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Abstract. In this paper, we consider some fundamental properties of a substitution vector-valued integral
operator Tu

ϕ from Orlicz space Lθ(µ) to Hilbert spaceH by the language of conditional expectation operators.
First, we present necessary and sufficient conditions for boundedness and compactness Tu

ϕ from Lθ(µ) to
H . Next, we investigate the problem of conditions on the generating Young functions, the functions u, ϕ
and h = d(µ ◦ ϕ−1)/dµ, under which operator Tu

ϕ is of closed range or finite rank. Finally, we determine the
lower and upper estimates for the essential norm of Tu

ϕ on Orlicz spaces under certain conditions.

1. Introduction and Preliminaries

Let θ : R→ R+ be a continuous convex function such that
(a) θ(x) = 0 if and only if x = 0.
(b) limx→∞ θ(x) = ∞.
(c) limx→∞

θ(x)
x = ∞.

The convex function θ is called Young’s function. With each Young’s function θ, one can associate another
convex function θ∗ : R→ R+ having similar properties, which is defined by

θ∗(y) = sup{x|y| − θ(x) : x ≥ 0}.

The convex function θ∗ is called complementary Young function to θ. Let X = (X,Σ, µ) be a σ-finite complete
measure space. All comparisons between two functions or two sets are to be interpreted as holding up to a
µ-null set. If θ is a Young function, then the set of Σ-measurable functions

Lθ(µ) =
{

f : X→ C : ∃α > 0,
∫

X
θ(α| f |)dµ < ∞

}
is a Banach space, with respect to the Luxemburg norm defined by

‖ f ‖θ = inf
{
δ > 0 :

∫
X
θ(
| f |
δ

)dµ ≤ 1
}
.

(Lθ(µ), ‖ · ‖θ) is called Orlicz space. A Young function θ is said to satisfy the ∆2-condition(globally) if
θ(2x) ≤ kθ(x), x > x0(x0 = 0), for some constant k > 0. constant
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Proposition 1.1. [14](Holder’s inequality). For all f ∈ Lθ(µ) and 1 ∈ Lθ∗ (µ),∫
X
| f1|dµ ≤ 2‖ f ‖θ‖1‖θ∗ .

Let θ1, θ2 be two Young functions, then θ1 is called stronger than θ2, which θ1 � θ2[orθ2 ≺ θ1], if

θ2(x) ≤ θ1(ax), x ≥ x0 ≥ 0,

for some a ≥ 0 and x0, if x0 = 0 then this condition is said to hold globally. Throughout this note, we assume
that θ satisfies ∆2-condition.

The Orlicz norm on Lθ(µ) is given by

‖ f ‖θ :=
{ ∫

X
f1dµ; 1 ∈ Lθ

∗

(µ), ‖1‖θ∗ ≤ 1
}
.

Theorem 1.2 ([1], Theorem 8.14). if θ is a Young function. Then Luxemburg and Orlicz norms are equivalent:

‖ f ‖θ ≤ | f |θ ≤ 2‖ f ‖θ.

If the Young function satisfies ∆2-condition, then the dual space of the Orlicz space equipped with the
Luxemburg norm is isometrically isomorphic th the Orlics space generated by the complementary function
and equipped with the Orlicz norm, see [1]. Let θ and θ∗ be a pair of complementary Orlicz functions.
Then each 1 ∈ Lθ∗ (µ) defines a bounded linear functional F1 on Lθ(µ) by F1( f ) =

∫
f1dµ, f ∈ Lθ(µ).

Simple functions are not necessarily dense in Lθ(µ). But, if θ satisfies ∆2-condition, then simple functions
are dense in Lθ(µ). It is well-known that if A ∈ Σ and 0 < µ(A) < ∞ then ‖χA‖θ = 1/θ−1(1/µ(A)) where
θ−1(t) = inf{δ > 0, θ(s) > t} is the right continuous inverse of θ. The usual convergence in the Orlicz space
Lθ(µ) can be introduced in term of the Orlicz norm ