ρ(x(2n−1)

j , ξ j)

≤ k
3∑

j=1

ρ
(
x(2n−1)

j , ξ j

)
.

By similar arguments we get∑3
i=1 ρ

(
x(2n+1)

i , ξi

)
=

∑3
i=1 ρ

(
Fi

(
x(2n)

i , y(2n)
i , z(2n)

i

)
,Gi (ξ1, ξ2, ξi)

)
≤

∑3
j=1

∑3
i=1 α

( j)
i ρ

(
x(2n)

i , ξi

)
≤ k

∑3
i=1 ρ

(
x(2n)

i , ξi

)
.

Consequently
∑3

i=1 ρ
(
x(n)

i , ξi

)
≤ k

∑3
i=1 ρ

(
x(n−1)

i , ξi

)
. �

Proof of Theorem 2.4. For any initial guess
(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3 it follows from Lemma 3.4 that the sequences{

x(2n)
i

}∞
n=0

,
{
x(2n+1)

i

}∞
n=0

for i = 1, 2, 3 are Cauchy sequences. From the assumptions that (X, ‖ · ‖) is a Banach

space and Ai, Bi for i = 1, 2, 3 are closed it follows that there are (ξ1, ξ2, ξ3) ∈ A3, so that limn→∞ x(2n)
i = ξi ∈ Ai

for i = 1, 2, 3.
From the inequalities by using the continuity of the norm function ‖ · − · ‖ and Lemma 3.1 we get

3∑
i=1

‖ξi − Fi(ξ1, ξ2, ξ3)‖ − d = lim
n→∞

3∑
i=1

∥∥∥x(2n)
i − Fi(ξ1, ξ2, ξ3)

∥∥∥ − d

= lim
n→∞

3∑
i=1

∥∥∥∥Gi

(
x(2n−1)

i , x(2n−1)
i , x(2n−1)

i

)
− Fi(ξ1, ξ2, ξ3)

∥∥∥∥ − d

≤ lim
n→∞

3∑
i=1

3∑
j=1

α(i)
j

(∥∥∥x(2n−1)
i − ξi

∥∥∥ − di

)
= 0.

Thus ‖ξi−Fi(ξ1, ξ2, ξ3)‖ = di for i = 1, 2, 3. It can be proven in a similar fashion that
∑3

i=1 ‖υi−Gi(υ1, υ2, υ3)‖ ≤ d
and consequently ‖υi − Gi(υ1, υ2, υ3)‖ = di for i = 1, 2, 3.

It has remained to prove that there holds (5). Indeed from the inequalities

S5 =

3∑
i=1

‖Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) − Fi(ξ1, ξ2, ξ3)‖

≤

3∑
i=1

3∑
j=1

α(i)
j ‖ξi − Fi(ξ1, ξ2, ξ3)‖ +

3∑
i=1

1 −
3∑

j=1

α(i)
j

 di = d

it follows that
‖Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) − Fi(ξ1, ξ2, ξ3)‖ = di
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for i = 1, 2, 3. From the assumption that (ξ1, ξ2, ξ3) is a tripled best proximity point for F i.e. ‖ξi −

Fx(ξ1, ξ2, ξ3)‖ = di for i = 1, 2, 3 and the uniform convexity of (X, ‖ · ‖) it follows that

Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) = ξi for i = 1, 2, 3.

By similar arguments it can be proven that

Fi(G1(υ1, υ2, υ3),G2(υ1, υ2, υ3),G3(υ1, υ2, υ3)) = υi

for i = 1, 2, 3.
We will prove the uniqueness of the tripled best proximity points. Let us suppose that the tripled best

proximity point (ξ1, ξ2, ξ3) of F is not unique, i.e. there exists (ξ∗1, ξ
∗

2, ξ
∗

3), such that ‖ξ∗i − Fx(ξ∗1, ξ
∗

2, ξ
∗

3)‖ = di
for i = 1, 2, 3. By similar arguments it can be proven that

Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) = ξi

and
Gi(F1(ξ∗1, ξ

∗

2, ξ
∗

3),F2(ξ∗1, ξ
∗

2, ξ
∗

3),F3(ξ∗1, ξ
∗

2, ξ
∗

3)) = ξ∗i

for i = 1, 2, 3. Thus we get the inequalities

3∑
i=1

∥∥∥∥ξi − Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)∥∥∥∥ =
∑3

i=1

∥∥∥∥Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3)) − Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)∥∥∥∥
≤

3∑
j=1

3∑
i=1

α( j)
i ‖ξ

∗

j − F j(ξ1, ξ2, ξ3)‖ +

3∑
j=1

1 −
3∑

i=1

α( j)
i

 d j

≤

3∑
i=1

‖ξ∗i − Fi(ξ1, ξ2, ξ3)‖.

(15)

By similar calculations we obtain

3∑
i=1

∥∥∥ξ∗i − Fi(ξ1, ξ2, ξ3)
∥∥∥ ≤ 3∑

i=1

∥∥∥∥ξi − Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)∥∥∥∥ . (16)

Consequently there holds

3∑
i=1

∥∥∥ξ∗i − Fi(ξ1, ξ2, ξ3)
∥∥∥ =

3∑
i=1

∥∥∥∥ξi − Fi

(
ξ∗1, ξ

∗

2, ξ
∗

3

)∥∥∥∥ . (17)

We will show that
3∑

i=1

∥∥∥ξ∗i − Fi(ξ1, ξ2, ξ3)
∥∥∥ = d. Let us assume the contrary, i.e.

3∑
i=1

∥∥∥ξ∗i − Fi(ξ1, ξ2, ξ3)
∥∥∥ > d.

Then there holds at least on of the inequalities
∥∥∥ξ∗i − Fi(ξ1, ξ2, ξ3)

∥∥∥ > di for some i = 1, 2, 3. Then from the
chain of inequalities

3∑
i=1

‖ξi − Fi(ξ∗1, ξ
∗

2, ξ
∗

3)‖ =

3∑
i=1

‖Gi(F1(ξ1, ξ2, ξ3),F2(ξ1, ξ2, ξ3),F3(ξ1, ξ2, ξ3ξ1, ξ2, ξ3)) − Fi(ξ∗1, ξ
∗

2, ξ
∗

3)‖

≤

3∑
j=1

3∑
i=1

α( j)
i ‖ξ

∗

j − F j(ξ1, ξ2, ξ3)‖ +

3∑
j=1

1 −
3∑

i=1

α( j)
i

 d j

<
3∑

i=1

‖ξ∗i − Fi(ξ1, ξ2, ξ3)‖.
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we get a contradiction with (17). Therefore
∑3

i=1 ‖ξ
∗

i − Fi(ξ1, ξ2, ξ3)‖ = d. From the above equalities, the
uniform convexity of (X, ‖ · ‖) and ‖ξi −Fi(ξ1, ξ2, ξ3)‖ = di for i = 1, 2, 3 it follows that (ξ∗1, ξ

∗

2, ξ
∗

3) = (ξ1, ξ2, ξ3).
The proof that (υ1, υ2, υ3) ∈ B1 × B2 × B3 is a unique triples best proximity point of G can be done in a

similar fashion.
(i) From the uniform convexity of X is follows that δ‖·‖ is strictly increasing and therefore there exists its

inverse function δ−1
‖·‖

, which is strictly increasing too. From Lemma 3.6 we get

∥∥∥x(2n)
i − xi(2n + 2)

∥∥∥ ≤ (
di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

))
δ−1
‖·‖

(
klW2n+1−l,2n−l

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

)
di+klW2n+1−l,2n−l

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

)) (18)

for i = 1, 2, 3. By the inequality δ‖·‖(t) ≥ Ctq it follows that δ−1
‖·‖

(t) ≤
(

t
C

)1/q
. From (18) and the inequalities

di ≤ di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
≤ P2n−l,2n+1−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
, i = 1, 2, 3

we obtain

S6 =
∥∥∥x(2n)

i − x(2n+2)
i

∥∥∥
≤

(
di + klW2n+1−l,2n−l

(
x(k)

1 , x
(k)
2 , x

(k)
3

))
q

√
klW2n+1−l,2n−l

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

)
C
(
dx+klW2n+1−l,2n−l

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

))
≤ P2n−l,2n+1−l(x

(0)
1 , x

(0)
2 , x

(0)
3 )

q

√
W2n+1−l,2n−l(x

(0)
1 ,x

(0)
2 ,x

(0)
3 )

Cdi

q√

kl

(19)

for i = 1, 2, 3.
We have proven that there exists a unique pair (ξ1, ξ2, ξ3) ∈ A3, such that ‖ξi − F(ξ1, ξ2, ξ3)‖ = di and ξi

is a limit of the sequence
{
x(2n)

i

}∞
n=1

for any
(
x(0)

1 , x
(0)
2 , x

(0)
3

)
∈ A3.

