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Viscosity Approximation Methods for Quasi-Nonexpansive Mappings
in Banach Spaces

Prashant Patel?®, Rajendra Pant®
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Abstract. In this article, we present viscosity approximation methods for finding a common point of the
set of solutions of a variational inequality problem and the set of fixed points of a multi-valued quasi-
nonexpansive mapping in a Banach space. We also discuss some examples to illustrate facts and study the
convergence behaviour of the iterative schemes presented herein, numerically.

1. Introduction

The study of existence and convergence of fixed points of nonexpansive type mappings is an interesting
and important subject in nonlinear analysis, particularly in fixed point theory. In general, the sequence
of iterates of a nonexpansive mapping need not converge to a fixed point of the mapping in a Banach
space. Also, some of the well-known classical iteration processes give only weak convergence. In order
to obtain strong convergence for a sequence of iterates of nonexpansive mapping, Moudafi [9] proposed
new methods known as viscosity approximation methods. These methods are beneficial and effective tools

to solve variational inequality, split and common split feasibility, convex optimization, and many other
problems arising in nonlinear analysis [3, 8, 16].

Let (X, || - |) be a Banach space and K a nonempty convex closed subset of X. A mapping T : K — K is
said to be contraction if there exists r € [0, 1) such that

IT(u) — T(v)|| < 7llu—20||, forall u,ve K.

If r = 1, then the mapping T is called nonexpansive. We denote the set of all fixed points of T by ¥ (T). The
mapping T is said to be quasi-nonexpansive if for all u € K and u" € F(T),

IT () = u*ll < Il = u"].
The variational inequality problem is to find a point € K such that

(T(w),v—wu)y >0, forall veXK.

The problem of finding common elements of the set of fixed points for mappings and the set of solutions
for variational inequalities is a closely related subject of current interest [14, 18]. Viscosity approximation
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methods are interesting because under appropriate conditions, the iteration converges strongly to the
unique solution of the variational inequality problem in the set of fixed points. Because of this fact, we can
apply these methods in linear programming, convex optimization, monotone inclusions, and many other
problems.

In a Hilbert space H, Moudafi [9] defined the sequence of iterates of a nonexpansive mapping T as
follows:

1
Upsi = %g(un) + mT(un), forall n>0, 1)

where G is a contraction, uy € H is an initial guess, r € (0,1) and {C,} is a sequence in (0, 1) with some
conditions. Under some conditions the sequence {u,} defined by (1) converges strongly to unique solution
ut € F(T) of the following variational inequality:

(q-Qut,u—u"y, YueF().
In 2003, Xu [16] defined the sequence {u,} for all n > 0 as follows:
Ups1 = b + (I = G AT (uy), ()

and proved that, the sequence {u,} defined above is converging strongly to the unique solution of a
minimization problem. Marino and Xu [8] defined a new sequence by combining (1) and (2) as follows:

Ups1 = CyGuy) + (I = G, A)T(uy), forall n>0. 3)

They proved that the sequence {u,} generated by (3) with certain conditions on sequence {(,} converges
strongly to the unique solution of the variational inequality:

(yG-Au',u—uy<0, forall ue¥X.

Xu [17] generalized the Moudafi’s results from Hilbert spaces to Banach spaces and presented the following
result:

Theorem 1.1. [17]. Suppose X be a uniformly smooth Banach space and K a nonempty closed and convex subset of
X. Let G : K — K be a contraction and T : i — K a nonexpansive mapping with ¥ (T) # 0. Let the sequence {u,}
defined as uy1 = C,G(uy,) + (1 — )T (uy), where C, € (0, 1) satisfies

(ﬂl) CVI - 0/
(a2) Z Cp =00,
n=0

(as) either Y. |Cna1 — Cal < 00 0r lim &2 = 1.
n=0

n—oo bn

Then, u,, converges to u" € F(T) which is the solution of the following variational inequality
((I-@ut, jt —u)) <0, forall ue F(T).

