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Abstract. Let G be an abelian group with identity e. Let R be a graded multiplicative hyperring and
δ : I1r(R) → I1r(R) be an expansion function of I1r(R), where I1r(R) is the set of all graded hyperideals of
R. In this paper, we introduce and study the concepts of graded δ-primary hyperideals of R and graded
2-absorbing δ-primary hyperideals of R which are the extended classes of graded prime and graded 2-
absorbing hyperideals of R, respectively. Moreover, we give the basic properties of these new types of
graded hyperideals and investigate the relations among these structures.

1. Introduction

Hyperstructure theory was first introduced by the French mathematician F. Marty in 1934 [27]. He, at the
8th Congress of Scandinavian Mathematicians, defined hypergroups, as a natural generalization of groups,
based on the notion of hyperoperation, and has since then been studied by many authors ( see for example
[16, 17, 32]). In a classical algebraic structure, the composition of two elements is an element, while in an
algebraic hyperstructure, the composition of two elements is a set. Algebraic hyperstructures are a suitable
generalization of classical algebraic structures, with broad applications in the mathematical foundations of
geometry, lattices, cryptography, automata, graphs and hypergraphs, fuzzy set, probability and rough set
theory, physics, chemistry and so on (see [16, 17]). The notion of hyperrings was introduced by M. Krasner in
1983, where the addition is a hyperoperation, while the multiplication is an operation [24]. Prime, primary,
and maximal subhypermodules of a hypermodule in the sense of krasner hyperring R were discussed by
M. M. Zahedi and R. Ameri in [38]. The concept of 2-absorbing hyperideals on Krasner hyperrings was
introduced in [7] as a generalization of the notion of prime hyperideals in Krasner hyperrings. H. Bordbar
and I. Cristea in [13, 14] introduced and studied height of hyperideals in Krasner hyperrings. The concept of
δ-primary hyperideals on Krasner hyperrings was introduced in [9]. R. Ameri et al. in [3] introduced Krasner
(m,n)-hyperrings and in [4] studied prime and primary subhypermodules of (m,n)- hypermodules. Also,
K. Hila et al. in [23] introduced and studied (k,n)-absorbing hyperideals in Krasner (m,n)-hyperrings. The
notion of multiplicative hyperrings are an important class of algebraic hyperstructures which generalize
rings, initiated the study by Rota in 1982, where the multiplication is a hyperoperation, while the addition is
an operation [33]. Procesi and Rota introduced and studied in brief the prime hyperideals of multiplicative
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Email addresses: p_ghiasvand@pnu.ac.ir (Peyman Ghiasvand), f_farzalipour@pnu.ac.ir (Farkhonde Farzalipour),

saeed_mirvakili@pnu.ac.ir (Saeed Mirvakili)



P. Ghiasvand et al. / Filomat 35:9 (2021), 3033–3045 3034

hyperrings [29–31] and this idea is further generalized in a paper by Dasgupta [18]. R. Ameri et al. in [2]
described multiplicative hyperring of fractions and coprime hyperideals. Later on, many researches have
observed that generalizations of prime hyperideals in multiplicative hyperrings [5, 6, 8, 34]. Recently, The
concept of graded multiplicative hyperrings and graded hyperideals was introduced in [22]. Furthermore,
the study of graded rings arises naturally out of the study of affine schemes and allows them to formalize
and unify arguments by induction [35]. However, this is not just an algebraic trick. The concept of grading
in algebra, in particular graded modules is essential in the study of homological aspect of rings. Much
of the modern development of the commutative algebra emphasizes graded rings. Graded rings play a
central role in algebraic geometry and commutative algebra. Gradings appear in many circumstances,
both in elementary and advanced level. In recent years, rings with a group-graded structure have become
increasingly important and consequently, the graded analogues of different concepts are widely studied
(see [19–21, 25, 28]). Theory of graded hyperrings can be considered as an extension theory of hyperrings.
The notion of 2-absorbing ideals over commutative rings which is a generalization of prime ideals has been
introduced and investigated by A. Badawi in [10]. D. Zhao in [39] introduced the concept of δ-primary
ideals of commutative rings. This concept was studied extensively in [11] and [12]. Many results in this
paper are inspired by the work of the authors in [11] and [12]. After that in [1, 36], the authors extended
the notion of 2-absorbing ideals to graded rings. Recently, G. Ulucak [37] introduced and study the concept
of δ-primary hyperideals and 2-absorbing δ-primary hyperideals in multiplicative hyperring which are the
extended classes of prime and 2-absorbing hyperideals, respectively. In this paper, we introduce and study
the notions of graded δ-primary hyperideals of R and graded 2-absorbing δ-primary hyperideals of R which
are the extended classes of graded prime and graded 2-absorbing hyperideals of R, respectively. Moreover,
we give a number of main results and the basic properties concerning these classes of graded hyperideals
and their homogeneous components.

2. Basic definitions and results

In this section we give some definitions and results of hyperstructures which we need to develop our
paper. We refer to [17, 18] for these basic properties and information on hyperstructures.

Definition 2.1. [33] Let R be a nonempty set. By P∗(R), we mean the set of all nonempty subset of R. Let ◦ be a
hyperoperation from R×R to P∗(R). Rota called (R,+, ◦) a multiplicative hyperring, if it has the following properties:

(i) (R,+) is an abelian group;

(ii) (R, ◦) is a hypersemigroup;

(iii) For all a, b, c ∈ R, a ◦ (b + c) ⊆ a ◦ b + a ◦ c and (b + c) ◦ a ⊆ b ◦ a + c ◦ a;

(iv) a ◦ (−b) = (−a) ◦ b = −(a ◦ b).

If in (iii) we have equalities instead of inclusions, then we say that the multiplicative hyperring is strongly distributive.

Here, we mean a hypersemigroup by a nonempty set R with an associative hyperoperation ◦, i.e.,

a ◦ (b ◦ c) =
⋃

t∈(b◦c)

a ◦ t =
⋃

s∈(a◦b)

s ◦ c = (a ◦ b) ◦ c

for all a, b, c ∈ R.
Further, if R is a multiplicative hyperring with a ◦ b = b ◦ a for all a, b ∈ R, then R is called a commutative

multiplicative hyperring.

Definition 2.2. [30] (a) Let (R,+, ◦) be a multiplicative hyperring and S be a nonempty subset of R. Then S is said
to be a subhyperring of R if (S,+, ◦) is itself a multiplicative hyperring.

(b) A subhyperring I of a multiplicative hyperring R is a hyperideal of (R,+, ◦) if I − I ⊆ I and for all x ∈ I, r ∈ R;
x ◦ r ∪ r ◦ x ⊆ I.
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Definition 2.3. [17] (a) A proper hyperideal M of a multiplicative hyperring R is maximal in R, if for any hyperideal
I of R, M ⊂ I ⊆ R, then I = R.

(b) A proper hyperideal P of a multiplicative hyperring R is said to be a prime hyperideal of R, if for any a, b ∈ R,
a ◦ b ⊆ P, then a ∈ P or b ∈ P.

(c) A proper hyperideal Q of a multiplicative hyperring R is said to be a primary hyperideal of R, if for any a, b ∈ R,
a ◦ b ⊆ Q, then a ∈ Q or bn

⊆ Q for some n ∈N.

Definition 2.4. [22] Let G be a group with identity element e. A multiplicative hyperring (R,G) is called a G-graded
multiplicative hyperring, if there exists a family {R1}1∈G of additive subgroups of R indexed by the elements 1 ∈ G
such that R =

⊕
1∈G R1 and R1Rh ⊆ R1h for all 1, h ∈ G where R1Rh =

⋃
{r1 ◦ rh : r1 ∈ R1, rh ∈ Rh}. For simplicity,

we will denote the graded multiplicative hyperring (R,G) by R.
An element of a graded hyperring R is called homogeneous if it belongs to

⋃
1∈G R1 and this set of homogeneous

elements is denoted by h(R). If x ∈ R1 for some 1 ∈ G, then we say that x is of degree 1, and it is denoted by x1. If
x ∈ R, then there exist unique elements x1 ∈ h(R) such that x =

∑
1∈G x1.

