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Abstract. In this paper, a generalization of convexity, namely G f -invexity is considered. We formulate
a Mond-Weir type symmetric dual for a class of nondifferentiable multiobjective fractional programming
problem over cones. Next, we prove appropriate duality results using G f -invexity assumptions.

1. Introduction

Convexity and generalized convexity have been playing a central role in developing optimality and
duality results for multiobjective programming problems which are mathematical models for most of the
real world problems occurring in the fields of engineering, economics, finance, game theory etc. Several
classes of (generalized) convex functions have been defined and studied for the purpose of weakening the
limitations of convexity in mathematical programming.The study of higher-order duality is significant due
to the computational advantage over the first order duality as it provides tighter bounds for the value of
the objective function when approximations are used. Mukherjee [1] considered a multiobjective fractional
programming problem and discussed the Mond-Weir type duality results under generalized convexity.
Kaul et al. [2] derived duality results for a Mond-Weir type dual problem related to multiobjective frac-
tional programming problem involving pseudo linear and η- pseudo linear functions.

Hanson [3] introduced the concept of invexity which is an extension of differentiable convex function
and proved the sufficiency of Kuhn-Tucker conditions. Later, Hanson and Mond [4] generalized the con-
cept of invex function by introducing type-I and type-II functions which generalized pseudo- type-I and
quasi-type-I functions given by Reuda et al. [5]. Antczak [6] introduced the concept of G-invex functions
and derived some optimality conditions for constrained optimization problems under G-invexity. In [7],
Antczak extended the above notion by defining a vector valued G f -invex function and proved necessary
and sufficient optimality conditions for a multiobjective nonlinear programming problem. Recently, Kang
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et al. [8] defined G-invexity for a locally Lipchitz function and obtained optimality conditions for multiob-
jective programming using these functions.

In last several years, various optimality and duality results have been obtained for multiobjective frac-
tional programming problems. Bector and Chandra [9] formulated second-order Mond-Weir type dual for
a nondifferentiable fractional program and established duality results using the concept of second-order
pseudo convexity and quasiconvexity. Jeykumar [10] and Yang [11] also discussed second-order dual
formulation under r-convexity and its generalizations. Later on, Suneja et al. [12] discussed higher-order
Mond-Weir and Schaible type nondifferentiable dual programs and their duality theorems under higher-
order (F, α, ρ, d)-type I- assumptions.

Many authors have developed the necessary and sufficient conditions for pareto optimal solutions in
multiobjective programming problems.Yuan et al. [13] introduced new types of generalized convex func-
tions and sets, which are called locally (Hp, r, α)-pre-invex and locally Hp-invex sets. They also obtained
optimality conditions and duality theorems for a scalar nonlinear programming problem. Further, Liu et
al. [14] proposed the concept of (Hp, r)-invex function and focus his study to discuss sufficient optimality
conditions to multiobjective fractional programming problem.

Recently, Mandal and Nahak [15] have introduced the concept of (p, r) − ρ − (η, θ)-invex function and
developed symmetric duality results under these assumptions. Using the same assumptions, Jayswal et
al. [16] derived sufficient optimality conditions and duality theorems for multiobjective fractional pro-
gramming problems. Later on, a class of nondifferentiable multiobjective fractional programming with
higher-order has been discussed and usual duality results have been proved in Gulati and Saini [17]. Fur-
ther, Jayswal et al. [18] formulated higher-order duality for multiobjective programming problems and
established duality theorems using higher-order (F, α, ρ, d)-V-type I assumptions.

Motivated by various concepts of generalized convexity. Ferrara and Stefaneseu [19] used the (φ, ρ)-
invexity to discuss the optimality conditions and duality results for multiobjective programming problem.
Further, Stefaneseu and Ferrara [20] introduced a new class of (φ, ρ)ω- invexity for a multiobjective pro-
gram and established optimality conditions and duality theorems under these assumptions. Dubey and
Mishra [21] introduced the symmetric duality in a nondifferentiable multiobjective programming problem
and derived duality theorems under generalized assumptions. For more data on fractional programming,
readers are advised to see [22–26].

In this paper, we construct a nontrivial numerical examples illustrates the existence of such functions
and also formulate a pair of nondifferentiable multiobjective Mond-Weir type symmetric fractional primal-
dual problems over cones. Further, under the G f -invexity assumptions, we prove the weak, strong and
strict converse duality theorems. We also formulate an example which justifies the Weak duality theorem
presented in the paper.

2. Preliminaries and definitions

Let f = ( f1, ..., fk) : X→ Rk be a differentiable function defined on open set φ , X ⊆ Rn and I fi (X) be the
range of fi, where i = 1, 2, 3, ..., k.

Definition 2.1. Let C be a compact convex set in Rn. The support function of C is defined by

S(x|C) = max{xT y : y ∈ C}.

A support function, being convex and everywhere finite, has a subdifferential, that is, there exists z ∈ Rn

such that
S(y|C) ≥ S(x|C) + zT(y − x), ∀y ∈ C.
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The subdifferential of S(x|C) is given by

∂S(x|C) = {z ∈ C : zTx = S(x|C)}.

For any set S ⊂ Rn the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT(z − x) ≤ 0, ∀z ∈ S}.

Obviously, for a compact convex set C, y is in NC(x) if and only if S(y|C) = xT y, or equivalently, x is in ∂S(y|C).

Definition 2.2 The positive polar cone S∗of a cone S ⊆ Rs is defined by

S∗ =
{
y ∈ Rs : xT y ≥ 0

}
.

Example 2.1 Let C = {(x, y) ∈ R2 : x ≥ 0, x + y ≥ 0} be a cone in R2. Then, its positive polar cone
C∗ = {(x, y) ∈ R2 : y ≥ 0, x − y ≥ 0}.

Definition 2.3[27]. The function f is said to be invex at u ∈ X if there exists a function η : X × X→ Rn such
that ∀x ∈ X,

fi(x) − fi(u) ≥ ηT(x,u)∇x fi(u), ∀ i = 1, 2, 3, ..., k.

If the above inequality sign changes to ≤, then f is called incave at u ∈ X with respect to η.

Definition 2.4[7] The function f is said to be G f -invex at u ∈ X if there exist a differentiable function
G f = (G f1 ,G f2 , ...,G fk ) : R→ Rk such that every component G fi : I fi (X)→ R is strictly increasing on the range
of I fi and a function η : X × X→ Rn such that ∀ x ∈ X,

G fi ( fi(x)) − G fi ( fi(u)) ≥ ηT(x,u)G′fi ( fi(u))∇x fi(u), ∀ i = 1, 2, 3, ..., k.

If the above inequality sign changes to ≤, then f is called G f -incave at u ∈ X with respect to η.

If k = 1 in the Definition 2.4 , then the function f is called G-invex at u ∈ X with respect to η.

Example 2.2 Let f : [0, 1]→ R3 be defined as

f (x) =
{

f1(x), f2(x), f3(x)
}

where f1(x) = arc (sin x), f2(x) = x4, f3(x) = arc (tan x) and G f =
{
G f1 ,G f2 ,G f3

}
: R→ R3 be defined as:

G f1 (t) = sin t, G f2 (t) = t9 and G f3 (t) = tan t.

Let η : [0, 1] × [0, 1]→ R be given as:

η(x,u) = −
1
9

x18 + x − 8x3u9
− 3u.

Now, we will show that f is G f -invex at u = 0. For this, we have to show that

πi = G fi ( fi(x)) − G fi ( fi(u)) − ηT(x,u)G′fi ( fi(u))∇x fi(u) ≥ 0, for i = 1, 2, 3.

Substituting the values of f1, f2, f3, G f1 , G f2 and G f3 in the above expressions, we obtain

π1 = x − u −
(
−

1
9

x18 + x − 8x3u9
− 3u

)
,

π2 = x36
− u36

−

(
−

1
9

x18 + x − 8x3u9
− 3u

)
36u35
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and

π3 = x − u −
(
−

1
9

x18 + x − 8x3u9
− 3u

) 1

(1 + u2)
1
2

which at u = 0 yield

π1 =
1
9

x18, π2 = x36 and π3 =
1
9

x18.

Obviously, π1 ≥ 0, π2 ≥ 0 and π3 ≥ 0, ∀ x ∈ [0, 1].

Hence, f = ( f1, f2, f3) is G f -invex at u = 0 with respect to η.

Now, suppose
ψ = f1(x) − f1(u) − ηT(x,u)∇x f1(u).

or

ψ = arc (tan x) − arc (tan u) −
(
−

1
9

x18 + x − 8x3u9
− 3u

)( 1
1 + u2

)
which at u = 0 yields

ψ = arc (tan x) +
1
9

x18
− x.

This expression may not be non-negative for all x ∈ [0, 1]. For instance at x = 1,

ψ =
π
4

+
1
9
− 1 < 0.

Therefore, f3 is not η-invex at u = 0. Hence, f = ( f1, f2, f3) is not η-invex at u = 0.

3. G-Mond-Weir type problem

Consider the following pair of multiobjective nondifferentiable fractional symmetric programs:

(MFP) Minimize

L(x, y, z, r) =
(G f 1

(
f1

(
x, y

))
+ S (x|Q1) − yTz1

G11

(
11

(
x, y

))
− S (x|E1) + yTr1

, ...,
G f k

(
fk

(
x, y

))
+ S (x|Qk) − yTzk

G1k

(
1k

(
x, y

))
− S (x|Ek) + yTrk

)
subject to

−

k∑
i=1

λi

[
(G

′

fi
( fi(x, y))∇y fi(x, y) − zi) −

G fi ( fi(x, y)) + S(x|Qi) − yTzi

G1i (1i(x, y)) − S(x|Ei) + yTri
(G

′

1i
(1i(x, y))∇y1i(x, y) + ri)

]
∈ C∗2,

yT
k∑

i=1

λi

[
(G

′

fi
( fi(x, y))∇y fi(x, y) − zi) −

G fi ( fi(x, y)) + S(x|Qi) − yTzi

G1i (1i(x, y)) − S(x|Ei) + yTri
(G

′

1i
(1i(x, y))∇y1i(x, y) + ri)

]
≥ 0,

λ > 0, x ∈ C1, zi ∈ Di, ri ∈ Fi, i = 1, 2, 3, ..., k.

(MFD) Maximize

M(u, v,w, t) =
(G f 1

(
f1 (u, v)

)
− S (v|D1) + uTw1

G11

(
11 (u, v)

)
+ S (v|F1) − uTt1

, ...,
G f k

(
fk (u, v)

)
− S (v|Dk) + uTwk

G1k

(
1k (u, v)

)
+ S (v|Fk) − uTwk

)
subject to
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k∑
i=1

λi

[
(G

′

fi
( fi(u, v))∇x fi(u, v) + wi) −

G fi ( fi(u, v)) − S(v|Di) + uTzi

G1i (1i(u, v)) + S(v|Fi) − uTri
(G

′

1i
(1i(u, v))∇x1i(u, v) − ti)

]
∈ C∗1,

uT
k∑

i=1

λi

[
(G

′

fi
( fi(u, v))∇x fi(u, v) + wi) −

G fi ( fi(u, v)) − S(v|Di) + uTzi

G1i (1i(u, v)) + S(v|Fi) − uTri
(G

′

1i
(1i(u, v))∇x1i(u, v) − ti)

]
≤ 0,

λ > 0, v ∈ C2,wi ∈ Qi, ti ∈ Ei, i = 1, 2, 3, ..., k,

where S1 ⊆ Rn and S2 ⊆ Rm, C1 and C2 are arbitrary cones in Rn and Rm, respectively such that C1×C2 ⊆ S1×S2,
fi : S1 × S2 → R, 1i : S1 × S2 → R are differentiable functions, G fi : I fi → R and G1i : I1i → R are differentiable
strictly increasing functions on their domains, Qi, Ei are compact convex sets in Rn and Di,Fi are compact
convex sets in Rm, i = 1, 2, 3, ..., k. C∗1 and C∗2 are positive polar cones of C1 and C2, respectively. It is assumed
that in the feasible regions, the numerators are nonnegative and denominators are positive.

The following example shows the feasibility of the primal problem (MFP) and dual problem (MFD) dis-
cussed above:

Example 3.1. Let k = 2 , n = m = 1 and S1 = R, S2 = R. Let fi : S1 × S2 → R, 1i : S1 × S2 → R be
defined as

f1(x, y) = x3 + y2 + 1, f2(x, y) = 2x4 + xy2 + 2y2 + 4, 11(x, y) = 2x2y2 + 4, 12(x, y) = xy4 + x2 + 1.

Suppose G fi (t) = G1i (t) = t, i = 1, 2.

Q1 = [−1, 1], Q2 = [0, 1], E1 = {0} = E2, D1 = [−1, 1], D2 = [−2, 2], F1 = {0} = F2.

Assume that C1 = C2 = R+ then C∗1 = C∗2 = R+. Clearly, C1 × C2 ⊆ S1 × S2.

(EMFP) Minimize L
(
x, y, z, r

)
=

x3 + y2 + 1 + |x| − yz1

2x2y2 + 4
,

2x4 + xy2 + 2y2 + 4 +
x + |x|

2
− yz2

xy4 + x2 + 1


subject to

λ1

(
(2y − z1) −

x3 + y2 + 1 + |x| − yz1

2x2y2 + 4
(4x2y)

)

+ λ2

(
(2xy + 4y − z2) −

2x4 + xy2 + 2y2 + 4 +
x + |x|

2
− yz2

xy4 + x2 + 1
(4xy3)

)
≤ 0, (1)

yλ1

(
(2y − z1) −

x3 + y2 + 1 + |x| − yz1

2x2y2 + 4
(4x2y)

)

+ yλ2

(
(2xy + 4y − z2) −

2x4 + xy2 + 2y2 + 4 +
x + |x|

2
− yz2

xy4 + x2 + 1
(4xy3)

)
≥ 0, (2)

λ1, λ2 > 0, x ≥ 0,−1 ≤ z1 ≤ 1,−2 ≤ z2 ≤ 2.

(EMFD) Maximize M (u, v,w, t) =

(
u3 + v2 + 1 − |u| + uw1

2u2v2 + 4
,

2u4 + uv2 + 2v2 + 4 − 2|u| + uw2

uv4 + u2 + 1

)
subject to
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λ1

(
(3u2 + w1) −

u3 + v2 + 1 − |u| + uw1

2u2v2 + 4
(4uv2)

)
+ λ2

(
(8u3 + v2 + w2) −

2u4 + uv2 + 2v2 + 4 − 2|u| + uw2

uv4 + u2 + 1
(v4 + 2u)

)
≥ 0, (3)

uλ1

(
(3u2 + w1) −

u3 + v2 + 1 − |u| + uw1

2u2v2 + 4
(4uv2)

)
+ uλ2

(
(8u3 + v2 + w2) −

2u4 + uv2 + 2v2 + 4 − 2|u| + uw2

uv4 + u2 + 1
(v4 + 2u)

)
≤ 0, (4)

λ1, λ2 > 0, v ≥ 0,−1 ≤ w1 ≤ 1, 0 ≤ w2 ≤ 1.

One can easily verify that x = 3, y = 0, z1 = 1/2, z2 = 1, λ1 = 1, λ2 = 2 is (EMFP) and u = 0, v = 1/2,w1 =
3/4,w2 = 1, λ1 = 2, λ2 = 3 is (EMFD) feasible.

Now, Let U = (U1,U2, ...,Uk) and V = (V1,V2, ...,Vk). Then, we can express the programs (MFP) and
(MFD) equivalently as:

(MFP)U Minimize U
subject to(

G fi ( fi(x, y)
)

+ S(x|Qi) − yTzi

)
−Ui

(
G1i (1i(x, y)) − S(x|Ei) + yTri

)
= 0, i = 1, 2, 3, ..., k, (5)

−

k∑
i=1

λi

[
(G

′

fi
( fi(x, y))∇y fi(x, y) − zi) −Ui

(
G
′

1i
(1i(x, y))∇y1i(x, y) + ri

)]
∈ C∗2, (6)

yT
k∑

i=1

λi

[
(G

′

fi
( fi(x, y))∇y fi(x, y) − zi) −Ui

(
G
′

1i
(1i(x, y))∇y1i(x, y) + ri

)]
≥ 0, (7)

λ > 0, x ∈ C1, zi ∈ Di, ri ∈ Fi, i = 1, 2, 3, ..., k. (8)

(MFD)V Minimize V
subject to(

G fi ( fi(u, v)) − S(v|Di) + uTwi

)
− Vi

(
G1i (1i(u, v)) + S(v|Fi) − uTti

)
= 0, i = 1, 2, 3, ..., k, (9)

k∑
i=1

λi

[
(G

′

fi
( fi(u, v))∇x fi(u, v) + wi) − Vi

(
G
′

1i
(1i(u, v))∇x1i(u, v) − ti

)]
∈ C∗1, (10)

uT
k∑

i=1

λi

[
(G

′

fi
( fi(u, v))∇x fi(u, v) + wi) − Vi

(
G
′

1i
(1i(u, v))∇x1i(u, v) − ti

)]
≤ 0, (11)

λ > 0, v ∈ C2, wi ∈ Qi, ti ∈ Ei, i = 1, 2, 3, ..., k. (12)

Next, we prove duality theorems for (MFP)U and (MFP)V, which one equally apply to (MFP) and (MFD),
respectively. Let z = (z1, z2, ..., zk), r = (r1, r2, ..., rk), w = (w1,w2, ...,wk), t = (t1, t2, ..., tk) andλ = (λ1, λ2, ..., λk).

Theorem 3.1 (Weak duality). Let (x, y,U, z, r, λ) and (u, v,V,w, t, λ) be feasible solution for (MFP)U and
(MFP)V, respectively. Let for i = 1, 2, 3, ..., k,
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(i) fi(., v) be G fi -invex and (.)Twi be invex at u with respect to η1,
(ii) 1i(., v) be G1i -incave and (.)Tti be invex at u with respect to η1,

(iii) fi(x, .) be G fi -incave and (.)Tzi be invex at y with respect to η2,
(iv) 1i(x, .) be G1i -invex and (.)Tri be invex at y with respect to η2,
(v) η1(x,u) + u ∈ C1 and η2(v, y) + y ∈ C2,

(vi) G1i

(
1i(x, v)

)
+ vTri − xTti > 0.

Then, the following cannot hold:

Ui ≤ Vi, ∀ i = 1, 2, 3, ..., k (13)

and

U j < V j, for at least one j = 1, 2, 3, ..., k. (14)

Proof. Suppose (13) and (14) hold, then

Ui ≤ Vi, ∀ i = 1, 2, 3, ..., k (15)

and

U j < V j, for at least one j = 1, 2, 3, ..., k. (16)

Using hypothesis (v) and (10), we get

(η1(x,u) + u)T
k∑

i=1

λi[(G
′

fi
( fi(u, v))∇x fi(u, v) + wi) − Vi(G

′

1i(1i(u, v))∇x1i(u, v) − ti)] ≥ 0. (17)

Also, from (11) and (17), we have

ηT
1 (x,u)

k∑
i=1

λi[(G
′

fi
( fi(u, v))∇x fi(u, v) + wi) − Vi(G

′

1i(1i(u, v))∇x1i(u, v) − ti)] ≥ 0. (18)

By hypothesis (i), we have

G fi
(

fi(x, v)
)
− G fi

(
fi(u, v)

)
≥ ηT

1 (x,u)G
′

fi

(
fi(u, v)

)
∇x fi(u, v)

and

xTwi − uTwi ≥ η
T
1 (x,u)wi, i = 1, 2, 3, ..., k.

Further, it follows from λ > 0 that

k∑
i=1

λi

[
G fi

(
fi(x, v)

)
+ xTwi − G fi

(
fi(u, v)

)
− uTwi

]
≥ ηT

1 (x,u)
k∑

i=1

λi[G
′

fi

(
fi(u, v)

)
∇x fi(u, v) + wi]. (19)

Similarly, from hypothesis (ii), we have

−G1i

(
1i(x, v)

)
+ G1i

(
1i(u, v)

)
≥ −ηT

1 (x,u)G
′

1i

(
1i(u, v)

)
∇x1i(u, v)

and

xTti − uTti ≥ η
T
1 (x,u)ti, i = 1, 2, 3, ..., k.

Multiplying by λiVi in the above inequalities and taking summation over i, we get

k∑
i=1

λiVi

[
−G1i (1i(x, v)) + xTti + G1i (1i(u, v)) − uTti

]
≥ −ηT

1 (x,u)
k∑

i=1

λiVi[G
′

1i
(1i(u, v))∇x1i(u, v) − ti]. (20)
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Further, using (18) in the addition of (19)-(20), we get

k∑
i=1

λi[(G fi ( fi(x, v)) + xTwi − G fi ( fi(u, v)) − uTwi) − Vi(G1i (1i(x, v)) − G1i (1i(u, v)) − xTti + uTti)] ≥ 0.

It follows from (9) and the fact that vTri ≤ S(v|Fi), i = 1, 2, 3, ..., k, we get

k∑
i=1

λi[(G fi ( fi(x, v)) + xTwi − S(v|Di)) + Vi(xTti − vTri − G1i (1i(x, v)))] ≥ 0. (21)

Similarly, using hypothesis (iii) − (v) and primal constraints (5)-(8), we obtain

k∑
i=1

λi[(−G fi ( fi(x, v)) + vTzi − S(x|Qi)) + Ui(−xTti + vTri + G1i (1i(x, v)))] ≥ 0 (22)

Adding (21) and (22), we have

k∑
i=1

λi

[
vTzi − S(v|Di) + xTwi − S(x|Qi)

]
+

k∑
i=1

λi

[
(Ui − Vi){G1i (1i(x, v)) + vTri − xTri}

]
≥ 0. (23)

Since λ > 0, vTzi ≤ S(v|Di) and xTwi ≤ S(x|Qi), the inequality (23) gives

k∑
i=1

λi

[
(Ui − Vi){G1i (1i(x, v)) + vTri − xTri}

]
≥ 0.

Hence, the result follows from (15)-(16) and hypothesis (vi).