Mainge [7] considered the viscosity approximation method (1) and proved the strong convergence results for
quasi-nonexpansive mappings in a Hilbert space. Motivated by the results of Moudafi [9], Xu [17], Mainge
[7] and others, we study some strong convergence results for multi-valued quasi-nonexpansive mappings
in Banach spaces. The main purpose of this paper is to present some strong convergence theorems to find
a common element of the set of fixed points of a multi-valued quasi-nonexpansive mapping and the set of
solutions of a variational inequality problem in Banach spaces. We illustrate our results by presenting some
useful examples. We also present numerical convergence behaviour for different choices of coefficients and
initial guesses.
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2. Preliminaries

Let (X, | - |]) be a Banach space, CB(X) the collection of all nonempty bounded and closed subsets of X,
and C(X) the collection of all nonempty compact subsets of X. Suppose d is the metric induced by the norm
I|-1,i.e., d(u,v) = |lu —v|| for all u,v € K. The Hausdorff metric on CB(X) is defined as,

H(A, B) = max {sup d(u, B),sup d(v, ﬂ)}
ueA veB

for all A, B € CB(X), where d(u, B) = ingf |lu — v]|. A pointu’ € X is said to be a fixed point of a multi-valued
ve.

mapping T : X — CB(X) if u" € T(u"). We also denote the set of fixed points of multi-valued mapping T
by F(T). A multi-valued mapping T : X — CB(X) is said to be quasi-nonexpansive if for all u € X and
u* € F(T), we have

H(T(w), T(u") < llu —u].

Example 2.1. [12]. Let X = [0, o) with the usual metric and T : X — CB(X) be defined as

T(u) = {{0}’ "= L 1

[u— U— 5],14 > 1.
Then T is a quasi-nonexpansive mapping. However, T is not a nonexpansive mapping.

Definition 2.2. [6]. The Banach space X is said to be uniformly convex if for each €, 0 < & < 2, there exists a
0(¢e) > 0 such that the conditions

U+v
2

lull = ol =1, |lu—7oll > e, imply || || <1-6(e) forall u,0 € X.

The Banach space X is said to be strictly convex if

u+o .
|| H <1, whenever u,v € X with ||u]| = |[o]l = 1,u # v.

Definition 2.3. [1]. Suppose X be a Banach space and X its dual. Then the normalized duality mapping is a
multi-valued mapping | : X — 2% defined as

Jw) =G € X : (u,6) = lul® = lIGIF},
and we denote the single-valued duality mapping by j.
Definition 2.4. [5]. The modulus of smoothness of the Banach space X is given by

[|lu + to|| + |Ju — to|
px@ = SUP{ > =1 [ull = ljol| = 1},t > 0.

The Banach space X is called uniformly smooth if ltirro1 B9 = 0. The mapping | is single-valued and uniformly

continuous on each bounded subset of X if and only if the Banach space X is uniformly smooth.

Definition 2.5. [11]. The Banach space X satisfies Opial property if, for each weakly convergent sequence {u,} with
the weak limit u € X holds:

liminf ||u, — u|| < liminf||u, — ||
n— o0 n—oo

forallv e X withu # v.
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All Hilbert spaces, all finite dimensional Banach spaces, and ¢’ (1 < p < o) satisfy the Opial property.
A Banach space with a weakly sequentially continuous duality mapping also satisfies the Opial property.
But L, (1 <p < oo, p # 2) do not have the Opial property. We say that the Banach space X has a weakly
sequentially continuous duality mapping | : X — X' if ] is single-valued and is weak-to-weak” sequentially

continuous, that is, if {u,} € X, 1, — u, then J(u,,) LN J(u). A Banach space X that has a weakly continuous
duality mapping satisfies the Opial property [2, 4].