In fact, every hyperring is trivially a G-graded hyperring by letting Re = R and R1 = 0 for all 1 , e. If
R =

⊕
1∈G R1 is a graded multiplicative hyperring, then Re is a subhyperring of R where e is the identity

element of group G. Also, if R has an identity element 1 such that x ◦ 1 = 1 ◦ x = {x}, then 1 ∈ Re.

Example 2.5. Let G = (Z2,+) be the cyclic group of order 2 and R = {a, b, c, d}. Consider the multiplicative hyper-
ring (R,+, ◦), where operation + and hyperoperation ◦ defined on R as follow:

+ a b c d
a a b c d
b b a d c
c c d a b
d d c b a

◦ a b c d
a {a} {a} {a} {a}
b {a} {a, d} {a, c} {a, b}
c {a} {a, c} {a} {a, c}
d {a} {a, b} {a, c} {a, d}

Let R0 = {a, d} and R1 = {a, b}. Then it is easy to verify that R0 and R1 are subgroups of (R,+) and we can write
a = a + a, b = a + b, c = d + b and d = d + a uniquely. Hence, R = R0

⊕
R1. We have R0R0 ⊆ R0, R0R1 ⊆ R1,

R1R0 ⊆ R1 and R1R1 ⊆ R0. Therefore (R,G) is a graded hyperring and h(R) = {a, b, d}.

Definition 2.6. Let R =
⊕
1∈G R1 be a graded multiplicative hyperring. A subhyperring S of R is called a graded

subhyperring of R, if S =
⊕
1∈G(S ∩ R1). Equivalently, S is graded if for every element f ∈ S, all the homogeneous

components of f (as an element of R) are in S.

Definition 2.7. Let I be a hyperideal of a graded multiplicative hyperring R. Then I is a graded hyperideal, if
I =

⊕
1∈G(I ∩ R1). For any a ∈ I and for some r1 ∈ h(R) that a =

∑
1∈G r1, then r1 ∈ I ∩ R1 for all 1 ∈ G.

Lemma 2.8. [22] Let I and J be graded hyperideals of a graded multiplicative hyperring R. Then

(i) I ∩ J is a graded hyperideal of R.

(ii) IJ is a graded hyperideal of R.

(iii) I ∪ J is a graded hyperideal of R if and only if I ⊆ J or J ⊆ I.

(iv) I + J is a graded hyperideal of R.

Definition 2.9. Let I be a graded hyperideal of a graded multiplicative hyperring (R,+, ◦). The intersection of
all graded prime hyperideals of R containing I is called the graded radical of I, denoted by Grad(I). If the graded
multiplicative hyperring R does not have any graded prime hyperideal containing I, we define Grad(I) = R.

Let I be a graded hyperideal of a graded multiplicative hyperring R. We define D(I) = {r ∈ R : for any
1 ∈ G, rn1

1 ⊆ I for some n1 ∈N}. It is clear that D(I) is a graded hyperideal of R.
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Definition 2.10. Let R be a graded multiplicative hyperring and C be the class of all finite products of homogeneous
elements of R i. e. C = {r1 ◦ r2 ◦ · · · ◦ rn : ri ∈ h(R),n ∈ N} ⊆ P∗(h(R)). A graded hyperideal I of R is said to be a
C1r-ideal of R if for any A ∈ C, A ∩ I , ∅, then A ⊆ I.

Theorem 2.11. [22] Let I =
⊕
1∈G I1 =

⊕
1∈G(I∩R1) be a graded hyperideal of a commutative graded multiplicative

hyperring R =
⊕
1∈G R1. Then D(I) ⊆ Grad(I). The equality holds when I is a C1r-ideal of R.

Definition 2.12. [22] Let R =
⊕
1∈G R1 and S =

⊕
1∈G S1 be two graded multiplicative hyperrings. The function

f : R→ S is called a graded homomorphism, if

(i) for any a, b ∈ R, f (a + b) = f (a) + f (b),

(ii) for any a, b ∈ R, f (a ◦ b) ⊆ f (a) ◦ f (b), and

(iii) f (R1) ⊆ S1 for any 1 ∈ G.

In particular, f is called a graded good homomorphism in case f (a ◦ b) = f (a) ◦ f (b). The kernel of a graded
homomorphism is defined as Ker( f ) = f−1(〈0〉) = {r ∈ R : f (r) ∈ 〈0〉} and note that f (r) may not be a zero
element.

If Q is a graded hyperideal of S and f : R→ S is a graded good homomorphism, then f−1(Q) is a graded
hyperideal of R. If I is a graded hyperideal of R and f : R → S is an onto graded good homomorphism,
then f (I) is a graded hyperideal of S.

Throughout this paper, we assume that all graded hyperrings are commutative graded multiplicative
hyperrings with absorbing zero, i. e. 0 ∈ R such that x = 0 + x and 0 ∈ x ◦ 0 = 0 ◦ x for all x ∈ R.

3. On expansion of graded prime hyperideals

Definition 3.1. (a) A proper graded hyperideal I of a graded multiplicative hyperring R is called a graded prime
hyperideal of R if, for any a1, bh ∈ h(R), a1 ◦ bh ⊆ I, then a1 ∈ I or bh ∈ I.
(b) A proper graded hyperideal I of a graded multiplicative hyperring R is called a graded primary hyperideal of R if,
for any a1, bh ∈ h(R), a1 ◦ bh ⊆ I, then a1 ∈ I or bn

h ⊆ I for some n ∈N.

Let R be a multiplicative hyperring. By I1r(R) and I1r∗ (R), we mean all graded hyperideals of R and
proper graded hyperideals of R, respectively.

Definition 3.2. The function δ : I1r(R) → I1r(R) is said to be an expansion function of I1r(R) if it satisfies the
following two conditions: (1) I ⊆ δ(I), (2) If I ⊆ J, then δ(I) ⊆ δ(J) for all graded hyperideals I, J of R.

In the following examples, we explain the definition of expansion functions over commutative graded
multiplicative hyperrings.

Example 3.3. 1. The function δ0 is an expansion function of I1r(R) with δ0(I) = I for every graded hyperideal
I ∈ I1r(R).

2. The function δ1 is an expansion function of I1r(R) with δ1(I) = D(I) for every graded hyperideal I ∈ I1r(R).

3. The function δ2 is an expansion function of I1r(R) with δ2(I) = Grad(I) for every graded hyperideal I ∈ I1r(R).

4. The function δr is an expansion function of I1r(R) with δr(I) = R for every graded hyperideal I ∈ I1r(R).

5. Let δi and δ j be expansion functions of graded hyperideals of R. δ is defined by δ(I) = δi(I) ∩ δ j(I) for each
graded hyperideal I of R. Notice that δ is an expansion function of I1r(R).

6. Let δI1r(R) be defined by δI1r(R)(J) =
⋂
{I ∈ I1r(R)|J ⊆ I}. Then δI1r(R) is an expansion function of graded

hyperideals of R.
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7. The compound function δ ◦ γ of two expansion functions δ and γ of I1r(R) is an expansion of I1r(R) with
δ ◦ γ(I) = δ(γ(I)) for every graded hyperideal I of R.

8. Let δ+ be defined by δ+(I) = I + J for every graded hyperideal I of R where J is a graded hyperideal of R. It is
easy to see that δ+ is an expansion function of I1r(R).

Definition 3.4. Let δ be an expansion function of I1r(R). I ∈ I1r∗ (R) is called a graded δ-primary hyperideal of R, if
a1, bh ∈ h(R) and a1 ◦ bh ⊆ I imply either a1 ∈ I or bh ∈ δ(I).

Example 3.5. Consider the expansion function δr of a graded multiplicative hyperring R (see Example 3.3 (4)). Then
every proper graded hyperideal of R is a graded δr-primary hyperideal.

Example 3.6. 1. It is clear that a graded hyperideal is graded δ0-primary if and only if it is a graded prime
hyperideal.

2. If a graded hyperideal of R is graded δ1-primary, then it is graded primary.

3. Let every graded hyperideal of R is a C1r-hyperideal. Then a graded hyperideal of R is graded δ2-primary if and
only if it is a graded primary hyperideal.

Example 3.7. Let (R,+, ·) be a ring. Then corresponding to every subset A ∈ P∗(R)(|A| ≥ 2), there exists a
multiplicative hyperring with absorbing zero (RA,+, ◦), where RA = R and for any α, β ∈ RA, α◦β = {α ·a ·β : a ∈ A}.
If (RA,+, ◦) be a commutative multiplicative hyperring and element x indeterminate over RA. Consider the polynomial
multiplicative hyperring S = (RA[x],+, ∗), where operation + and hyperoperation ∗ defined on S as follows:
for all f (x) =

∑n
k=0 akxk and 1(x) =

∑m
k=0 bkxk of S, we consider

f (x) + 1(x) =
∑
k=0

(ak + bk)xk, f (x) ∗ 1(x) =


n+m∑
k=0

ckxk
| ck ∈

∑
i+ j=k

aib j

 .
Let RA = (R,+, ◦) with A = {3, 4,−6} be the multiplicative hyperring and G = (Z,+) be the integers group. Consider
the multiplicative polynomial hyperring S = (RA[x, y],+, ∗). Then S =

⊕
Sn is a G- graded multiplicative hyperring

such that for m = (m1,m2) ∈N2 and Xm = xm1 ym2 we have Sn = {
∑

m∈N2 rmXm
| rm ∈ R,m1 + m2 = n}. Let I = 〈x〉.

Then I is a graded hyperideal of S such that it is a graded δ-primary hyperideal for any expansion function δ of R.

Example 3.8. Let R = (Z[i],+, ·) be the Gaussian integers ring and G = (Z2,+) be the cyclic group of order 2.
Consider the multiplicative hyperring (RA,+, ◦) = (Z[i],+, ◦) = {a + bi | a, b ∈ Z} with A = {−1, 3}, where RA = R
and for any x, y ∈ RA, x ◦ y = {x · a · y : a ∈ A}. Then, (RA,+, ◦) is a G-graded multiplicative hyperring with R0 = Z
and R1 = iZ and RA = R0

⊕
R1. Consider the graded hyperideal J = 2R = {−2a − 2bi, 6a + 6bi : a, b ∈ Z}. Then

it is clear that J is a graded prime hyperideal of R. Hence J is a graded δ2-primary hyperideal of R. But J is not a
δ2-primary hyperideal because 2 is not irreducible in RA.

Proposition 3.9. Let δ and γ be expansion functions of I1r(R) and δ(I) ⊆ γ(I) for each graded hyperideal I of R.
Every graded δ-primary hyperideal of R is a graded γ-primary hyperideal of R.

Proof. It is straightforward.

By Proposition 3.9, every graded prime hyperideal is graded δ-primary hyperideal for any expansion
function δ of a graded multiplicative hyperring. However, the next example shows that the converse is not
true, in general.

Example 3.10. Consider the Z2-graded multiplicative hyperring (RA,+, ◦) = (ZA[i],+, ◦) with A = {−1, 2, 3, 5}
andZA[i] = Z[i]. Then Q = 〈4〉 ⊕ 〈0〉 is a graded δ1-primary hyperideal of R. But it is not a graded prime hyperideal
of R, because

(2, 0) ◦ (2, 0) =
⋃
a∈A

(2, 0) · a · (2, 0) = {(−4, 0), (8, 0), (12, 0), (20, 0)} ⊆ Q

but (2, 0) < Q.
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Theorem 3.11. If I is a graded primary hyperideal of R and Grad(δ(I)) = δ(I), then I is a graded δ-primary hyperideal
of R.

Proof. Let a1 ◦ bh ⊆ I where a1, bh ∈ h(R). Since I is a graded primary hyperideal of R, we have a1 ∈ I or
bh ∈ D(I) ⊆ Grad(I) ⊆ Grad(δ(I)), and so a1 ∈ I or bh ∈ δ(I) because Grad(δ(I)) = δ(I). Hence I is a graded
δ-primary hyperideal of R.

Proposition 3.12. Let I ∈ I1r∗ (R). Then I is a graded δ-primary hyperideal of R if and only if L ◦ K ⊆ I for each
L,K ∈ I1r(R) implies L ⊆ I or K ⊆ δ(I).

Proof. (⇒) Suppose that L◦K ⊆ I and L * I and K * δ(I) for some L,K ∈ I1r(R). Hence there exist a1, bh ∈ h(R)
such that a1 ∈ L − I and bh ∈ K − δ(I). Then a1 ◦ bh ⊆ L ◦ K ⊆ I, which is a contradiction.
(⇐) Let a1 ◦ bh ⊆ I where a1, bh ∈ h(R). By [22], it is obtained that

〈
a1

〉
◦ 〈bh〉 ⊆

〈
a1 ◦ bh

〉
⊆ I. Consequently,〈

a1
〉
⊆ I or 〈bh〉 ⊆ δ(I) by assumption. Therefore, a1 ∈ I or bh ∈ δ(I), as needed.

Lemma 3.13. If I, J be graded hyperideals of a strongly distributive graded multiplicative hyperring R, then (I :R
J) = {r ∈ R : r ◦ J ⊆ I} is a graded hyperideal of R, and also, if a1 ∈ h(R), then (I :R a1) = {r ∈ R : r ◦ a1 ⊆ I} is a
graded hyperideal of R.

Proof. Let r ∈ (I : J). Then we can write r =
∑n

i=1 r1i where 0 , r1i ∈ R1i . It is enough to show that r1i ∈ (I : J)
for any i ∈ {1, 2, · · · ,n}. We have

∑n
i=1 r1i ◦ J ⊆ I. Let x ∈ J, and hence x =

∑m
i=1 x1i where 0 , x1i ∈ J∩R1i since J

is a graded hyperideal of R. Thus
∑n

i=1 r1i ◦
∑m

i=1 x1i = (r11 +· · ·+r1n )◦(xh1 +· · ·+xhm ) = r11 ◦xh1 +· · ·+r1n ◦xhm ⊆ I.
Now we show that r11 ◦xh1 ⊆ I. Suppose that t11h1 ∈ r11 ◦xh1 . Since r1i ◦xh j , ∅, for any 1 ≤ i ≤ n and 1 ≤ j ≤ m,
then there exist t12h2 ∈ r12 ◦xh2 , · · · , t1nhm ∈ r1n ◦xhm such that t11h1 + t12h2 + · · ·+ t1nhm ∈ r11 ◦xh1 + · · ·+ r1n ◦xhm ⊆ I,
and so t1ih j ∈ I for any i, j, because I is a graded hyperideal of R. Therefore r11 ◦xh1 ⊆ I. In order to, r11 ◦xh j ⊆ I
for any j ∈ {1, 2, · · · ,m}. Thus r11 ◦ x = r11 ◦ (xh1 + · · · + xhm ) = r11 ◦ xh1 + · · · + r11 ◦ xhm ⊆ I, so r11 ∈ (I : J).
Consequently, we get r1i ∈ (I : J) for every i ∈ {1, · · · ,n}. Thus (I : J) is a graded hyperideal of R.

Theorem 3.14. Let I be a graded δ-primary hyperideal of a strongly distributive graded multiplicative hyperring R.
Then

(i) (I : K) = I for each graded hyperideal K of I1r(R) with K * δ(I).

(ii) (I : H) is a graded δ-primary hyperideal of R for each graded hyperideal H of R.

Proof. (i) Let r ∈ I. Then r ◦ K ⊆ I since I is a hyperideal, so I ⊆ (I : K). Conversely, consider (I : K) ◦ K.
Then (I : K) ◦ K =

⋃
r∈(I:K),x∈K(r ◦ x) ⊆ I. Since I is a graded δ-primary hyperideal of R and K * δ(I), we get

(I : K) ⊆ I by Proposition 3.12.
(ii) By Lemma 3.13, (I : H) is a graded hyperideal of R. Let a1 ◦ bh ⊆ (I : H) and a1 < (I : H) for some
a1, bh ∈ h(R). Hence there exists hk ∈ H ∩ h(R) such that a1 ◦ hk * I. Thus a1 ◦ bh ◦ hk = a1 ◦ hk ◦ bh ⊆ I
and aa ◦ hk * I, that is, we get

〈
a1 ◦ hk

〉
◦ 〈bh〉 ⊆ I and 〈aa ◦ hk〉 * I. Hence 〈bh〉 ⊆ δ(I) ⊆ δ(I : H). Therefore

bh ∈ δ(I : H).

Theorem 3.15. If I is a graded δ-primary C1r-hyperideal of a graded multiplicative hyperring R with Grad(δ(I)) =
δ(I), then Grad(I) is a graded δ-primary C1r-hyperideal of R.

Proof. Notice that D(I) = Grad(I) because I is a C1r-hyperideal of R ([22]). Let a1 ◦bh ⊆ Grad(I) and a < Grad(I)
where a1, bh ∈ h(R). Hence an

1 ◦ bn
h = (a1 ◦ bh)n

⊆ I for some positive integer n and am
1 * I for each positive

integer m. By assumption and amn
1 ◦ bmn

h ⊆ I, we obtain bmn
h ⊆ δ(I). Hence bh ∈ Grad(δ(I)) ⊆ δ(Grad(I)), and so

Grad(I) is a graded δ-primary hyperideal of R.

Definition 3.16. If δ holds δ(I∩ J) = δ(I)∩ δ(J) for every I, J ∈ I1r(R), we say that δ has the property of intersection
preserving.
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Theorem 3.17. Let δ has the property of intersection preserving. If Ii is a graded δ-primary hyperideal of a graded
multiplicative hyperring R and δ(Ii) = P for all i ∈ {1, 2, · · · ,n}. Then I =

⋂n
i=1 Ii is so.

Proof. Let a1 ◦ bh ⊆ I and a1 < I for some a1, bh ∈ h(R). Hence a1 < I j for some j ∈ {1, 2, · · · ,n}. Thus
bh ∈ δ(I j) = P and δ(I) = δ(

⋂n
i=1 Ii) = δ(I1) ∩ · · · δ(In) = P. Therefore bh ∈ δ(I), so I =

⋂n
i=1 Ii is a graded

δ-primary hyperideal of R.

Definition 3.18. Let R,S be graded multiplicative hyperrings and f : R → S be a graded good homomorphism.
Let δ and γ be expansion functions of I1r(R) and I1r(S), respectively. Then f is called a δγ-homomorphism if
δ( f−1(J)) = f−1(γ(J)) for each graded hyperideal J of S.

Consider the expansion function γ1 of I1r(S) and δ1 of I1r(R) defined in a similar manner of Example
3.3 (2). It is seen that each graded homomorphism from R to S is an example of δ1γ1-homomorphism.
If every graded hyperideal of R is a C1r-hyperideal, any graded homomorphism from R to S is a δ2γ2-
homomorphism where the graded radical operations γ2 of I1r(S) and δ2 of I1r(R) (see Example 3.3 (3)).
Also, note that γ( f (I)) = f (δ(I)) where f is a δγ-epimorphism and I ∈ I1r(R) with Ker( f ) ⊆ I.

Theorem 3.19. Let R,S be graded multiplicative hyperrings and f : R → S be a δγ-homomorphism. Then the
followings hold:

(i) If J is a graded γ-primary hyperideal of S, then f−1(J) is a graded δ-primary hyperideal of R.

(ii) Let f be a graded epimorphism and I ∈ I1r(R) with Ker( f ) ⊆ I. Then I is a graded δ-primary hyperideal of R if
and only if f (I) is a graded γ-primary hyperideal of S.

Proof. (i) By [22], f−1(J) is a proper graded hyperideal of R. Let a1 ◦ bh ⊆ f−1(J) for each a1, bh ∈ h(R). We
have f (a1 ◦ bh) = f (a1) ◦ f (bh) ⊆ J. Since J is a graded γ-primary hyperideal of S, we obtain that f (a1) ∈ J or
f (bh) ∈ γ(J). Hence a1 ∈ f−1(J) or bh ∈ f−1(γ(J)), so by assumption, a1 ∈ f−1(J) or bh ∈ δ( f−1(J)). Thus f−1(J)
is a graded δ-primary hyperideal of R.
(ii) Let I be a graded δ-primary hyperideal of R. Assume that x1 ◦ yh ⊆ f (I) with x1, yh ∈ h(S). Since f is a
graded epimorphism, x1 = f (a1) and yh = f (bh) for some a1, bh ∈ h(R). Hence f (a1 ◦ bh) = f (a1) ◦ f (bh) ⊆ f (I).
We show that a1 ◦ bh ⊆ I. Let t ∈ a1 ◦ bh. Then f (t) ∈ f (a1 ◦ bh) ⊆ f (I) and so f (t) = f (x) for some x ∈ I. This
implies that f (t− x) = f (t)− f (x) = 0 ∈ 〈0〉, that is, t− x ∈ Ker( f ) ⊆ I and so t ∈ I. Thus a1 ◦ bh ⊆ I. Since I is a
graded δ-primary hyperideal of R, we have a1 ∈ I or bh ∈ δ(I) and so f (a1) ∈ f (I) or f (bh) ∈ f (δ(I)) = γ( f (I))
by assumption. Consequently, f (I) is a graded γ-primary hyperideal of S. Conversely, Let a1 ◦ bh ⊆ I where
a1, bh ∈ h(R). Hence f (a1 ◦ bh) = f (a1) ◦ f (bh) ⊆ f (I). Since f (I) is a graded γ-primary hyperideal of S, then
f (a1) ∈ f (I) or f (bh) ∈ γ( f (I)) = f (δ(I)). Hence a1 ∈ f−1( f (I)) ⊆ I or bh ∈ f−1( f (δ(I))) ⊆ δ(I), as needed.

Suppose that I is a graded hyperideal of a graded multiplicative hyperring R =
⊕
1∈G R1. Then quotient

group R/I = {a + I : a ∈ R} becomes a multiplicative hyperring with the multiplication (a + I)◦ (b + I) = {r + I :
r ∈ a ◦ b}. One can easily prove that R/I is a graded hyperring with R/I =

⊕
1∈G(R/I)1 where for all 1 ∈ G,

(R/I)1 = (R1 + I)/I. Also, all graded hyperideals of R/I are of the form J/I, where J is a graded hyperideal
of R containing I since the natural graded homomorphismφ : R→ R/I is a graded good epimorphism ([22]).

Let δ be an expansion function of I1r(R) and I ∈ I1r(R). Let the function δq : R/I → R/I be defined by
δq(J/I) = δ(J)/I for all graded hyperideals J (I ⊆ J) of R. Note that δq is an expansion function of I1r(R/I).

Proposition 3.20. Let I and J be graded hyperideals of a graded multiplicative hyperring R with I ⊆ J. Then J is a
graded δ-primary hyperideal of R if and only if J/I is a graded δq-primary hyperideal of the graded quotient hyperring
R/I.

Proof. Let (a1 + I) ◦ (bh + I) ⊆ J/I for each a1 + I, bh + I ∈ h(R/I). Thus a1 ◦ bh ⊆ J, because if r ∈ a1 ◦ bh, then
r + I ∈ (a1 + I) ◦ (bh + I), and so r ∈ J. Hence a1 ∈ J or bh ∈ δ(J) since J is a graded δ-primary hyperideal
of R. Therefore, a1 + I ∈ J/I or bh + I ∈ δ(J)/I = δq(J/I). Conversely, Let a1 ◦ bh ⊆ J. Then we can see
(a1 + I) ◦ (bh + I) ⊆ J/I. Hence a1 + I ∈ J/I or bh + I ∈ δq(J/I) = δ(J)/I. Therefore, a1 ∈ J or bh ∈ δ(J), as
required.
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Definition 3.21. Let (R,+, ◦) be a graded multiplicative hyperring.

(i) A homogeneous element r1 ∈ h(R) is defined as zero divisor if there is a homogeneous element 0 , r′h ∈ h(R)
such that r1 ◦ r′h = {0}.

(ii) A homogeneous element r1 ∈ h(R) is a δ-nilpotent if r1 ∈ δ(0).

Theorem 3.22. A graded hyperideal I of a graded multiplicative hyperring R is a graded δ-primary hyperideal of R
if and only if every zero divisor of the graded quotient hyperring R/I is a δq-nilpotent.