Example 3.2. Let n = m = 1, k = 2 and S1 = S2 = R. Let fi : S1 × S2 → R, 1i : S1 × S2 → R be defined as

f1(x, y) = x − y2, f2(x, y) = x2
− y, 11(x, y) = x + y4 + 1, 12(x, y) = x + y2 + 1.

Suppose G fi (t) = G1i (t) = t, i = 1, 2 and E1 = E2 = Q1 = Q2 = D1 = D2 = F1 = F2 = {0}.

Further, let η1 : S1 × S1 → R and η2 : S2 × S2 → R be defined as

η1(x,u) = x − u, η2(v, y) = v − y.

Assume that C1 = C2 = R+, then C∗1 = C∗2 = R+. Clearly, C1 × C2 ⊆ S1 × S2.

Substituting these expressions in (MFP)U and (MFD)V, we obtain

(EMFP)U Minimize L(x, y, z, r)=(U1,U2)
subject to

x − y2
−U1(x + y4 + 1) = 0, (24)

x2
− y −U2(x + y2 + 1) = 0, (25)

λ1[−2y − 4y3U1] + λ2[−1 − 2yU2] ≤ 0, (26)

yλ1[−2y − 4y3U1] + yλ2[−1 − 2yU2] ≥ 0, (27)

λ1, λ2 > 0, x ≥ 0. (28)
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(EMFD)V Maximize M(u, v,w, t)=(V1,V2)
subject to

u − v2
− V1(u + v4 + 1) = 0, (29)

u2
− v − V2(u + v2 + 1) = 0, (30)

λ1[1 − V1] + λ2[2u − V2] ≥ 0, (31)

uλ1[1 − V1] + uλ2[2u − V2] ≤ 0, (32)

λ1, λ2 > 0, v ≥ 0. (33)

First, we will show that the functions defined above satisfy the hypotheses of the Theorem 2.7.

(A1) f1(., v) is G f1 -invex at u with respect to η1, since

G f1 ( f1(x, v)) − G f1 ( f1(u, v)) − η1(x,u)G
′

f1
( f1(u, v))∇x f1(u, v)

= (x − v2) − (u − v2) − (x − u)
= 0 for all x,u ∈ S1.

Obviously, (.)Tw1=0 is invex at u with respect to η1.

Now, f2(., v) is G f2 -invex at u with respect to η1, since

G f2 ( f2(x, v)) − G f2 ( f2(u, v)) − η1(x,u)G
′

f2
( f2(u, v))∇x f2(u, v)

= (x2
− v) − (u2

− v) − (x − u) × 2u
= (x − u)2

≥ 0 for all x,u ∈ S1.

Again, (.)Tw2=0 is obviously invex at u with respect to η1.

(A2) 11(., v) is G11 -incave at u with respect to η1, since

G11 (11(x, v)) − G11 (11(u, v)) − η1(x,u)G
′

11
(11(u, v))∇x11(u, v)

= (x + v4 + 1) − (u + v4 + 1) − (x − u)
= 0 for all x,u ∈ S1.

Obviously, (.)Tt1=0 is trivially invex at u with respect to η1.

G12 (12(x, v)) − G12 (12(u, v)) − η1(x,u)G
′

12
(12(u, v))∇x12(u, v)

= (x + v2 + 1) − (u + v2 + 1) − (x − u)
= 0 for all x,u ∈ S1.

Hence, 12 is G12 -incave at u with respect to η1.
Naturally, (.)Tt2 = 0 is invex at u with respect to η1.

(A3) f1(x, .) is G f1 -incave at y with respect to η2, since

G f1 ( f1(x, v)) − G f1 ( f1(x, y)) − η2(v, y)G
′

f1
( f1(x, y))∇y f1(x, y)

= (x − v2) − (x − y2) − (v − y) × (−2y)
= −(v − y)2

≤ 0 for all v, y ∈ S2.
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Obviously, (.)Tz1=0 is invex at y with respect to η1.

f2(x, .) is G f2 -incave at y with respect to η2, since

G f2 ( f2(x, v)) − G f2 ( f2(x, y)) − η2(v, y)G
′

f2
( f2(x, y))∇y f2(x, y)

= (x2
− v) − (x2

− y) − (v − y) × (−1)
= 0 for all v, y ∈ S2.

Obviously, (.)Tz2=0 is invex at y with respect to η2.

(A4) 11(x, .) is G11 -invex at y with respect to η2

G11 (11(x, v)) − G11 (11(x, y)) − η2(v, y)G
′

11
(11(x, y))∇y11(x, y)

= (x + v4 + 1) − (x + y4 + 1) − (v − y) × (4y3)
= (v − y)2[(v + y)2 + 2y2]
≥ 0 for all v, y ∈ S2.

(.)Tr1=0 is invex at y with respect to η1.

Again, 12(x, .) is G12 -invex at y with respect to η2, since

G12 (12(x, v)) − G12 (12(x, y)) − η2(v, y)G
′

12
(12(x, y))∇y12(x, y)

= (x + v2 + 1) − (x + y2 + 1) − (v − y) × (2y)
= (v − y)2

≥ 0 for all v, y ∈ S2.

Obviously, (.)Tr2=0 is invex at y with respect to η2.
(A5) x ≥ 0 and v ≥ 0, (from 28) and 33)),

(A6) G11 (11(x, v)) + vTr1 − xTt1 = x + v4 + 1 > 0,
G12 (12(x, v)) + vTr2 − xTt2 = x + v + 1 > 0

(
from (28) and (33)

)
.

Validation: To validate our result, it is enough to prove that

2∑
i=1

λi(Ui − Vi)(G1i (1i(x, v)) + vTri − xTti) ≥ 0

or

λ1(U1 − V1)[x + v4 + 1] + λ2(U2 − V2)[x + v2 + 1] ≥ 0.