Lemma 2.6. [15]. Let | be a normalized duality mapping of a Banach space X. Then, for each u,v € X, the following
inequality holds

llu + 0l < [[ull® + 2¢o, J(u + v)).
Lemma 2.7. [15]. Assume {t,} be a sequence of non-negative real numbers satisfying
Tue1 S (L= 0n)Th + En + 1M

forall n > 0, where {0,} is a subsequence in (0,1), {E,} and {n,} are real sequences. Suppose that:
(1) X oy = oo,
n=1

(2) X &4l < o0 or limsup & <0,

n=1 n—oo

3) ¥ < co.

n=1

Then, lim 7, = 0.

n—oo

3. Variational Inequality Problem

Theorem 3.1. Let X be a Banach space and K a nonempty closed and convex subset of X. Let T : K — C(K) be a
quasi-nonexpansive mapping and G : K — K a contraction. Let there exists u; € K for any t € (0, 1) such that

up € tG(u) + (1 = HT(uy).
If F(T) # 0 then we get the following results:
(1) {u:} is bounded and ltllrol d(us, T(up)) = 0,
) for ut € F(T), llus — ut|* < (Gur) — u', j(ur — u')),
(3) for ut € F(T), (us — G(wy), j(ur — u®))y < 0.
Proof. By the assumptions for all t € (0,1), we have u; € K such that u; € tG(u;) + (1 — t)T(u;), thus there
exists v; € T(u;) for each u; € K such that
up = tG(uy) + (1 = t)or.
For any ut € F(T), we have,
llur = "Il = tG(we) + (1 = tyo, = u|
< HG @) = u'll + (1 = Blloy = u'|
< HG Q) = u'll + (1 = HH(T(ur), T(u'"))
< HG Q) = u'll + (1 = Dllue — |
=G (uy) — u'|
<G = Gl + 1Gw") - u'|

< Allus = ufll + IGw") — u'l.
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This implies that

G = u'l.

+
lluy —u'l| <

1
(1-7)

Hence {u;}is abounded sequence. So that {G(u;)} and {v:} are bounded. Since vy € T(u;), d(us, T(ur)) < |[ug—204ll,
so we have

limd(u, T(u)) < limllu, - o,ll = im H|G () — vl = 0.

This proves (1). Again, we have

e — w112 = Cup — u®, j(ue — u®))
= KG(u;) — u', jue — uh)) + (1 — )0y — ', j(uy — u'))
< KG(u) —u', jur — u')y + (1 = Dlloy — w1l — u®)|
< KG(ue) —u', jlur — u')y + (1 — AT (), uh)lue — '
<KGu) —u', jlur — u')y + (1= )l — u'|I*.
So, we get
llue = 1P < (Gur) — ¥, j(ue — u")). (4)
Finally,

(ur — Guy), ju — u")) = Gy —u®, j(uy — uh)y + ' — Guy), j(ur — u'))
= llue — u' P = (Gur) — u', j(ur — u')).

Using (4) we get,
(ur — Gluy), j(uy — u'))y < 0.

Hence the proof is now completed. [J

Theorem 3.2. Let X be a reflexive Banach space and K a nonempty closed and convex subset of X. Let j be a weakly
continuous normalized duality mapping on X, T : K — C(K) a quasi-nonexpansive mapping, G : K — K a
contraction and F(T) # 0. Then the net u;, = tG(u;) + (1 — t)v; converges strongly to a point in F(T) ast — 0. Also
the mapping G : ¢ — F(T) defined as

G(G) = limu,
satisfies the following variational inequality
(I-9)GG), [(GG) —u"), ¥ u' € F(T).

Proof. Since the net {1} is bounded, by Theorem 3.1 and reflexivity of X, a weakly convergent subsequence
{u,} of {u;} exists, where {t,} is a sequence in (0,1) such that lim ¢, = 0. Let {u;,} is converging weakly to

a point ut € K. Since T(u") is compact so we can find a subsequence {v,} in T(u") converging to a point
v € T(u") such that

s, = vall = d(uts,, T")). (5)
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Let v # u'. Using triangle inequality and (5), we get

limsup [|u;, — ol| < lim sup(|us, — vall + v, = 2lI)

n—oo n—oo

= limsup d(u,, T(u"))

n—-0o0

< limsupd(us,, T(us,)) + H(T(us,), T(u')).