Proof. (⇒) Let I ∈ I1r(R) is a graded δ-primary hyperideal. Assume that r1 + I ∈ h(R/I) is a zero divisor
element of R/I. Then there exists I , r′h + I ∈ h(R/I) such that I = (r1+ I)◦ (r′h + I). As the result of I = r1 ◦ r′h + I,
we have r1 ◦ r′h ⊆ I. Since I is a graded δ-primary, r1 ◦ r′h ⊆ I and r′h < I, we conclude r1 ∈ I. Consider
the expansion function δq of I1r(R/I) and the natural homomorphism π : R → R/I. We obtain that π is a
δδq-epimorphism. Thus we have δ(I) = δ(π−1(0R/I)) = π−1(δq(I)). Note that r1 + I ∈ δ(I)/I = π(δ(I)) = δq(0R/I).
Hence r1 + I ∈ δq(0R/I).
(⇐) Let every zero divisor of R/I be a δq-nilpotent. Let r1 ◦ r′h ⊆ I and r1 < I for r1, r′h ∈ h(R). Then r′h + I
is a zero divisor element of R/I as r1 ◦ r′h + I = (r1 + I) ◦ (r′h + I) = I and r1 + I , I. By assumption, we get
r′h + I ∈ δq(0R/I) = δ(I)/I. Consequently, r′h ∈ δ(I).

Theorem 3.23. Let I be a graded δ-primary hyperideal of a graded multiplicative hyperring R and I1, I2, · · · , In ∈

I
1r
∗ (R) with

⋂n
i=1 Ii ⊆ I. Then Ii ⊆ δ(I) for some i ∈ {1, · · · ,n}. If

⋂n
i=1 Ii = I and δ(δ(J)) = δ(J) for each J ∈ I1r(R),

then δ(Ii) = δ(I) for some i ∈ {1, · · · ,n}.

Proof. Suppose that Ii * δ(I) for every i ∈ {1, · · · ,n}. Then there exist elements x1, · · · , xn ∈ h(R) with
xi ∈ Ii − δ(I). We get x1 ◦ · · · ◦ xn ⊆ Ii for every i and so x1 ◦ · · · ◦ xn ⊆

⋂n
i=1 Ii ⊆ I. Since I is δ-primary and

x1, · · · , xn < δ(I), then xi ∈ I ⊆ δ(I) for each i ∈ {1, · · · ,n}, which is a contradiction. Let
⋂n

i=1 Ii = I. Then
δ(Ii) = δ(I) since I ⊆ Ii, and δ(I) ⊆ δ(Ii).

Let G be an abelian group. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two graded multiplicative hyperrings
where R1 =

⊕
1∈G(R1)1 and R2 =

⊕
1∈G(R2)1. Then (R = R1 × R2,+, ◦) is a multiplicative hyperring

with operation + and the hyperoperation ◦ are defined respectively as (x, y) + (z, t) = (x +1 z, y +2 t) and
(x, y) ◦ (z, t) = {(a, b) ∈ R | a ∈ x ◦1 z , b ∈ y ◦ t} for all (x, y), (z, t) ∈ R. Also, (R = R1 × R2,+, ◦) becomes a
G-graded hyperring with homogeneous elements h(R) =

⋃
1∈G R1, where R1 = (R1)1 × (R2)1 for all 1 ∈ G.

Note that each graded hyperideal of R is the Cartesian product of graded hyperideals of R1 and R2. Suppose
that δ1 and δ2 are expansion functions of graded hyperideals of R1 and R2, respectively. Let δR be a function
of graded hyperideals of R with δ(I1 × I2) = δ1(I1) × δ2(I2) for every graded hyperideal Ii of Ri for i ∈ {1, 2}.
It is seen that the function δR is an expansion function of graded hyperideals of R.

Theorem 3.24. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two graded multiplicative hyperrings and δ1 and δ2 be expansion
functions of hyperideals of R1 and R2, respectively. Let I1 ∈ I

1r
∗ (R1), I2 ∈ I

1r
∗ (R2) and R = (R1 × R2, ◦,+). Then the

followings hold:

(i) I1 is a graded δ1-primary hyperideal of R1 if and only if I1 × R2 is a graded δR-primary hyperideal of R.

(ii) I2 is a graded δ2-primary hyperideal of R2 if and only if R1 × I2 is a graded δR-primary hyperideal of R.

Proof. (i) (⇒) Let (x1, y1), (zh, th) ∈ h(R) with (x1, y1)◦ (zh, th) ⊆ I1×R2. Hence we get x1 ◦1 zh ⊆ I1. Thus x1 ∈ I1
or z1 ∈ δ1(I1) and so (x1, y1) ∈ I1 × R2 or (zh, th) ∈ δR(I1 × R2).
(⇐) Let I1 be not a graded δ1-primary hyperideal of R1. So we have x1, yh ∈ h(R1) with x1◦1 yh ⊆ I1, x1 < I1 and
yh < δ1(I1). Note that (x1, 0R2 ) ◦ (yh, 0R2 ) ⊆ I1 × R2. By assumption, (x1, 0R2 ) ∈ I1 × R2 or (hh, 0R2 ) ∈ δR(I1 × R2).
It means x1 ∈ I1 or yh ∈ δ1(I1), a contradiction. Therefore, I1 is a graded δ1-primary hyperideal of R1.
(ii) The proof is similar to (i).
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4. On expansion of graded 2-absorbing hyperideals

Definition 4.1. (a) A proper graded hyperideal I of a graded multiplicative hyperring R is called a graded 2-absorbing
hyperideal, if a1, bh, ck ∈ h(R) and a1 ◦ bh ◦ ck ⊆ I, then a1 ◦ bh ⊆ I or a1 ◦ ck ⊆ I or bh ◦ ck ⊆ I.
(b) A proper graded hyperideal I of a graded multiplicative hyperring R is called a graded 2-absorbing primary
hyperideal, if a1, bh, ck ∈ h(R) and a1 ◦ bh ◦ ck ⊆ I, then a1 ◦ bh ⊆ I or a1 ◦ ck ⊆ Grad(I) or bh ◦ ck ⊆ Grad(I).

Definition 4.2. Let δ be an expansion function of I1r(R) and I ∈ I1r∗ (R). I is called a graded 2-absorbing δ-primary
hyperideal of R if a1, bh, ck ∈ h(R) and a1 ◦ bh ◦ ck ⊆ I, then a1 ◦ bh ⊆ I or a1 ◦ ck ⊆ δ(I) or bh ◦ ck ⊆ δ(I).

Remark 4.3. 1. Every graded δ-primary hyperideal of a graded multiplicative hyperring R is a graded 2-absorbing
δ-primary hyperideal of R.

2. I is a graded 2-absorbing δ0-primary hyperideal if and only if I is a graded 2-absorbing hyperideal.

3. I is a graded 2-absorbing δ2-primary hyperideal if and only if I is a graded 2-absorbing primary hyperideal.

Example 4.4. Let RA = (R,+, ◦) where A = {−3, 5, 6} and G = (Z,+) be the integers group. Consider theZ-graded
multiplicative polynomial hyperring S = (RA[x, y, z],+, ∗). Let I =

〈
xy

〉
= 〈x〉

⋂〈
y
〉
, which is intersection of two

graded prime hyperideals, is a graded 2-absorbing δ-primary hyperideal for any expansion function δ of R.

Example 4.5. In the graded multiplicative hyperring RA = Z[i] with A = {2, 3}, the graded hyperideal J = 〈6〉 ⊕ 〈0〉
of R is a graded 2-absorbing δ2-primary hyperideal, but it is not a graded δ2-primary hyperideal. Since, for all α ∈ A
we have (2, 0) ◦ (3, 0) = (2, 0) · α · (3, 0) = {(12, 0), (18, 0)} ⊆ J but (2, 0) < J and (3, 0) < δ(J). This example shows
that a graded 2-absorbing δ2-primary hyperideal of a graded multiplicative hyperring R is not necessarily a graded
δ2-primary hyperideal of R.

Theorem 4.6. Let R be a graded multiplicative hyperring. Then the following statements hold:

(i) Let γ be an expansion function ofI1r(R) satisfied δ(I) ⊆ γ(I) for each I ∈ I1r(R). Then every graded 2-absorbing
δ-primary hyperideal of R is a graded 2-absorbing γ-primary. Additionally, every graded 2-absorbing hyperideal
is a graded 2-absorbing δ-primary hyperideal since I ⊆ δ(I) for each expansion function δ of I1r(R).

(ii) Let I be a graded 2-absorbing primary hyperideal of R and δ(I) be a graded radical hyperideal (i. e. Grad(δ(I)) =
δ(I)). Then I is a graded 2-absorbing δ-primary hyperideal of R.