Now,
λ1(U1 − V1)[x + v4 + 1] + λ2(U2 − V2)[x + v2 + 1]

= λ1[(x − v2) + V1(−x − v4
− 1)] + λ2[(x2

− v) + V2(−x − v2
− 1)]

+λ1[(−x + v2 + U1(x + v4 + 1)] + λ2[(−x2 + v) + U2(x + v2 + 1)]

= (x − u)[λ1 − λ1V1 + λ2(x + u) − λ2V2]

+(v − y)[(v + y)λ1 + U1(v + y)(v2 + y2)λ1 + λ2 + λ2U2(v + y)]
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from feasibility conditions (24)-(25) and (29)-(30)

)
≥ (x − u)[λ1 + λ2(x + u)] − (x − u)[λ1 + 2λ2u] + (v − y)[(v + y)λ1

+U1(v + y)(v2 + y2)λ1 + λ2U2(v + y) − 2yλ1 − 4y3U1λ1 + 2U2yλ2](
Using (26)-(28) and (31)-(33)

)
= (x − u)2λ2 + (v − y)2[λ1U1{(v + y)2 + 2y2

} + λ1 + λ2U2]

≥ 0. Hence, verified. �

Theorem 3.2 (Strong duality). Let (x̄, ȳ, Ū, λ̄, z̄, r̄) be an efficient solutions of (MFP)U and fix λ = λ̄ in
(MFD)V. If the following conditions hold:

(i) the matrix
k∑

i=1

λ̄i[G
′′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)

(
∇y fi(x̄, ȳ)

)T
+ G

′

fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ) − Ūi(G

′′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ)(

∇y1i(x̄, ȳ)
)T

+ G
′

1i
(1i(x̄, ȳ))∇yy1i(x̄, ȳ))] is positive definite or negative definite,

(ii) the vectors
(
(G′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ) − z̄i) − Ūi(G

′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i)

)k

i=1
are linearly independent,

(iii) Ūi > 0, i = 1, 2, 3, ..., k.

Then, there exist w̄i ∈ Qi and t̄i ∈ Ei, i = 1, 2, 3, ..., k such that (x̄, ȳ, Ū, λ̄, w̄, t̄ feasible solution for (MFD)V.
Furthermore, if the hypotheses of Theorem 3.1 hold, then (x̄, ȳ, Ū, λ̄, w̄, t̄, ) is an efficient solution of (MFD)V
and the objective functions have same values.

Proof. Since (x̄, ȳ, Ū, λ̄, z̄, r̄) is an efficient solution of (MFD)U, therefore by the Fritz John necessary optimal-
ity conditions [28], there exist α ∈ Rk, β ∈ Rk, γ ∈ C2, δ ∈ R, ξ ∈ Rk, w̄i ∈ Rn and t̄i ∈ Rn, i = 1, 2, 3, ..., k such that

(x − x̄)T
k∑

i=1

βi((G
′

fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i) − Ūi(G

′

1i
(1i(x̄, ȳ))∇x1i(x̄, ȳ) − t̄i)) + (y − δȳ)T

k∑
i=1

λ̄i[G
′′

fi
( fi(x̄, ȳ))

∇x fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G′

fi
( fi(x̄, ȳ))∇xy fi(x̄, ȳ)]

− Ūi[G
′′

1i
(1i(x̄, ȳ))∇x1i(x̄, ȳ)(∇y1i(x̄, ȳ))T + G

′

1i
(1i(x̄, ȳ))∇xy1i(x̄, ȳ)] ≥ 0, ∀ x ∈ C1, (34)

k∑
i=1

(βi − δλ̄i)(G
′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ) − z̄i − Ūi(G

′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i))

+ (γ − δȳ)T
k∑

i=1

λ̄i[G
′′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G

′

fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ)]

− Ūi[G
′′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ)(∇y1i(x̄, ȳ))T + G

′

1i
(1i(x̄, ȳ))∇yy1i(x̄, ȳ)] = 0, (35)

αi − βi(G1i (1i(x̄, ȳ)) − S(x̄|Ei) + ȳT r̄i) − (γ − δȳ)λ̄i(G
′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i) = 0, , (36)

(γ − δȳ)T[(G
′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ) − z̄i) − Ūi(G

′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i)] − ξi = 0, i = 1, 2, 3, ..., k, (37)

βi ȳ + (γ − δȳ)λ̄i ∈ NDi (z̄i), i = 1, 2, 3, ..., k, (38)

βiŪi ȳ + (γ − δȳ)Ūiλ̄i ∈ NFi (r̄i), i = 1, 2, 3, ..., k, (39)



R. Dubey, V. N. Mishra / Filomat 35:9 (2021), 2869–2882 2880

γT
k∑

i=1

λ̄i[G
′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ) − z̄i − Ūi(G

′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i)] = 0, (40)

δȳT
k∑

i=1

λ̄i[G
′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ) − z̄i − Ūi(G

′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i)] = 0, (41)

λ̄Tξ = 0, (42)

w̄i ∈ Qi, t̄i ∈ Ei, x̄T t̄i = S(x̄|Ei), x̄Tw̄i = S(x̄|Qi), i = 1, 2, 3, ..., k, (43)

(α, δ, ξ) ≥ 0, (α, β, γ, δ, ξ) , 0. (44)

Since λ̄ > 0 and ξ̄ ≥ 0, (42) implies that ξ̄ = 0.