After a substitution with l = 2n in (19) we get the inequality

∞∑
n=1

∥∥∥x(2n)
i − x(2n+2)

i

∥∥∥ ≤

3∑
i=1

∥∥∥x(0)
i − x(1)

i

∥∥∥ q

√∑3
i=1

∥∥∥x(0)
i − x(1)

i

∥∥∥ − d

Cdi

∞∑
n=1

q√

k2n

=

3∑
i=1

∥∥∥x(0)
i − x(1)

i

∥∥∥ q

√∑3
i=1

∥∥∥x(0)
i − x(1)

i

∥∥∥ − d

Cdi
·

q√

k2

1 −
q√

k2

and consequently the series
∑
∞

n=1

(
x(2n)

i − x(2n+2)
i

)
for i = 1, 2, 3 are absolutely convergent. Thus for any m ∈N

there holds

ξi = x(2m)
i −

∞∑
n=m

(
x(2n)

i − x(2n+2)
i

)
and therefore we get the inequality

∥∥∥ξi − x(2m)
i

∥∥∥ ≤ ∞∑
n=m

∥∥∥x(2n)
i − x(2n+2)

i

∥∥∥ ≤ 3∑
i=1

∥∥∥x(0)
i − x(1)

i

∥∥∥ q

√∑3
i=1

∥∥∥x(0)
i − x(1)

i

∥∥∥ − d

Cdi
·

q√

k2m

1 −
q√

k2
.

(ii) After a substitution with l = 1 + 2 j in (19) we obtain

∥∥∥∥x(2n+2 j)
i − x(2n+2( j+1))

i

∥∥∥∥ ≤ P2n−1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

) q

√
W2n−1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
Cdi

( q√

k
)1+2 j

. (20)
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From (20) we get that there holds the inequality

∥∥∥x(2n)
i − x(2(n+m))

i

∥∥∥ ≤

m−1∑
j=0

∥∥∥∥x(2n+2 j)
i − x(2n+2( j+1))

i

∥∥∥∥
≤

∑m−1
j=0 P2n−1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

) q

√
W2n−1,2n

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

)
Cdi

q√

k1+2 j

= P2n−1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

) q

√
W2n−1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
Cdx

m−1∑
i=0

q√

k1+2 j

= P2n−1,2n

(
x(k)

1 , x
(k)
2 , x

(k)
3

) q

√
W2n−1,2n

(
x(k)

1 ,x
(k)
2 ,x

(k)
3

)
Cdi

·
1−

q√
k2m

1−
q√

k2

q√
k

(21)

and after letting m→∞ in (21) we obtain the inequality

∥∥∥x(2n)
i − ξi

∥∥∥ ≤ P2n,2n−1

(
x(k)

1 , x
(k)
2 , x

(k)
3

) q

√
W2n,2n−1

(
x(k)

1 , x
(k)
2 , x

(k)
3

)
Cdxi

q√
k

1 −
q√

k2

for i = 1, 2, 3. �

5. Applications

Let us consider some particular cases.
The next theorem is a variant of results from [1, 19].

Theorem 5.1. Let A and B be a closed subsets of a complete metric space (X, ρ), F : A × A × A → B and
G : B × B × B→ B be such that the inequality

ρ(F(x, y, z),G(u, v,w)) ≤ α1ρ(x,u) + α2ρ(y, v) + α3ρ(z,w)

holds for any (x, y, z) ∈ A×A×A, (u, v,w) ∈ B×B×B and for some αi ∈ [0, 1) for i = 1, 2, 3 satisfying the inequality∑3
i=1 αi < 1. Then there exist ξ ∈ A ∩ B, such that (ξ, ξ, ξ) is a unique tripled fixed point of F.

If we put Ax = Ay = Az = A, Bx = By = Bz = B, F1(x, y, z) = F(x, y, z), F2(x, y, z) = F(y, z, x), F3(z, x, y) =
F(x, y, z), G1(x, y, z) = G(x, y, z), G2(x, y, z) = G(y, z, x), G3(z, x, y) = G(x, y, z) in Theorem 2.2 we get

3∑
i=1

ρ(Fi(x
(1)
i , x

(2)
i , x

(3)
i ),Gi(u

(1)
i ,u

(2)
i ,u

(3)
i ) ≤

3∑
j=1

3∑
i=1

α( j)
i ρ(x( j)

i ,u
( j)
i ).

