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Abstract. Combination of real and imaginary parts (CRI) method is an efficient method for solving a
class of large sparse linear systems with complex symmetric positive semi-definite coefficient matrices. In
this work we will extend CRI approach to determine the approximate solution of Sylvester equation with
complex symmetric semi-definite positive coefficient matrices. We show that the new algorithm converges
unconditionally to the unique exact solution of the Sylvester matrix equation. In the end we test the new
scheme by solving some numerical examples.

1. Introduction

Algebraic Sylvester matrix equations are observed in many areas from different regions such as, control
theory and many other branches of engineering [7–9, 23].

The so-called bilinear control system can be described by the following state-spaceẋ(t) = Ax(t) +
∑m

j=1 N jx(t)u j(t) + Bu(t),
y(t) = C̃x(t), x(0) = x0,

(1)

where t is the time variable, x(t) ∈ Cn, u(t) = [u1(t), ...,um(t)]T
∈ Cm and y(t) ∈ Cn are the stable, input

and output vectors, respectively. Also B(t) ∈ Cn×m, C̃, A ∈ Cn×n. Reachability and observability are two
important issues for the system (1), such that the reachability is defined by

R =

∞∑
k=1

∫
∞

0
...

∫
∞

0
RkRT

k dt1...dtk,

that is the solution of Eq. (1), where

R1 = eAt1 B and Rk(t1, ..., tk) = eAtk [N1Rk−1, ...,NmRk−1], k = 2, 3, ....
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Also the observability is the solution of the dual equation for

AY + YAT +

m∑
j=1

N jYNT
j = C̃TC̃,

where Y ∈ Cn×n must be determined. It is well-known that these matrix equations have applications in
various areas and have been widely used in engineering and scientific computations. Liao and et.al [19]
introduced best approximate solution of matrix equation

AXB + CYD = Q. (2)

Benner [3] has proposed a new method for solving stable Sylvester equations right-hand side given in
factored form

AX + XB = FG,

that arise in model reduction problems.
He, Wang and Zhang [15] provided some necessary and sufficient conditions for the existence and the

general solution to the system of four coupled one-sided Sylvester-type real quaternion matrix equations
A1X1 + X2B1 = C1,

A2X2 + X3B2 = C2,

A3X3 + X4B3 = C3,

A4X4 + X5B4 = C4.

Author of [5] has introduced a numerical method for solving algebraic Riccati equations

ATX + XA − XFX + G = 0,

based on a modification of matrix sign-function. Dehghan and Hajarian [6] considered second-order
Sylvester matrix equation

EVF2
− AVF − CV = BW, (3)

and proposed an efficient iterative method for solving it. Some useful articles about matrix equation can
be found in [3–5, 11, 14–17, 20, 21, 24, 26, 27].

Here we focus on the Sylvester matrix equation of the form

AX + XB = C, (4)

where A = W + iT ∈ Cm×m and B = U + iV ∈ Cn×n, W,T,U and V are real symmetric positive semi-definite
matrices and i =

√
−1. Using the Kronecker sum, it is easy to prove that Eq. (4) has a unique solution [2]

when there is no common eigenvalues of A and −B. Eq. (4) is equivalent to the linear system

Zx = c, (5)

where Z = In ⊗ A + BT
⊗ Im, c = vec(C) and x = vec(X), where ⊗ is Kronecker product, In is identity matrix

of dimension n × n and for any matrix A = (a1, ..., an) with the columns ak,vec(A) is an operator such that
vec(A) = (aT

1 , ..., a
T
n )T
∈ Cmn. Obtaining the solution of equation (4), by solving the linear system (5) is not a

suitable method and it can be costly, because the dimension of the linear system (5) may be very large. Eq.
(4) can be solved by direct methods such as Bartels-Stewart [1] and the Hessenberg-Schur methods [13].
But for efficiently solving the Sylvester matrix Eq. (4), iterative methods can be used.
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In [2] Bai proposed HSS approach for solving Eq. (4). Authors of [29] improved the method of Bai
[2] by presenting the MHSS iterative method for the Sylvester equation. Authors of [12] applied PMHSS
approach for solving Eq. (4). Salkuyeh and Bastani [23] introduced two-parameter generalized Hermitian
and skew-Hermitian splitting (TGHSS) iteration method. Dehghan and Shirilord [10] by parameterizing the
MHSS method presented a generalized MHSS (GMHSS) iteration method. In fact for different parameters
in GMHSS iteration method, different methods are formed. Authors of [10] proved that there exists at least
one region Ω ∈ R2 that GMHSS iteration method is convergent. In the following, we will briey describe the
CRI iterative method for finding solution of the linear systems. To do this first consider the problem

Zx = b, (6)

where Z ∈ Cn×n and x, b ∈ Cn. Let Z be complex symmetric matrix of the form Z = F + iG, where F,G ∈ Rn

are real, symmetric, and with F and G are positive semi-defnite matrices. CRI method [28] can be expressed
as follows.

1.1. Combination of real and imaginary parts (CRI) method [28]

For a given initial approximation x(0) ∈ Cn, we obtain next iterate x( j+1) from:(αG + F)x( j+1/2) = (α − i)Gx( j) + b,
(αF + G)x( j+1) = (α + i)Fx( j+1/2) − ib, j = 0, 1, 2, ...,

(7)

where α > 0.
Suppose the matrices F and G are semi-positive definite, so before introducing the convergence theorem of
the new method, we should pay attention to useful information about these matrices. To do so first recall
the following lemma [28].

Lemma 1.1. Let F ∈ Rn×n and G ∈ Rn×n be symmetric positive semi-definite matrices satisfying null(F)∩null(G) =
{0}, where null(G) denotes null space of any matrix G. Then there exists a nonsingular matrix P ∈ Rn×n such that

F = PTDFP, G = PTDGP,

where DF = Dia1(µ1, ..., µn), DG = Dia1(λ1, ..., λn), λl and µl satisfy

µl + λl = 1, λl ≥ 0, µl ≥ 0, l = 1, ...,n.

In the next section, we will apply CRI method (7) for solving large sparse complex Sylvester Eq. (4).

2. The use of CRI method for solving Sylvester matrix equations

We see that the CRI iterative method [28] was derived for finding solution of the linear systems of the
form

Zx = b ≡ (W + iT)x = b,

where W and T are symmetric positive semi-defnite matrices. Our original scientific contribution in this
paper is to extend CRI iterative method for solving Sylvester matrix equation of the form:

AX + XB = C ≡ (W + iT)X + X(U + iV) = C,

where W,T,U and V are real symmetric positive semi-definite matrices. For doing this, first we write Eq.
(4) as

WX + XU = −iXV − iTX + C. (8)
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Assume that α > 0 is an arbitrary number. Then, adding αTX and αXV to both sides of the above relation
yields

(αT + W)X + X(αV + U) = (α − i)[TX + XV] + C. (9)

On the other hand multiplying both sides of (8) by −i and then, adding αWX and αXU to both sides of it
yield:

(αW + T)X + X(αU + V) = (α + i)[WX + XU] − iC. (10)

Now by considering relations (9) and (10) we obtain the following method for solving Eq. (4).

2.1. The CRI procedure for solving Sylvester matrix Eq. (4)
Compute X(k+1) ∈ C

m×n for k = 0, 1, 2, .... by using the following procedure such that {X(k)}
∞

k=0 ⊆ C
m×n

converges:(αT + W)X(k+ 1
2 ) + X(k+ 1

2 )(αV + U) = (α − i)[TX(k) + X(k)V] + C,
(αW + T)X(k+1) + X(k+1)(αU + V) = (α + i)[WX(k+ 1

2 ) + X(k+ 1
2 )U] − iC,

(11)

where α > 0 is constant and X(0) ∈ Cm×n is an initial guess. It is clear that the matrices αW +T, αU +V, αT +W
and αV + U are symmetric positive defnite, therefore, the two half-steps involved in the CRI iteration can
be solved effectively using efficient direct algorithms.

Here we introduce the convergence analysis of new iteration method (11). Based on Theorem 2.1 in [2]
and Theorem 2.1 in [28], the following convergence theorem will be obtained for the CRI iteration method
for solving Sylvester matrix Eq. (4).

Theorem 2.1. Let A = W + iT ∈ Cm×m and B = U + iV ∈ Cn×n, where W,T,U and V are real symmetric positive
semi-definite matrices and let α > 0 be constant. Suppose that Eq. (4) has a unique solution. Denote

Q = In ⊗W + U ⊗ Im ∈ R
nm×nm, R = In ⊗ T + V ⊗ Im ∈ R

nm×nm. (12)

Then the iteration matrix of CRI method (11) is

L(α) = (α2 + 1)(αQ + R)−1Q(αR + Q)−1R, (13)

and the spectral radius of the matrix L(α) satisfies

ρ(L(α)) ≤ δ(α) ≡
α2 + 1

(α + 1)2 < 1, ∀α > 0, (14)

then the CRI iteration (11) converges unconditionally to the unique exact solution X∗ ∈ Cm×n of Eq. (4) for any initial
guess X(0).

Proof. By using Kronecker product, we can write scheme (11) in the following form:[In ⊗ (αT + W) + (αV + U)T
⊗ Im]X(k+ 1

2 ) = (α − i)[In ⊗ T + VT
⊗ Im]X(k) + c,

[In ⊗ (αW + T) + (αU + V)T
⊗ Im]X(k+1) = (α + i)[In ⊗W + UT

⊗ Im]X(k+ 1
2 ) − ic,

(15)

where c = vec(C) and x = vec(X). Note that:

In ⊗ (αT + W) + (αV + U)T
⊗ Im = α(In ⊗ T + V ⊗ Im) + (In ⊗W + U ⊗ Im) = αR + Q,

and

In ⊗ (αW + T) + (αU + V)T
⊗ Im = α(In ⊗W + U ⊗ Im) + (In ⊗ T + V ⊗ Im) = αQ + R,
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where R and Q are defined in (12). Then Eq. (15) can be rewritten as(αR + Q)x(k+ 1
2 ) = (α − i)Rx(k) + c,

(αQ + R)x(k+1) = (α + i)Qx(k+ 1
2 ) − ic.

(16)

It is clear that, the scheme (16) is the CRI method [28] for solving Eq. (6), with A = Q + iR and b = c.
Suppose that λQ

p,q, λ
R
p,q, λ

W
p , λ

T
p , λ

U
p and λV

q , (p = 1, ...,m, q = 1, ..,n) denote the eigenvalues of Q,R,W,T,U
and V (p = 1, ...,m, q = 1, ..,n), respectively. Since

λQ
p,q = λW

p + λU
q ≥ 0, λR

p,q = λT
p + λV

q ≥ 0, p = 1, ...,m, q = 1, ...,n,

then Q and R are symmetric positive semi-definite matrices. On the other hand we assume that Eq. (4) has
a unique solution, therefore the matrix

I ⊗ A + BT
⊗ I = I ⊗ (W + iT) + (U + iV)T

⊗ I = Q + iR = A,

is nonsingular, this yields null(R)∩ null(Q) = {0}, hence according to Lemma 1.1, there exists a nonsingular
matrix P ∈ Rnm×nm

Q = PTDQP, Q = PTDQP, (17)

where DQ = Diag(µ1, ..., µnm) and DR = Diag(λ1, ..., λnm), λ and µ satisfy

µl + λl = 1, λl ≥ 0, µl ≥ 0, l = 1, ...,nm.

Removing x(k+ 1
2 ) from (16) gives x(k+ 1

2 ) = L(α)Xk + K(α)c, where L(α) is iteration matrix for new method
(11) and is defined in (13) and K(α) = 1

α (αR + Q)(Q − iR)−1(αQ + R). We know that CRI procedure (11) is
convergent if ρ(L(α)) < 1. But

ρ(L(α) = (α2 + 1)ρ((αPTDQP + PTDRP)−1PTDQP(αPTDRP + PTDQP)−1PTDRP)

= (α2 + 1)ρ((αDQ + DR)−1DQ(αDR + DQ)−1DR)

= (α2 + 1) max
µl,λl

{
µlλl

(αµl + λl)(αλl + µl)

}
= (α2 + 1) max

µl,λl

{
µlλl

(α2 + 1)µlλl + 2αµlλl

}
≤

α2 + 1
(α + 1)2 < 1.

This shows that new iteration (11) converges unconditionally to the unique exact solution X∗ ∈ Cm×n of Eq.
(4).

3. Numerical Results

In this section, a test problem is given to show the efficiency of CRI method for approximating the
solution of Sylvester matrix equation by comparing it with PMHSS, Method (A) (see [21]), Method (B)
(see [3]) and GlGMRES(5) (GlGMRES(10) and GlGMRES(15 )) method [4]. The numerical experiments
are performed in Matlab on an Intel (R) Pentium (R) CPU N3700 or (1.60 GHz, 4 GB RAM). In our test
performed, we used X0 = 0 (zero matrix) for the initial guess and the stopping criteria for outer iterations is

‖ C − AX(k) − X(k)B ‖F / ‖ C ‖F≤ 5 × 10−8.

Also we set

E(k) = log10 ‖ C − AX(k) − X(k)B ‖F .
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Example 3.1. We want to determine the approximate solution of the Sylvester matrix equation

[(K + σ1In) + iσ2In]X + X[(K + σ1In) + iσ2In] = C, (18)

where the matrix K is of the form K = Im ⊗Vm + Vm ⊗ Im, with Vm = h−2 Tridiagonal (−1, 2,−1) ∈ Rm×m. Therefore
K is a block tridiagonal matrix of size n × n, with n = m2. Also In and Im are identity matrices of the dimensions n
and m, respectively. Here h = 1

m+1 . We set σ1 = 1 and σ2 = 10. Moreover for matrix C, we consider two cases as
given in the following:
Case (a): Consider the matrix C, such that X∗ = (xi, j) with

xi, j = sin(xi) + sin(y j), i, j = 1, 2, ...,n, (19)

can be exact solution of (18), where xi = −4 + 8(i − 1)/(n − 1) and y j = −4 + 8( j − 1)/(n − 1), i, j = 1, 2, ...,n.
Case (b): Set C = FG, where the matrices F ∈ Rn×1 and G ∈ R1×n have normally distributed random entries.

Example 3.2. Consider the equation AX + XA = C, with

T = I ⊗ V + V ⊗ I, and W = 10(I ⊗ Vc + Vc ⊗ I) + 9(e1eT
m + emeT

1 ) ⊗ I,

where

V = Tri(−1, 2,−1) =



2 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2


m×m

,

and Vc = V − e1eT
m − emeT

1 ∈ R
m×m, e1 = (1, 0, 0, ..., 0)T

∈ Rm, em = (0, 0, ..., 1)T
∈ Rm. Therefore, the dimension of

the matrices W, T, U and V will be n = m2. Also right hand side matrix C is such that:
Case (a): The matrix X∗ = (xi, j) with

xi, j = exp
[
−

(
x2

i + y2
j

)]
, i, j = 1, 2, ...,n, (20)

is exact solution of AX + XA = C,, where xi = −1 + 2(i− 1)/(n− 1) and y j = −1 + 2( j− 1)/(n− 1), i, j = 1, 2, ...,n.
Case (b): Set C = FG, where the matrices F ∈ Rn×1 and G ∈ R1×n have normally distributed random entries.