Proof. (i) It is clear by assumption.
(ii) Let a1 ◦ bh ◦ ck ⊆ I where a1, bh, ck ∈ h(R). Hence a1 ◦ bh ⊆ I or a1 ◦ ck ⊆ Grad(I) or bh ◦ ck ⊆ Grad(I)
by assumption. We have Grad(I) ⊆ Grad(δ(I)) because I ⊆ δ(I). Thus a1 ◦ bh ⊆ I or a1 ◦ ck ⊆ Grad(δ(I)) or
bh ◦ ck ⊆ Grad(δ(I)). Since Grad(δ(I)) = δ(I), we have a1 ◦ bh ⊆ I or a1 ◦ ck ⊆ δ(I) or bh ◦ ck ⊆ δ(I).

Theorem 4.7. If δ(I) be a graded prime hyperideal of a graded multiplicative hyperring R, then I is a graded
2-absorbing δ-primary hyperideal of R.

Proof. Let a1 ◦ bh ◦ ck ⊆ I and a1 ◦ bh * I where a1, bh, ck ∈ h(R). Let us consider two situations. Firstly, let
a1 ◦ bh * δ(I). Thus ck ∈ δ(I) since δ(I) is a graded prime hyperideal. Therefore, a1 ◦ ck ⊆ δ(I) and bh ◦ ck ⊆ δ(I).
Secondary, take a1 ◦bh ⊆ δ(I). By assumption, we get a1 ∈ δ(I) or bh ∈ δ(I). Hence a1 ◦ ck ⊆ δ(I) or bh ◦ ck ⊆ δ(I),
as needed.

Theorem 4.8. Let I be a graded 2-absorbing δ-primary C1r-hyperideal of a graded multiplicative hyperring R with
Grad(δ(I)) ⊆ δ(Grad(I)). Then Grad(I) is a graded 2-absorbing δ-primary C1r-hyperideal of R.

Proof. It can be proved in a similar manner to Theorem 3.15.

Theorem 4.9. Let I, K and L be proper graded hyperideals of a graded multiplicative hyperring R with L ⊆ K ⊆ I. If
I is a graded δ-primary hyperideal of R such that δ(I) = δ(L), then K is a graded 2-absorbing δ-primary hyperideal of
R.
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Proof. Let a1 ◦ bh ◦ ck ⊆ K and a1 ◦ bh * K where a1, bh, ck ∈ h(R). We get two cases as K ⊆ I. The first case:
Let a1 ◦ bh * I. Then ck ∈ δ(I) = δ(L) ⊆ δ(K) with our assumption. Thus a1 ◦ ck ⊆ δ(K) and bh ◦ ck ⊆ δ(K).
The second case: Let a1 ◦ bh ⊆ I. It means a1 ∈ I ⊆ δ(K) or bh ∈ δ(I) = δ(L) ⊆ δ(K) by assumption. Hence
a1 ◦ ck ⊆ δ(K) and bh ◦ ck ⊆ δ(K). In the both cases, we obtain that K is a graded 2-absorbing δ-primary
hyperideal of R.

Corollary 4.10. Let I be a graded δ-primary hyperideal of R and K ∈ I1r(R) with K ⊆ I and δ(I) = δ(K). Then K is
a graded 2-absorbing δ-primary hyperideal of R.

Proof. The proof holds by Theorem 4.9.

Theorem 4.11. Let δ and η be two expansion functions of I1r(R) and I ∈ I1r(R). If η(I) is a graded prime hyperideal
of R, then I is a graded 2-absorbing δ ◦ η-primary hyperideal of R.

Proof. Let a1 ◦ bh ◦ ck ⊆ I and a1 ◦ bh * I where a1, bh, ck ∈ h(R). We consider two cases. Case 1: a1 ◦ bh * η(I).
Then ck ∈ η(I), and so ck ∈ δ(η(I)) since η(I) ⊆ δ(η(I)) (η(I) ∈ I1r(R)). Thus a1 ◦ ck ⊆ δ◦η(I) and bh ◦ ck ⊆ δ◦η(I).
Case 2: a1 ◦ bh ⊆ η(I). Hence a1 ∈ η(I) or bh ∈ η(I) since η(I) is graded prime. Therefore, a1 ◦ ck ⊆ η(I) ⊆ δ(η(I))
or bh ◦ ck ⊆ δ(η(I)). Therefore, I is a graded 2-absorbing δ ◦ η-primary hyperideal of R.

Theorem 4.12. Let δ be an expansion function ofI1r(R) and I, J be graded δ-primary hyperideals of R with δ(I∩ J) =
δ(I) ∩ δ(J). Then I ∩ J is a graded 2-absorbing δ-primary hyperideal of R.

Proof. Let a1 ◦ bh ◦ ck ⊆ I ∩ J and a1 ◦ bh * I ∩ J where a1, bh, ck ∈ h(R). Thus it means a1 ◦ bh * I or a1 ◦ bh * J.
Hence we consider the following cases:

Case 1: a1 ◦ bh ⊆ I and a1 ◦ bh * J. Since a1 ◦ bh * J, there exists r1h ∈ a1 ◦ bh such that r1h < J. Since
r1h ◦ ck ⊆ J and r1h < J, then ck ∈ δ(I). Hence a1 ◦ ck ⊆ δ(J) and bh ◦ ck ⊆ δ(J) since δ(I) is a hyperideal of R.
Also, a1 ∈ I ⊆ δ(I) or bh ∈ δ(I) as a1 ◦ bh ⊆ I and I is graded δ-primary. Hence a1 ◦ ck ⊆ δ(I) or bh ◦ ck ⊆ δ(I).
Then we obtain a1 ◦ ck ⊆ δ(I) ∩ δ(J) = δ(I ∩ J) or bh ◦ ck ⊆ δ(I) ∩ δ(J) = δ(I ∩ J).

Case 2: Let a1 ◦ bh * I and a1 ◦ bh ⊆ J. Then the proof holds by a similar way to the proof of Case 1.
Case 3: Let a1 ◦ bh * I and a1 ◦ bh * J. We have homogeneous elements r1h, s1h ∈ a1 ◦ bh with r1h < I

and s1h < J. Thus we have r1h ◦ ck ⊆ I and s1h ◦ ck ⊆ J. Hence ck ∈ δ(I) and ck ∈ δ(J) by our assumption.
Consequently, a1 ◦ ck ⊆ δ(I) ∩ δ(J) = δ(I ∩ J) or bh ◦ ck ⊆ δ(I) ∩ δ(J) = δ(I ∩ J).

Theorem 4.13. Let δ has the property of intersection preserving and K = I∩ J for some graded δ-primary hyperideals
I and J of R. Then K is a graded 2-absorbing δ-primary hyperideal of R.

Proof. It is clear by Theorem 4.12.

Theorem 4.14. Let R,S be graded multiplicative hyperrings and f : R → S be a δγ-homomorphism. Then the
followings hold:

(i) If J is a graded 2-absorbing γ-primary hyperideal of S, then f−1(J) is a graded 2-absorbing δ-primary hyperideal
of R.

(ii) Let f be a graded epimorphism and I ∈ I1r(R) with Ker( f ) ⊆ I. Then I is a graded 2-absorbing δ-primary
hyperideal of R if and only if f (I) is a graded 2-absorbing γ-primary hyperideal of S.