—
Since u' € F(T) and T is a quasi-nonexpansive mapping,
H(T(uy,), T")) < llug, — 1.

By Theorem 3.1, 31_1}30 sup d(uy,, T(ug,)) = 0. Using Opial property, we get

limsup [[u¢, — || < limsup ||u;, — utl < limsup [|us, — vll,

n—>0c0 n—co =00

a contradiction unless v = u'. Now using Theorem 3.1 (2), we get

s, = 'l < (Gus,) = u", jlouy, = 4")).

Since, j is weakly sequentially continuous, the subsequence {u;,} converges strongly to u*. Now, to prove
the whole net {1;} converges strongly to uf, we will assume another subsequence {us} of {1} such that
lim us, — . Let u" # u* and wy = us,. Now for w € F(T), we get

sr—0
Kwi—G(wy), j(wi — w)) = (' = G(wy), ju" — w))|
= Kwi — u", j(wr — w)) + (W' — G(wy), j(wi — w)) — (W' — Gwy), ju” — w))l
< Mlwi = wllllj(wi = w)ll + Ku™ = G(wx), j(wk —w) — j(u" —w))l.

Since {u;} is bounded and j is single-valued normalized duality mapping as well as weakly sequentially
continuous, applying k — oo and wy — u*, we get

llwie = w*llllj(wi — w)ll + K™ = G(wy), j(wi —w) — j(u" —w))| = 0.
Now, for each w € F(T), using Theorem 3.1 (3), we get

W = GWw), j(u" —w)) = limsup(wy — G(wy), j(wi — w)) < 0. (6)
Similarly,
' - Gu"), ju" —w)) < 0. )

Now replacing w by u' in (6) and u* in (7), we get
(W' = Ga), ju - u)) <0,
W' - G"), ju' - u)) <0.

Now adding both the above inequalities, we get
W' = —(GW") - G"), j(u" ~u)) < 0.

It implies that
(" = ) = (Gu") = G’ — ] < 0
" = w|? = ' — wllGw") - Gl < 0
" = I = il = wlllut — 'l < 0

llu® = | < A’ — I,
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which is a contradiction to our hypothesis that u" # u*. Thus the sequence {u;} converges strongly to u,
and u' is the unique solution of the variational inequality

W - Gh), ju" —w)) <0, forall w e F(T).
Now Y G € ¢ define
G(G) = limuy.
Thus,
((I-G)G(G), (G(G) —w)y <0, forall we F(T).
|

Lemma 3.3. [10]. Let X be a metric space and A, B are nonempty and compact subsets of metric space X. Then for
eacha € A, b € Bsuch that

d(a,b) < H(A, B).

Theorem 3.4. Let X be a reflexive Banach space and K a nonempty, closed and convex subset of X. Let j be a weakly
continuous normalized duality mapping on X, G : K — K a contraction and T : K — C(K) a quasi-nonexpansive
mapping with F(T) # 0. Let {u,} be a sequence in K defined as

Un+1 = CuGun) + (1 = Cy)oy, (t))
where v, € T(uy) for all n € IN U {0} and satisfies conditions:

(a1) ¢y = 0asn — oo,

@) ¥ Gy = oo,
n=0

(as) either Y. |Cua1 = Cul < o0 or lim &2 =1,
n=0 n—ooo bn

(a4) lim d(u,, T(u,) = 0.

Then the sequence {u,} converges strongly to G(G), where G : ¢y — F(T) is defined as G(G) = ltin(} Us.