Example 3.3. Consider the Sylvester equation(
−βIn + iUT(−Diag(1,

1
2
, ...,

1
n

) + e1eT
n )U

)
X + X

(
−βIn + iVT(−Diag(1,

1
2
, ...,

1
n

) + e1eT
n )V

)
= FG,

where In is n × n identity matrix, U, V ∈ Rn×n are the orthogonal factors of the QR decomposition of random n × n
matrices, e1 = (1, 0, ..., 0)T

∈ Rn, en = (0, 0, ..., 0, 1)T
∈ Rn and β is constant. The matrices F ∈ Rn×1 and G ∈ R1×n

have normally distributed random entries. The optimal parameters of the both CRI and PMHSS methods used here
are included in Tables 1 and 2. Note that these parameters are experimentally determined by minimizing the number
of iterations. All numerical result for cases (a) and (b) are listed in these tables. By results of Table 1, we see that
the number of iterations for these methods has not changed much with increasing dimension of the problem, which
indicates that these methods are efficient versus increasing dimension of the problem. The logarithm of the residual
error versus iteration number for PMHSS, CRI, Methods (A) and (B) is plotted in Figs. 1, 2 and 3. The outcome of
this graph is that, the CRI method is faster than the PMHSS method. Also we see that Method (A) and Method (B) can
not solve this test for case (b). The logarithm of the residual error versus iteration number for Example 3.3 PMHSS,
CRI, Method (A) and Method (B) is plotted in Figs 4. From this figure CRI method is faster than Methods (A) and
(B) when the parameter β is large (see the case β = 100.) Figs. 7 and 8 show approximate solutions for imaginary and
real parts for Example 3.1 (case (a)) and Example 3.1 (case (a)). The dispersion of the eigenvalues of iteration matrices
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is plotted in Fig. 5. According to this figure, the modulus of the eigenvalues of the iteration matrix of PMHSS method
is of a large size, which it influences modulus of the spectral radius of iteration matrix for this method. In contrast, the
iteration matrix CRI method has small real part (in absolute terms) and therefore, the spectral radius of the iteration
matrix will be small, which results rapid convergence of this method. Also according to Table 1, CRI method (11) is
more efficient than PMHSS method, because it requires fewer number of iterations and less CPU time which shows
the fast convergence of new method. In general from tables and figures that are ready in this section we conclude new
CRI scheme is an efficient method for solving complex Sylvester matrix equation.

Table 1: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.1; case (a).

PMHSS Method[12]
n × n 64 × 64 100 × 100 400 × 400
αopt 1 1 1

Iteration 46 47 48
CPU time(s) 1.03 3.17 249.75

E(.) 4.4 × 10−5 8.2 × 10−5 9.3 × 10−4

GlGMRES(5) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 7 10 32
CPU time(s) 0.44 1.12 108.49

E(.) 3.8 × 10−4 2.6 × 10−4 4.7 × 10−3

GlGMRES(10) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 3 4 10
CPU time(s) 0.41 1.21 89.91

E(.) 3.7 × 10−6 9.0 × 10−5 1.7 × 10−3

GlGMRES(15) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 1 2 5
CPU time(s) 0.35 1.45 91.52

E(.) 3.4 × 10−5 2.7 × 10−5 6.8 × 10−3

CRI Method (11)
n × n 64 × 64 100 × 100 400 × 400
αopt 0.85 0.85 0.85

Iteration 15 14 12
CPU time(s) 0.32 0.86 62.15

E(.) 7.8 × 10−6 4.0 × 10−5 1.8 × 10−4
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Table 2: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.1; case (b).

PMHSS Method[12]
n × n 64 × 64 100 × 100 400 × 400
αopt 1 1 1

Iteration 43 44 46
CPU time(s) 0.85 2.25 203.60

E(.) 8.1 × 10−7 1.4 × 10−6 6.8 × 10−6

GlGMRES(5) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 12 17 54
CPU time(s) 0.70 2.37 182.08

E(.) 1.0 × 10−6 1.0 × 10−6 5.4 × 10−6

GlGMRES(10) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 4 6 16
CPU time(s) 0.51 1.84 142.27

E(.) 1.2 × 10−7 2.7 × 10−7 5.3 × 10−6

GlGMRES(15) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 2 3 9
CPU time(s) 0.54 2.01 152.15

E(.) 2.8 × 10−7 1.7 × 10−7 2.6 × 10−6

CRI Method (11)
n × n 64 × 64 100 × 100 400 × 400
αopt 1.1 1.1 1.1

Iteration 21 20 20
CPU time(s) 0.38 0.94 85.15

E(.) 4.7 × 10−7 1.5 × 10−6 6.4 × 10−6
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Table 3: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.2, case (a).