Proof. (i) Let a1 ◦ bh ◦ ck ⊆ f−1(J) for each a1, bh, ck ∈ h(R). We have f (a1 ◦ bh ◦ ck) = f (a1) ◦ f (bh) ◦ f (ck) ⊆ J.
Since J is a graded 2-absorbing γ-primary hyperideal of S, we obtain that f (a1) ◦ f (bh) = f (a1 ◦ bh) ⊆ J or
f (a1) ◦ f (ck) = f (a1 ◦ ck) ⊆ γ(J) or f (bh) ◦ f (ck) = f (bh ◦ ck) ⊆ γ(J). Hence a1 ◦ bh ⊆ f−1(J) or a1 ◦ ck ⊆ f−1(γ(J))
or bh ◦ ck ⊆ f−1(γ(J)), so by assumption, a1 ◦ bh ⊆ f−1(J) or a1 ◦ ck ⊆ δ( f−1(J)) or bh ◦ ck ⊆ δ( f−1(J)). Thus f−1(J)
is a graded 2-absorbing δ-primary hyperideal of R.
(ii) Let I be a graded δ-primary hyperideal of R. Assume that x1 ◦ yh ◦ zk ⊆ f (I) with x1, yh, zk ∈ h(S).
Since f is a graded epimorphism, x1 = f (a1), yh = f (bh) and zk = f (ck) for some a1, bh, ck ∈ h(R). Hence
f (a1) ◦ f (bh) ◦ f (ck) = f (a1) ◦ bh ◦ ck) ⊆ f (I). We show that a1 ◦ bh ◦ ck ⊆ I. Let t ∈ a1 ◦ bh ◦ ck. Then
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f (t) ∈ f (a1 ◦ bh ◦ ck) ⊆ f (I) and so f (t) = f (x) for some x ∈ I. This implies that f (t − x) = f (t) − f (x) = 0 ∈ 〈0〉,
that is, t−x ∈ Ker( f ) ⊆ I and so t ∈ I. Thus a1◦bh◦ck ⊆ I. Since I is a graded 2-absorbing δ-primary hyperideal
of R, we have a1 ◦bh ⊆ I or a1 ◦ck ⊆ δ(I) or bh ◦ck ⊆ δ(I) and so f (a1 ◦bh) ⊆ f (I) or f (a1 ◦ck) ⊆ f (δ(I)) = γ( f (I)) or
f (bh◦ck) ⊆ f (δ(I)) = γ( f (I)) by assumption. Consequently, f (I) is a graded 2-absorbing γ-primary hyperideal
of S. The converse part is verified from (i).

Corollary 4.15. Let I and J be graded hyperideals of a graded multiplicative hyperring R with I ⊆ J. Then J is a
graded 2-absorbing δ-primary hyperideal of R if and only if J/I is a graded 2-absorbing δq-primary hyperideal of the
graded quotient hyperring R/I.

Proof. The proof is completely straightforward.

Proposition 4.16. Let R be a graded multiplicative hyperring and I, J,K ∈ I1r∗ (R). If I ⊆ J ∪ K, then I ⊆ J or I ⊆ K.

Proof. Let I ⊆ J∪K, I * J and I * K. There exist a, b ∈ R such that a ∈ I− J and b ∈ I−K. Then a− b ∈ I. Thus
a ∈ J or b ∈ K, which is a contradiction.

Theorem 4.17. Let R be a graded multiplicative hyperring and I =
⊕
1∈G I1 =

⊕
1∈G(I ∩ R1) a graded hyperideal

of R. The following statements are equivalent:

(i) I is a graded 2-absorbing δ-primary hyperideal of R.

(ii) (Ik :R a1 ◦ bh) ⊆ (δ(I) ∩ Rkh−1 :R a1) ∪ (Ik1−1 :R bh) for a1, bh ∈ h(R) such that a1 ◦ bh * δ(I).

(iii) (Ik :R a1 ◦ bh) ⊆ (δ(I) ∩ Rkh−1 :R a1) or (Ik :R a1 ◦ bh) = (Ik1−1 :R bh) for a1, bh ∈ h(R) such that a1 ◦ bh * δ(I).

Proof. (i)⇒ (ii) Let x1−1h−1k ∈ (Ik : a1◦bh). Then a1◦bh◦x1−1h−1k ⊆ Ik ⊆ I. Thus bh◦x1−1h−1k ⊆ I or a1◦x1−1h−1k ⊆ δ(I)
since a1 ◦ bh * δ(I) and I is a graded 2-absorbing δ-primary hyperideal. Therefore, x1−1h−1k ∈ (Ik1−1 : bh) or
x1−1h−1k ∈ (δ(I) ∩ Rkh−1 : a1), that is, x1−1h−1k ∈ (Ik1−1 : bh) ∪ (δ(I) ∩ Rkh−1 : a1).
(ii) ⇒ (i) Assume that a1 ◦ bh ◦ ck ⊆ I, a1 ◦ bh * δ(I) and bh ◦ ck * I for each a1, bh, ck ∈ h(R). Then we have
ck ∈ (Ik1h : a1 ◦ bh). Hence ck ∈ (Ikh : bh) ∪ (δ(I) ∩ Rk1 : a1). Since bh ◦ ck * I, then we obtain a1 ◦ ck ⊆ δ(I). Thus
I is a graded 2-absorbing δ-primary hyperideal of R.
(ii)⇔ (iii) It is clear from Proposition 4.16 and (Ik1−1 : bh) ⊆ (Ik : a1 ◦ bh).

Lemma 4.18. Let I be a graded 2-absorbing δ-primary hyperideal of a graded multiplicative hyperring R =
⊕
1∈G R1.

Let k ∈ G and Jk be a subgroup of Rk. If a1 ◦ bh ◦ Jk ⊆ I and a1 ◦ bh * I for a1, bh ∈ h(R), then a1 ◦ Jk ⊆ δ(I) or
bh ◦ Jk ⊆ δ(I).

Proof. Suppose that a1 ◦ Jk * δ(I) and bh ◦ Jk * δ(I). Since a1 ◦ Jk =
⋃

jk∈Jk
a1 ◦ jk * δ(I) and bh ◦ Jk =⋃

jk∈Jk
bh ◦ jk * δ(I). Hence there exist ck, dk ∈ Jk such that a1 ◦ ck * δ(I) and bh ◦ dk * δ(I). Since a1 ◦ bh ◦ ck ⊆ I,

a1 ◦ bh * I, a1 ◦ ck * δ(I) and I is a graded 2-absorbing δ-primary hyperideal of R, then bh ◦ ck ⊆ δ(I).
Similarly, Since a1 ◦ bh ◦ dk ⊆ I, a1 ◦ bh * I, bh ◦ dk * δ(I) and I is a graded 2-absorbing δ-primary hyperideal
of R, then a1 ◦ dk ⊆ δ(I). Now since a1 ◦ bh ◦ (ck + dk) ⊆ I, a1 ◦ bh * I and I is a graded 2-absorbing
δ-primary hyperideal of R, then a1 ◦ (ck + dk) ⊆ δ(I) or bh ◦ (ck + dk) ⊆ δ(I). If a1 ◦ (ck + dk) ⊆ δ(I), then
a1 ◦ ck = a1 ◦ (ck + dk − dk) ⊆ a1 ◦ (ck + dk)− a1 ◦ dk ⊆ δ(I) since a1 ◦ dk ⊆ δ(I), which is a contradiction. Similarly,
let bh ◦ (ck + dk) ⊆ δ(I). Then bh ◦ dk = bh ◦ (ck + dk − ck) ⊆ bh ◦ (ck + dk)− bh ◦ ck ⊆ δ(I) as bh ◦ ck ⊆ δ(I), which is
a contradiction. Thus a1 ◦ Jk ⊆ δ(I) or bh ◦ Jk ⊆ δ(I).

Theorem 4.19. Let I be a graded hyperideal of a graded multiplicative hyrperring R. I is a graded 2-absorbing
δ-primary hyperideal of R if and only if for any subgroups J1,Kh,Lk of R1,Rh,Rk, respectively, J1 ◦ Kh ◦ Lk ⊆ I, then
J1 ◦ Kh ⊆ I or J1 ◦ Lk ⊆ δ(I) or Kh ◦ Lk ⊆ δ(I).
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Proof. Let I be a graded 2-absorbing δ-primary hyperideal of R and J1 ◦ Kh ◦ Lk ⊆ I and J1 ◦ Kh * I. We
show that J1 ◦ Lk ⊆ δ(I) or Kh ◦ Lk ⊆ δ(I). Suppose that J1 ◦ Lk * δ(I) and Kh ◦ Lk * δ(I). Hence j1 ◦ Lk * δ(I)
and kh ◦ Lk * δ(I) for some j1 ∈ J1 and kh ∈ Kh. By Lemma 4.18, since j1 ◦ kh ◦ Lk ⊆ I but j1 ◦ Lk * δ(I) and
kh ◦ Lk * δ(I), we get j1 ◦ kh ⊆ I. Since J1 ◦Kh * I, so there exist a1 ∈ J1 and bh ∈ Kh such that a1 ◦ bh * I. Since
(a1 ◦ bh) ◦ Lk ⊆ J1 ◦ Kh ◦ Lk ⊆ I and a1 ◦ bh * I, by Lemma 4.18, a1 ◦ Lk ⊆ δ(I) or bh ◦ Lk ⊆ δ(I).