Post-multiplication (γ − δȳ) in (35) and using (37) and ξ = 0, we get

(γ − δȳ)T
k∑

i=1

λ̄i(G
′′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G

′

fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ)

−Ūi(G
′′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ)(∇y1i(x̄, ȳ))T + G

′

1i
(1i(x̄, ȳ))∇yy1i(x̄, ȳ))(γ − δȳ) = 0, (45)

which from hypothesis (i) yields

γ = δȳ. (46)

Using (46) in (35), we have

k∑
i=1

(βi − δλ̄i)[G
′

fi
( fi(x̄, ȳ))∇y fi(x̄, ȳ) − z̄i − Ūi(G

′

1i
(1i(x̄, ȳ))∇y1i(x̄, ȳ) + r̄i)] = 0.

It follows from hypothesis (ii) that

βi = δλ̄i, i = 1, 2, 3, ..., k. (47)

Now, we claim that βi , 0, ∀ i. Otherwise, if βt0 = 0, for some i = t0, then from (47), since λ̄ > 0, we have
δ = 0. Again from (47), βi = 0, ∀ i. Thus from (36), we get αi = 0, ∀ i. Also from (46), γ = 0. This contradicts
(44). Hence, βi , 0, for all i. Further, if βi < 0, for any i, then from (47), δ < 0, which again contradicts (44).
Hence, βi > 0, ∀ i.
Further, using (44) and (47) in (34), we get

(x − x̄)T
k∑

i=1

λ̄i[G
′

fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i − Ūi(G

′

1i
(1i(x̄, ȳ))∇x1i(x̄, ȳ) − t̄i)] ≥ 0, ∀x ∈ C1. (48)

Let x ∈ C1. Then x + x̄ ∈ C1 as C1 is a closed convex cone. On substituting x + x̄ in place of x in (48), we get

xT
k∑

i=1

λ̄i[(G
′

fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i) − Ūi(G

′

1i
(1i(x̄, ȳ))∇x1i(x̄, ȳ) − t̄i)] ≥ 0.

Hence,

k∑
i=1

λ̄i[(G
′

fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i) − Ūi(G

′

1i
(1i(x̄, ȳ))∇x1i(x̄, ȳ) − t̄i)] ∈ C∗1. (49)
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Also, by letting x = 0 and x = 2x̄ simultaneously in (48), we have

x̄T
k∑

i=1

λ̄i[(G
′

fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i) − Ūi(G

′

1i
(1i(x̄, ȳ))∇x1i(x̄, ȳ) − t̄i)] = 0. (50)

Since γ = δȳ and δ > 0, we have

ȳ =
γ

δ
∈ C2. (51)

From (38), (46) and using β > 0, we get ȳ ∈ NDi (z̄i), i = 1, 2, 3, ..., k. This implies

ȳT z̄i = S(ȳ|Di), i = 1, 2, 3, ..., k. (52)

By (39) and hypothesis (iii), we obtain

ȳ ∈ NFi (r̄i), i = 1, 2, 3, ..., k. (53)

Hence,

ȳT r̄i = S(ȳ|Fi), i = 1, 2, 3, ..., k. (54)

Combining (43), (52), (54) and equation (5), it follows that

(G fi ( fi(x̄, ȳ)) − S(ȳ|Di) + x̄Tw̄i) − Ūi(G1i (1i(x̄, ȳ)) + S(ȳ|Fi) − x̄T t̄i) = 0, i = 1, 2, 3, ..., k. (55)

This together with (49)-(50) and (55) shows that (x̄, ȳ, Ū, λ̄, w̄, t̄) is feasible solution for (MFP)V. Now, let
(x̄, ȳ, Ū, λ̄, w̄, t̄) be not an efficient solution of (MFD)V. Then, there exists other (u, v,V, λ,w, t) ∈ (MFD)V such
that Ūi ≤ Vi, ∀ i ∈ K and Ū j < V j, for some j ∈ K. This contradicts the result of the Theorem 3.1. Hence
proved.

Theorem 3.3 (Converse duality). Let (ū, v̄, V̄, λ̄, w̄, t̄) be an efficient solutions of (MFD)V and fix λ = λ̄ in
(MFP)U. If the following conditions hold:

(i) the matrix
k∑

i=1

λ̄i[G
′′

fi
( fi(ū, v̄))∇x fi(ū, v̄)

(
∇x fi(ū, v̄)

)T + G
′

fi
( fi(ū, v̄))∇xx fi(ū, v̄) − V̄i(G

′′

1i
(1i(ū, v̄))∇x1i(ū, v̄)(

∇x1i(ū, v̄)
)T + G

′

1i
(1i(ū, v̄))∇xx1i(ū, v̄))] is positive definite or negative definite,

(ii) the vectors
(
G′

fi
( fi(ū, v̄))∇x fi(ū, v̄) + w̄i − V̄i(G

′

1i
(1i(ū, v̄))∇x1i(ū, v̄) − t̄i)

)k

i=1
are linearly independent,

(iii) V̄i > 0, i = 1, 2, 3, ..., k.

Then, ∃ z̄i ∈ Di and r̄i ∈ Fi, i = 1, 2, 3, ..., k such that (ū, v̄, V̄, λ̄, z̄, r̄) is feasible solution for (MFP)U. Fur-
thermore, if the assumptions of Theorem 3.1 hold, then (ū, v̄, V̄, λ̄, z̄, r̄) is an efficient solution of (MFP)U and
objective functions have equal values.

Proof. The results can be obtained on the lines of Theorem 3.2.

4. Conclusions

In this paper, we have used the concept of G f - invex functions to establish duality results for a Mond-Weir
type dual model related to multiobjective nondifferentiable symmetric fractional programming problem
over arbitrary cones. Numerical examples have also been illustrated to justify the weak duality theorem.
The present work can further be extended to nondifferentiable second-order and higher-order symmetric
fractional programming over cones. This will orient the future task for the researcher working in this area.