PMHSS Method[12]
n × n 64 × 64 100 × 100 400 × 400
αopt 0.65 0.69 0.70

Iteration 32 32 31
CPU time(s) 0.2561 0.6684 52.5192

E(.) 9.0 × 10−6 5.1 × 10−5 8.9 × 10−5

GlGMRES(5) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 18 29 71
CPU time(s) 0.79 2.96 235.81

E(.) 6.8 × 10−6 1.0 × 10−5 1.9 × 10−4

GlGMRES(10) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 5 8 22
CPU time(s) 0.57 2.14 188.66

E(.) 1.0 × 10−6 3.7 × 10−6 1.1 × 10−5

GlGMRES(15) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 3 4 11
CPU time(s) 0.68 2.41 184.03

E(.) 2.4 × 10−6 1.2 × 10−5 1.0 × 10−5

CRI Method (11)
n × n 64 × 64 100 × 100 400 × 400
αopt 1 1 1

Iteration 16 17 20
CPU time(s) 0.1262 0.4431 31.3413

E(.) 3.6 × 10−5 6.1 × 10−6 8.3 × 10−5
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Table 4: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.2, case (b).

PMHSS Method[12]
n × n 64 × 64 100 × 100 400 × 400
αopt 1 1 1

Iteration 39 39 40
CPU time(s) 0.79 2.11 177.21

E(.) 6.6 × 10−7 1.3 × 10−6 4.3 × 10−6

GlGMRES(5) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 24 33 71
CPU time(s) 1.10 3.63 238.65

E(.) 6.7 × 10−7 1.4 × 10−6 6.0 × 10−4

GlGMRES(10) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 7 10 27
CPU time(s) 0.83 2.82 232.13

E(.) 3.2 × 10−7 5.8 × 10−7 6.4 × 10−6

GlGMRES(15) [4]
n × n 64 × 64 100 × 100 400 × 400

Iteration 4 4 15
CPU time(s) 0.92 2.48 247.63

E(.) 6.5 × 10−8 1.2 × 10−6 3.0 × 10−6

CRI Method (11)
n × n 64 × 64 100 × 100 400 × 400
αopt 1 1 1

Iteration 19 20 25
CPU time(s) 0.38 1.01 108.58

E(.) 6.7 × 10−7 1.5 × 10−6 3.5 × 10−6
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Table 5: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.3 by β = 1.

Method (A) [21]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 5 5 5 5
CPU time(s) 0.42 1.78 5.50 11.31

E(.) 9.4 × 10−11 1.3 × 10−10 1.5 × 10−10 3.8 × 10−10

Method (B) [3]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 3 3 3 3
CPU time(s) 0.44 1.75 4.73 10.26

E(.) 9.5 × 10−11 1.3 × 10−10 1.5 × 10−10 3.8 × 10−10

GlGMRES(5) [4]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 3 3 3 3
CPU time(s) 0.51 1.72 4.70 11.14

E(.) 3.0 × 10−7 2.9 × 10−7 4.0 × 10−7 7.7 × 10−7

PMHSS Method[12]
n × n 100 × 100 200 × 200 300 × 300 400 × 400
αopt 1 1 1 1

Iteration 46 47 48 48
CPU time(s) 2.83 20.04 95.46 227.84

E(.) 3.4 × 10−6 8.0 × 10−6 9.4 × 10−6 1.4 × 10−5

CRI Method (11)
n × n 100 × 100 200 × 200 300 × 300 400 × 400
αopt 1.1 1.1 1.1 1.1

Iteration 20 19 19 19
CPU time(s) 1.82 11.06 43.28 104.85

E(.) 2.3 × 10−6 5.8 × 10−6 5.6 × 10−6 1.3 × 10−5
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Table 6: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.3 by β = 10.