Case 1: Suppose that a1 ◦ Lk ⊆ δ(I) and bh ◦ Lk * δ(I). Since ( j1 ◦ bh) ◦ Lk ⊆ J1 ◦ Kh ◦ Lk ⊆ I, bh ◦ Lk * δ(I)
and j1 ◦ Lk * δ(I), we have j1 ◦ bh ⊆ I by Lemma 4.18. As a1 ◦ Lk ⊆ δ(I) and j1 ◦ Lk * δ(I), it means that
(a1 + j1) ◦ Lk * δ(I). Indeed, if (a1 + j1) ◦ Lk ⊆ δ(I), then we get (a1 + j1) ◦ xk ⊆ δ(I) for every xk ∈ Lk
and it is obtained j1 ◦ xk ⊆ (a1 + j1 − a1) ◦ xk ⊆ (a1 + j1) ◦ xk − a1 ◦ xk ⊆ δ(I), a contradiction. By Lemma
4.18, we have (a1 + j1) ◦ bh ⊆ I as (a1 + j1) ◦ bh ◦ Lk ⊆ I, (a1 + j1) ◦ Lk * δ(I) and bh ◦ Lk * δ(I). Then
a1 ◦ bh = (a1 + j1 − j1) ◦ bh ⊆ (a1 + j1) ◦ bh − ( j1 ◦ bh) ⊆ I, that is, we get a1 ◦ bh ⊆ I, which is a contradiction.

Case 2: Suppose that a1 ◦ Lk * δ(I) and bh ◦ Lk ⊆ δ(I). Then a1 ◦ kh ⊆ I by Lemma 4.18. As bh ◦ Lk ⊆ δ(I)
and kh ◦ Lk * δ(I), we get (bh + kh) ◦ Lk * δ(I). Indeed, if (bh + kh) ◦ Lk ⊆ δ(I), then we get (bh + kh) ◦ xk ⊆ δ(I)
for every xk ∈ Lk and it is obtained kh ◦ xk ⊆ (bh + kk − bh) ◦ xk ⊆ (bh + kh) ◦ xk − bh ◦ xk ⊆ δ(I), a contradiction.
By Lemma 4.18, we have a1 ◦ (bh + kh) ⊆ I as a1 ◦ (bh + kh) ◦ Lk ⊆ I, (bh + kh) ◦ Lk * δ(I) and a1 ◦ Lk * δ(I). Then
a1 ◦ bh = (bh + kh − kh) ◦ a1 ⊆ (bh + kh) ◦ a1 − (kh ◦ a1) ⊆ I, that is, we get a1 ◦ bh ⊆ I, which is a contradiction.

Case 3: Suppose that a1 ◦ Lk ⊆ δ(I) and bh ◦ Lk ⊆ δ(I). Since bh ◦ Lk ⊆ δ(I) and kh ◦ Lk * δ(I), we
have (bh + kh) ◦ Lk * δ(I). If (bh + kk) ◦ Lk ⊆ δ(I), then we get (bh + kh) ◦ xk ⊆ δ(I) for every xk ∈ Lk. Then
kh ◦xk = (bh +kh−bh)◦xk ⊆ (bh +kh)◦xk−bh ◦xk ⊆ δ(I), a contradiction. By Lemma 4.18, we get j1 ◦ (bh +kh) ⊆ I
as j1 ◦ (bh + kh) ◦ Lk ⊆ I, (bh + kh) ◦ Lk * δ(I) and j1 ◦ Lk * δ(I). Since j1 ◦ kh ◦ Lk ⊆ I, j1 ◦ Lk * δ(I)
and kh ◦ Lk * δ(I), then by Lemma 4.18, we have j1 ◦ kh ⊆ I. Also, it is obtained (a1 + j1) ◦ Lk * δ(I) as
a1 ◦ Lk ⊆ δ(I) and j1 ◦ Lk * δ(I) by a similar way to the explanation in above. By Lemma 4.18, we obtain
(a1 + j1) ◦ kh ⊆ I as (a1 + j1) ◦ kh ◦ Lk ⊆ I, (a1 + j1) ◦ Lk * δ(I) and kh ◦ Lk * δ(I). Then it is clear that
(a1 + j1) ◦ (bh + kh) ⊆ I since (a1 + j1) ◦ (bh + kh) ◦ Lk ⊆ I, (a1 + j1) ◦ Lk * δ(I) and (bh + kh) ◦ Lk * δ(I). Thus
a1 ◦ bh = (a1 + j1 − j1) ◦ (bh + kh − kh) ⊆ (a1 + j1) ◦ (bh + kh) − (a1 + j1) ◦ kh − j1 ◦ (bh + kh) − j1 ◦ kh ⊆ I since
(a1 + j1) ◦ (bh + kh) ⊆ I, (a1 + j1) ◦ kh ⊆ I, j1 ◦ (bh + kh) ⊆ I and j1 ◦ kh ⊆ I. Hence a1 ◦ bh ⊆ I, a contradiction.
Consequently, J1 ◦ Lk ⊆ δ(I) or Kh ◦ Lk ⊆ δ(I).
Conversely, Let a1 ◦ bh ◦ ck ⊆ I where a1, bh, ck ∈ h(R). Consider

〈
a1

〉
, 〈bh〉 and 〈ck〉 the subgroups of generated

by a1, bh, ck, respectively. Hence we get
〈
a1

〉
◦ 〈bh〉 ◦ 〈ck〉 ⊆ I. So by assumption, we have

〈
a1

〉
◦ 〈bh〉 ⊆ I

or 〈bh〉 ◦ 〈ck〉 ⊆ δ(I) or 〈bh〉 ◦ 〈ck〉 ⊆ δ(I). Therefore, a1 ◦ bh ⊆
〈
a1

〉
◦ 〈bh〉 ⊆ I or bh ◦ ck ⊆ 〈bh〉 ◦ 〈ck〉 ⊆ δ(I) or

a1 ◦ ck ⊆ 〈bh〉 ◦ 〈ck〉 ⊆ δ(I).

Theorem 4.20. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two graded multiplicative hyperrings and δ1 and δ2 be expansion
functions of hyperideals of R1 and R2, respectively. Let I1 ∈ I

1r
∗ (R1), I2 ∈ I

1r
∗ (R2) and R = (R1 × R2, ◦,+). The

following statements hold:

(i) I1 is a graded 2-absorbing δ1-primary hyperideal of R1 if and only if I1 ×R2 is a graded 2-absorbing δR-primary
hyperideal of R.

(ii) I2 is a graded 2-absorbing δ2-primary hyperideal of R2 if and only if R1 × I2 is a graded 2-absorbing δR-primary
hyperideal of R.

Proof. (i) (⇒) Let (x1, y1), (zh, th), (uk, vk) ∈ h(R) with (x1, y1)◦ (zh, th)◦ (uk, vk) ⊆ I1×R2. Hence x1◦1 zh◦1 uk ⊆ I1.
Thus x1 ◦1 zh ⊆ I1 or zh ◦1 uk ⊆ δ1(I1) or x1 ◦1 uk ⊆ δ1(I1) and so (x1, y1) ◦ (zh, th) ⊆ I1 × R2 or (zh, th) ◦ (uk, vk) ⊆
δR(I1 × R2) or (x1, y1) ◦ (uk, vk) ⊆ δ(I1 × R2).

(⇐) Let I1 be not a graded 2-absorbing δ1-primary hyperideal of R1. So we have x1, yh, zk ∈ h(R1) with
x1◦1 yh◦1zk ⊆ I1, x1◦1zh * I1, zh◦1uk * δ1(I1) and x1◦1uk * δ1(I1). Note that (x1, 0R2 )◦(zh, 0R2 )◦(uk, 0R2 ) ⊆ I1×R2.
By assumption, (x1, 0R2 )◦(zh, 0R2 ) ⊆ I1×R2 or (zh, 0R2 )◦(uk, 0R2 ) ⊆ δR(I1×R2) or (x1, 0R2 )◦(uk, 0R2 ) ⊆ δR(I1×R2).
It means x1 ◦1 zh ⊆ I1 or zh ◦1 uk ⊆ δ1(I1) or x1 ◦1 uk ⊆ δ1(I1), a contradiction. Therefore, I1 is a graded 2-
absorbing δ1-primary hyperideal of R1.
(ii) The proof is similar to (i).
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