R. Dubey, V. N. Mishra / Filomat 35:9 (2021), 2869–2882 2882

5. Acknowledgement

Ramu Dubey gratefully acknowledges the Department of Mathematics, J.C. Bose University of Science
and Technology, YMCA, Faridabad-121 006, Haryana, India.

References

[1] R. N. Mukherjee, Generalized convex duality for multiobjective fractional programming, Journal of Mathematical Analysis and
Applications 162 (1991) 309–316.

[2] R. N. Kaul, S. K. Suneja, C. S. Lalitha, Duality in pseudo linear multiobjective fractional programming, Indian Journal of Pure
and Applied Mathematics 24 (1993) 279–290.

[3] M.A. Hanson, On sufficiency on the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications 80 (1981)
545–550.

[4] M.A. Hanson, B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical optimization 37(1987)
51-58.

[5] N. G. Reuda, M.A. Hanson, C. Singh, Optimality and duality with generalized convexity, Journal of Optimization Theory and
Applications 86 (1995) 491-500.

[6] T. Antczak, New optimality conditions and duality results of G-type in differentiable mathematical programming, Nonlinear
analysis 66(2007) 1617-1632.

[7] T. Antczak, On G-invex multiobjective programming. Part I. Optimality, Journal of Global Optimization 43 (2009) 97-109.
[8] Y. M. Kang, D.S. Kim, M. H. Kim, Optimality conditions of G-type in locally Lipchitz multiobjective programming, Vietnam

Journal of Mathematics 40 (2012) 275-285.
[9] C.R. Bector, S. Chandra, First and second order duality for a class of nondifferentiable fractional programming problems, Journal

of Information and Optimization Sciences 7 (1986) 335-348.
[10] Jeyakumar, First and second order fractional programming duality in nonlinear programming, Journal of Mathematical Analysis

and Applications 51 (1975) 607-620.
[11] X. Q. Yang, Second-order global optimality conditions for convex composite optimization, Mathematical optimization 81 (1998)

327-347.
[12] S.K. Suneja, C.S. Lalitha, S. Khurana, Second order symmetric duality in multiobjective programming, European Journal of

Operational Research 144 (2003) 492-500.
[13] D.H. Yuan, X.L. Liu, S.Y. Yang, D. Nyamsuren, C. Altannar, Optimality conditions and duality for nonlinear programming prob-

lems involving locally (Hp, r, α)-pre- invex functions and Hp-invex sets, International Journal of Pure and Applied Mathematics
41 (2007) 561-576.

[14] X. Liu, D. Yuan, S. Yang, G. Lai, Multiple objective programming involving differentiable (Hp, α)-invex functions,. Cubo: A
mathematical Journal 13 (2011) 125-136.

[15] P. Mandal, C. Nahak, Symmetric duality with (p, r) − ρ − (η, θ)-invexity, International Journal of Pure and Applied Mathematics
217 (2011) 8141-8148.

[16] A. Jayswal, R. Kumar, D. Kumar, Multiobjective fractional programming problems involving (p, r) − ρ − (η, θ)-invex function,
International Journal of Applied Mathematics and Computer Science 39 (2012) 35-51.

[17] T.R. Gulati, H. Saini, Sufficiency and duality in nondifferentiable multiobjective fractional programming with higher-order
(V, α, ρ, θ)-invexity, International Journal of Pure and Applied Mathematics 3 (2011) 510-523.

[18] A. Jayswal, I.M. Stancu-Minasian, D. Kumar, Higher-order duality for multiobjective programming problem involving (F, α, ρ, d)-
V-type I functions, Journal of Mathematical Modelling and Algorithms 13 (2014) 125-141.

[19] M. Ferrara, M.V. Stefaneseu, Optimality conditions and duality in multiobjective programming with (φ, ρ)-invexity, Yugoslav
Journal of Operations Research 18 (2008) 153-165.

[20] M.V. Stefaneseu, M. Ferrara, Multiobjective programming with new invexities, Optimization Letters 7 (2013) 855-870.
[21] Ramu Dubey and V. N. Mishra, Symmetric duality results for second-order nondifferentiable multiobjective programming

problem, RAIRO - Operations Research 53 (2019) 539-558.
[22] Ramu Dubey, Deepmala and V. N. Mishra, Higher-order symmetric duality in nondifferentiable multiobjective fractional pro-

gramming problem over cone contraints, Statistics, Optimization and Information Computing 8 (2020) 187-205.
[23] Ramu Dubey and V. N. Mishra, Nondifferentiable higher-order duality theorems for new type of dual model under generalized

functions, Proyecciones Journal of Mathematics 39 (2020) 15-29.
[24] Ramu Dubey and VN. Mishra, Second-order nondifferentiable multiobjective mixed type fractional programming problems,

International Journal of Nonlinear Analysis and Applications 11 (2020) 439–451.
[25] Ramu Dubey, Vandana, VN. Mishra and S. Karateke, A class of second order nondifferentiable symmetric duality relations under

generalized assumptions, Journal of Mathematics and Computer Science 21 (2020) 120–126.
[26] Ramu Dubey, L. N. Mishra and L. M. Sánchez Ruiz, Nondifferentiable G-Mond-Weir type multiobjective symmetric fractional

problem and their duality theorems under generalized assumptions, Symmerty.11(2019), 1348, doi.org/10.3390/sym11111348.
[27] Ben-Israel, B. Mond, What is invexity, Journal of the Australian Mathematical Society Series B 28 (1986) 1-9.
[28] S. Brumelle, Duality for multiple objective convex programs,Mathematics of Operations Research 6 (1981) 159-172.