Method (A) [21]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 7 7 7 7
CPU time(s) 0.63 2.59 7.54 16.82

E(.) 1.2 × 10−9 2.4 × 10−9 3.3 × 10−9 6.1 × 10−9

Method (B) [3]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 5 5 5 5
CPU time(s) 0.72 2.64 7.48 15.86

E(.) 1.3 × 10−9 2.1 × 10−9 2.1 × 10−9 4.5 × 10−9

GlGMRES(5) [4]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 2 2 2 2
CPU time(s) 0.33 0.89 2.43 5.46

E(.) 2.3 × 10−12 2.1 × 10−12 3.0 × 10−11 1.9 × 10−11

PMHSS Method[12]
n × n 100 × 100 200 × 200 300 × 300 400 × 400
αopt 1 1 1 1

Iteration 48 49 49 49
CPU time(s) 2.99 20.43 97.05 236.77

E(.) 4.3 × 10−6 6.6 × 10−6 4.2 × 10−6 6.1 × 10−5

CRI Method (11)
n × n 100 × 100 200 × 200 300 × 300 400 × 400
αopt 1.1 1.1 1.1 1.1

Iteration 8 7 7 7
CPU time(s) 0.71 3.96 16.08 37.18

E(.) 8.4 × 10−7 4.4 × 10−6 5.3 × 10−6 7.9 × 10−6
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Table 7: The comparison of iteration number (IT), logarithm of the residual error (E(.)) and CPU time for Example 3.3 by β = 100.

Method (A) [21]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 10 10 10 10
CPU time(s) 0.81 3.68 10.28 22.64

E(.) 6.3 × 10−7 1.0 × 10−7 4.5 × 10−7 1.3 × 10−7

Method (B) [3]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 8 8 8 8
CPU time(s) 0.83 3.64 10.02 21.63

E(.) 7.3 × 10−7 1.3 × 10−7 2.0 × 10−7 6.4 × 10−7

GlGMRES(5) [4]
n × n 100 × 100 200 × 200 300 × 300 400 × 400

Iteration 2 2 2 2
CPU time(s) 0.18 0.93 2.29 5.23

E(.) 1.4 × 10−13 2.0 × 10−11 9.4 × 10−11 1.5 × 10−11

PMHSS Method[12]
n × n 100 × 100 200 × 200 300 × 300 400 × 400
αopt 1 1 1 1

Iteration 49 49 49 49
CPU time(s) 2.92 20.42 94.90 232.02

E(.) 3.4 × 10−6 1.6 × 10−5 1.4 × 10−5 3.8 × 10−5

CRI Method (11)
n × n 100 × 100 200 × 200 300 × 300 400 × 400
αopt 1.1 1.1 1.1 1.1

Iteration 4 3 4 4
CPU time(s) 0.34 1.57 8.55 20.38

E(.) 7.5 × 10−7 8.6 × 10−7 4.2 × 10−7
×10−7
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Figure 1: The logarithm of the residual error versus iteration number; Left: Example 3.1 (case (a)); Right: Example 3.2 (case (a)).

Figure 2: The logarithm of the residual error versus iteration number; Left: Example 3.1 (case (b)); Right: Example 3.2 (case (b)).

Figure 3: The logarithm of the residual error versus iteration number; Left: Example 3.1 (case (b)); Right: Example 3.2 (case (b)).
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Figure 4: The logarithm of the residual error versus iteration number for Example 3.3 for different parameter β.
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Figure 5: The eigenvalue distribution of the iteration matrices; Up: Example 3.1; Middle: Example 3.2; Bottom: Example 3.3 (for
β = 1).



Gh. Karamali et al. / Filomat 35:9 (2021), 3071–3090 3087

Figure 6: The almost locations of the optimal parameters for PMHSS and CRI methods; Up: Example 3.1; Middle: Example 3.2;
Bottom: Example 3.3 (for β = 1).
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Figure 7: Approximate solutions for imaginary and real parts for Example 3.1 (case (a)); Top (after 10 iterations); Middle (after 20
iterations); Bottom (after 40 iterations).
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Figure 8: Approximate solutions for imaginary and real parts for Example 3.2 (case (a)); Top (after 3 iterations); Middle (after 10
iterations); Bottom (after 30 iterations).
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