Thus the map satisfies Theorem 2.2 with α(1)
1 = α(2)

2 = α(3)
3 = α1, α(1)

2 = α(2)
1 = α(3)

1 = α3, α(1)
3 = α(2)

3 = α(3)
2 = α2

for j = 1, 2, 3 because
∑3

i=1 αi ∈ [0, 1).
By Theorem 2.2 there are x, y, z ∈ A ∩ B, which are the unique tripled (x, y, z) fixed point for the map F

and the unique tripled fixed point for the map G too. Then

ρ(x, y) + ρ(y, z) + ρ(z, x) = ρ(F(x, y, z),G(y, z, x) + ρ(F(y, z, x),G(z, x, y) + ρ(F(z, x, y),G(x, y, z)

≤

3∑
i=1

αi(ρ(x, y) + ρ(y, z) + ρ(z, x)) < ρ(x, y) + ρ(y, z) + ρ(z, x).

Because of
∑3

i=1 αi ∈ [0, 1) it follows that ρ(x, y) + ρ(y, z) + ρ(z, x) = 0, i.e. x = y = z.
The next result is a variant of [8].
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Theorem 5.2. Let A be a closed subset of a complete metric space and F : A×A×A→ A be such that the inequality

ρ(F(x, y, z),F(u, v,w)) ≤ αρ(x,u) + βρ(y, v) + γρ(z,w)

holds for any (x, y, z), (u, v,w) ∈ A×A×A and for some α, β, γ ∈ [0, 1) satisfying the inequality 2α+β+γ < 1. Then
there exist a unique tripled fixed point (x, y, z) ∈ A×A×A, such that x = F(x, y, z), y = F(y, x, y) and z = F(z, y, x).

If put Ax = Ay = Az = Bx = By = Bz = A, F1(x, y, z) = F(x, y, z), F2(x, y, z) = F(y, x, y), F3(x, y, z) = F(z, y, x)
in Theorem 2.2 we get

S7 =

3∑
i=1

ρ
(
Fi

(
x(1)

i , x
(2)
i , x

(3)
i

)
,Gi

(
y(1)

i , y
(2)
i , y

(3)
i

))
≤ αρ

(
x(1)

1 ,u
(1)
1

)
+ βρ

(
x(2)

1 ,u
(2)
1

)
+ γρ

(
x(3)

1 ,u
(3)
1

)
+ βρ

(
x(1)

2 , y
(1)
2

)
+ (α + γ)ρ

(
x(2)

2 , y
(2)
2

)
+αρ

(
x(3)

3 , y
(3)
3

)
+ βρ

(
x(2)

3 , y
(2)
3

)
+ γρ

(
x(1)

3 , y
(1)
3

)
= αρ

(
x(1)

1 ,u
(1)
1

)
+ βρ

(
x(1)

2 , y
(1)
2

)
+ γρ

(
x(1)

3 , y
(1)
3

)
+β

(
ρ
(
x(2)

1 ,u
(2)
1

)
+ ρ

(
x(2)

3 , y
(2)
3

))
+ (α + γ)ρ

(
x(2)

2 , y
(2)
2

)
+ γρ

(
x(3)

1 ,u
(3)
1

)
+ αρ

(
x(3)

3 , y
(3)
3

)
Thus the map satisfies Theorem 2.2 with α(1)

1 = α(3)
3 = α, α(1)

2 = α(2)
1 = α(2)

3 = β, α(1)
3 = α(3)

1 = γ, α(2)
2 = α+ γ and

α(3)
2 = 0.

Following [15] we may assume that (R, | · |) is a uniformly convex and δ(R,|·|)(ε) = ε
2 . In this case the

inverse function δ−1
X exists ant is equal to 2ε. Thus we get the following corollary of Theorem 2.2:

Corollary 5.3. Let Ai,Bi, i = 1, 2, 3 be nonempty, closed subsets of a complete metric space (R, | · |). Let the ordered
pair (F,G) be a generalized cyclic contraction of type 1. Then

(I) There exists a unique triple (ξ1, ξ2, ξ3), such that ξi ∈ (Ai ∩ Bi) for i = 1, 2, 3, which is a common triple fixed
point for the maps F and G. Moreover the iteration sequences {x(n)

i }
∞

n=0 for i = 1, 2, 3, defined in Definition 1.4
converge to ξi, respectively;

(II) a priori error estimates hold

max
{∣∣∣x(n)

i − ξi

∣∣∣ : i = 1, 2, 3
}
≤

kn

1 − k

3∑
i=1

∣∣∣x(0)
i − x(1)

i

∣∣∣ ; (22)