Proof. Letu' € #(T). Using triangle inequality and definition of T, we have

llttns1 = 'l = 11CG 1n) + (1 = Cp)oy — |
< GullG(un) — |l + (1 = Co)llwy — o'l
< (1= G)H(T(un), TW) + CullG () — GUHI + CallGw™) — u|
< (1= Cllu — |l + rCalluy — u' || + GG — u||
= (1= Cu + 18l — ' | + CullG ™) — ||
(Co —7Cy)

_ _ _ .t A\en TEnJ 1
= (=G Gl = 'l + =G )
< max{llun —ut|, W}

Hence {u,} is a bounded sequence so that {v,}, {G(1,)} are bounded.
Now, we prove that

limsup({(I - G)G(G), j(G(G) — un)) < 0.

n—o0



P. Patel, R. Pant / Filomat 35:9 (2021), 3113-3126 3120

Since {u,} is a bounded sequence and space X is reflexive, a subsequence {u,,} of {u,} can be found, such
that it converges weakly to some u* € X. Let {u,,} be such that

limsup((I - G)G(G), (G(G) — un)) = im((I = G)G(G), J(G(G) - un))-

n—o0o0

Now from (a4), we get

lim d(u,,, T(u,,)) =0,

and u* € ¥(T). Since normalized duality mapping j : X — X’ is weakly sequentially continuous, using
Theorem 3.2

r}i_r&((l - G)G(G), (G(G) — uy)) = I - G)G(G), (G(G) —u")) <0,
and

lim sup((I - G)G(G), (G(G) — un)) < 0. ©)

Next, we prove the sequence {u,,} converges strongly to u" = G(G) € F(T). For all n € N, define
T, = max{(u’ — G, j(u’ — 1,)),0} > 0.

By (9), lim I'; = 0. Now from Lemma 2.6, we have
n—oo0

a1 — u'IP = 118 (Gun) — u") + (1 = Co) (0 — )P
< (1= Co)llon — u'? + 28(G(uy) — u, j(yr — u'))
< (1= G lIT () = ul|? + 204G () — GY), j(ttnar — u'))
+20(G ") —u', j(upsr —u'))
< (1= Co)llun — u'|P + 2rCalluy — ut llten — 1|
+20(G W) — 1", j(upsr — u'))
< (1= Co)llun — ' IP + Gl — utIP + llayar — ')

+ 204G = u", j(unin — "))

1-Q2-1¢, + 2
e < L@ Gy ey 2
1- T’Cn 1- rCn
For a fixed constant C > 0, we have

1-Q2-nC 2C
12 < n AR L 2
P < e = P + =T + CC

20,(1-1) . 2
(1 = )n — +cn(mrn+l+ccn).

141 — u T

||un+1 —u

<

1-

Taking Ty = |ty — u+”2/ On = 2%’_(—:(;[")/ En =0y (%ﬂ;lrn+1 + CCn) and M = 0.
So,

and
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lim sup = St fim sup —Cn
n—oo  On n—oo 2(1 - 1’)

(2= T+ CC)

. 1 CCn
= fimeup (mr”“ 2(1 - r))

Applying Lemma 2.7, we get lim |[u,, — uf|| = 0. Hence the proof is now completed. [
n—00

Theorem 3.5. Let X be a reflexive Banach space and K a nonempty closed and convex subset of X. Let j be a weakly
continuous normalized duality mapping on X, G : K — K a contraction and T : K — C(K) a quasi-nonexpansive
mapping with F(T) # 0. Let {u,} be a sequence in K defined as
Upy1 = Hng(un) + Cotty + (1 - Cu— I»ln)vn/
where v, € T(uy) for all n € IN U {0} and satisfies conditions:
(1) yn —0asn — oo,

(2) Z Un = 00,
(3) 0 < hm 1nf Cy <limsup(, <1,

n—>oo

(4) lim d(un, T(un)) =
Then the sequence {u,} converges strongly to a fixed point of T.

Proof. It can be completed following the same line of proof of Theorem 3.4. [

4. Numerical examples

In this section, we present some examples for mappings which are quasi-nonexpansive but not nonex-
pansive. Further, we illustrate our results by showing convergence behaviour for different choices of initial
guesses and coefficients.