(III) a posteriori error estimates hold

max
{∣∣∣x(n)

i − ξi

∣∣∣ : i = 1, 2, 3
}
≤

k
1 − k

3∑
i=1

∣∣∣x(n−1)
i − x(n)

i

∣∣∣ ; (23)

(IV) The rate of convergence for the sequences of successive iterations is given by

3∑
i=1

∣∣∣x(n)
i − ξi

∣∣∣ ≤ k
3∑

i=1

∣∣∣x(n−1)
i − ξi

∣∣∣ . (24)

We will illustrate Corollary 5.3 by solving the next system:

Example 5.4. Let us consider the system of nonlinear equations:∣∣∣∣∣∣∣∣
−9x + ey−1 + 3arctg(z − 2) = 0

−24x + 3x2 + e(y−1)2
+ 3arctg((z − 2)2) = −36

−36x + 3x3 + e(y−1)3
+ 3arctg((z − 2)3) = −90.

(25)
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Solution. Let us consider the functions

F1(x, y, z) =
x
4

+
ey−1

12
+

arctg(z − 2)
4

, F2(x, y, z) =
x2

8
+

e(y−1)2

24
+

arctg((z − 2)2)
8

+ 1.5,

F3(x, y, z) =
x3

12
+

e(y−1)3

36
+

arctg((z − 2)3)
12

+ 2.5.

It is easy to check that F1 : [0, 1] × [1, 2] × [2, 3]→ [0, 1], F2 : [0, 1] × [1, 2] × [2, 3]→ [1, 2], F3 : [0, 1] × [1, 2] ×
[2, 3]→ [2, 3] (F1(0, 1, 2) > 0, F1(1, 2, 3) < 1, F2(0, 1, 2) > 1, F2(1, 2, 3) < 2, F3(0, 1, 2) > 2, F3(1, 2, 3) < 3) and the
system∣∣∣∣∣∣∣∣

x = F1(x, y, z)
y = F2(x, y, z)
y = F3(x, y, z)

(26)

is equivalent to (25).
Let us put B1 = A1 = [0, 1], B2 = Ay2 = [1, 2], B3 = A3 = [2, 3], Gi = Fi for i = 1, 2, 3.
Using the inequalities |e(y−1)n

− e(v−1)n
| ≤ ne|y − v| for y, v ∈ [1, 2]; |arctan((z − 2)n) − arctan((w − 2)n)| ≤

n|z − w| for z, t ∈ [2,+∞); |xn
− un
| ≤ n|x − u| for x, y ∈ [0, 1] it is easy to obtain that∣∣∣Fi(x, y, z) − Gi(u, v,w)

∣∣∣ ≤ |x − u|
4

+
e|y − v|

12
+
|z − w|

4

for i = 1, 2, 3. Thus we get

3∑
i=1

∣∣∣∣Fi

(
x(1)

i , x
(2)
i , x

(3)
i

)
− Gi

(
y(1)

i , y
(0)
i , y

(3)
i

)∣∣∣∣ ≤ 1
4

3∑
i=1

∣∣∣x(1)
i − y(1)

i

∣∣∣ +
e

12

3∑
i=1

∣∣∣x(2)
i − y(2)

i

∣∣∣ +
1
4

3∑
i=1

∣∣∣x(3)
i − y(3)

i

∣∣∣
and thus the pair of maps (F,G) satisfies Corollary 5.3 with α(1)

1 = α(1)
2 = α(1)

3 = 1/4, α(2)
1 = α(2)

2 = α(2)
3 = e/12,

α(3)
1 = α(3)

2 = α(3)
3 = 1/4. Thus k = max

{∑3
i=1 α

( j)
i : j = 1, 2, 3

}
= max{3/4, e/4} = 3/4. Therefore the ordered

triple F = (Fx1,F2,F3) has a unique tripled fixed points in [0, 1]×[1, 2]×[2, 3] and thus the system of equations
(25) has a unique solution in [0, 1] × [1, 2] × [2, 3]. �

Table 1: Number m of iterations needed by the a priori estimate starting from the initial guess (0, 1, 2)
ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
m 14 22 30 38 56 54

Table 2: Number m of iterations needed by the a posteriori estimate (0, 1, 2)
ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
m 5 7 10 12 14 16

We get an approximation of the solution (0.3741116328, 1.615504553, 2.553428358).
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