Example 4.1. Suppose X = Rand T : X — X be a mapping defined as

T(u) = Zcosi, #0,
0,u=0.

Clearly, only 0 is the fixed point of above mapping T. So we have,
|ue]

IT) = 'l = 1T@) = 0l = |5 | eos = < B <l = e = '

1
/v_E/

and hence T is a quasi-nonexpansive mapping. For u = &
1 1
Tw)—-TO)l = 7= > == lu-1.
ITw) ~ T = 5- > 3~ = lu ol

Hence T is not a nonexpansive mapping.

Example 4.2. Suppose X = [—7t, rt] and define the mapping T : X — X as T(u) = u cos u.
Clearly, only 0 is the fixed point of mapping T. So we have,

IT () — u'|| = |T(u) — Ol = |ull cos ul < |u| = |ju—u|l.
Therefore T is a quasi-nonexpansive mapping. Foru = 5, v=m,
s
IT(w) - Tl =7 > 5 = llu = ]|

Hence T is not a nonexpansive mapping.
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Example 4.3. Suppose X = (]RZ, Il ||%) and K = [-1,1] x [-1, 1]. Define the mapping T : K — K as

(%r MZ) ’ |1/l1| < 1/

T(uy,up) =
1) {(%,uz),lml =1
Here, only (0, 0) is the fixed point of above mapping T. For all u = (11, u,), we have

17 - 'l = (%2, 1z) - 0,0

<llu—u'lls,
3 2
2

5 1 2
.76 > 3 ”(g/uz)— (1, u2)

and T is a quasi-nonexpansive mapping. For u = (%, uz), v=(1,up)

1) = T = (3 2) - ()

x
2
Thus T is not a nonexpansive mapping.

Example 4.4. [13] Suppose X = R? and K = {u = (u1,u2) € [0,1] x [0, 1]} be the subset of X with the norm
llull = l(u1, u2)ll = ([ual? + |ua?)/2. Let T : K — K is defined by

(1 - ul/l - uZ)/ (ull MZ) € [0/ l] X [0/ 1]/
YA+, 1+ u9), (un,m) € (3,1] 0,11,

T(ur,up) = {

Clearly, only (%, %) is the fixed point of mapping T. So we have,

1 1
1) = 0 = |5 =, = <l
and T is a quasi-nonexpansive mapping. On the other hand, for u = (0,0), v = (%, %), we have

IT(u) — T(@)Il = 0.766 > 0.567 = ||u — 9|
Therefore T is not a nonexpansive mapping.

Now we present the convergence behaviour of sequence (8) for different choices of C, and initial guesses
for the mapping T considered in Example 4.4, our stopping criterion is |[u, — u'|| < 1072.

Table 1: Influence of coefficient (.

Number of iterations For ¢, = (n‘fr—’i)z, (u1,u2) = (0.7,0.3), uy = (uy, uj)
1 (0.700000000000000, 0.300000000000000)

2 (—0.183333333333333, —0.316666666666667)

3 (—1.30555555555556, —1.52777777777778)

4 (—2.31944444444444, -2 .59722222222222)

5 (—2.57388888888889, —2.82944444444444)

101 (0.484452968812232,0.484452968812232)

102 (0.484612486608801, 0.484612486608801)

103 (0.484768763613574,0.484768763613574)

104 (0.484921897612977,0.484921897612977)

105 (0.485071982497771, 0.485071982497771)
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246

(0.00000000000000, 0.00000000000000)

247 (0.00000000000000, 0.00000000000000)
248 (0.00000000000000, 0.00000000000000)
249 (0.00000000000000, 0.00000000000000)
250 (0.00000000000000, 0.00000000000000)

Number of iterations

For C, = iy, (u1,u2) = (0.5,0.2), uy = (), u3)

1 (0.500000000000000, 0.200000000000000)
2 (—0.250000000000000, —0.850000000000000)
3 (—1.41666666666667, —2.41666666666667)
4 (—2.45833333333333, —3.70833333333333)
5 ( —2.70166666666667, —3. 85166666666667)
101 (0 484452968812232, 0. 484452968812232)
102 (0.484612486608801, 0.484612486608801)
103 (0.484768763613574,0.484768763613574)
104 (0.484921897612977,0.484921897612977)
105 (0 485071982497771, 0. 485071982497771)
246 (0 00000000000000, 0. 00000000000000)
247 (0.00000000000000, 0.00000000000000)
248 (0.00000000000000, 0.00000000000000)
249 (0.00000000000000, 0.00000000000000)
250 (0.00000000000000, 0.00000000000000)

Number of iterations

For (= 3,2, (1, 42) = (0.7,0.3), u, = (], u3)

1 (0.700000000000000, 0.300000000000000)

2 (—0.0629629629629629, —0.196296296296296)
3 (—0.411209876543210, —0.519654320987655)
4 (—0.200265054169816, —0.242314940791131)
5 (0 136593882424178, 0. 131575583197766)
101 (0 492820266400416, 0. 492820266399056)
102 (0.492892317336455, 0.492892317337738)
103 (0.492962936385898, 0.492962936384685)
104 (0.000000000000, 0.00000000000)

105 (0 000000000000, 0. 00000000000)

496 (0 000000000000, 0. OOOOOOOOOOO)

497 (0.000000000000, 0.00000000000)

498 (0.000000000000, 0.00000000000)

499 (0.000000000000, 0.00000000000)

500 (0.000000000000, 0.00000000000)

Number of iterations

For (= 3,2, (u1,12) = (0.5,0.2), u, = (], u3)

(0.500000000000000, 0.200000000000000)

(—0.129629629629630, —0.585185185185185)

(—0.465432098765432, —0.835950617283951)

(—0.221289997480474, —0.364960443436634)

Q1| | W N =

(0.134084732810972, 0.116938877120731)
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101

(0.492820266399736, 0.492820266395092)

102 (0.492892317337096, 0.492892317341482)
103 (0.492962936385292, 0.492962936381147)
104 (0.000000000000, 0.00000000000)
105 (0.000000000000, 0.00000000000)
496 (0.000000000000, 0.00000000000)
497 (0.000000000000, 0.00000000000)
498 (0.000000000000, 0.00000000000)
499 (0.000000000000, 0.00000000000)
500 (0.000000000000, 0.00000000000)

Table 2: Influence of coefficient C, with initial guess (11, u2) = (0.5,0.2).

Number of iterations For ¢, = m, 14, — u]]
0.150923085635624
0.069843162641588
0.0875379596281369
0.0434111327212228
0.0594583952217913
0.0309815458857161
0.0444149687052897
0.0239364759473162
0.035194777331846

0 0.019447752373618

=[O 0| | O O] x| W N —

15 0.021321543813537
16 0.012388548656388
17 0.018778124499166
18 0.011045421088126
19 0.016756447380614
Number of iterations Cy = %, [lu, —u
0.895408191778464
1.367478838380575
1.020491360773425
0.517494499668932
0.298363883969987
0.226255955414445
0.182617007336525
0.153803634748247

0.132902274358429

Il

L] e] oo N oy w1 | v N =

0.117127848229374

Re)
N .

0.010472147912589

\O
079)

0.010363793824320

Ne
\e]

0.010257659215580

100

0.010153676631719
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Figure 1: Convergence behaviour for fixed (, = (ni—'i)z and different initial guesses (u1,1u2) =
(0.7, 0.3), (u1, uz) = (0.5, 1).
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Figure 2: Convergence behaviour for different choices of (, = (n?r"l)z, Ch = (27111';)2 and fixed initial guess

(u1, u2) = (07, 03)
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Figure 3: Convergence behaviour for different choices of C, = (n?r—’i)z, Ch = (zil and different initial guesses

+1)2
(ull u2) = (07/ 03)/ (ull MZ) = (05/ 1)
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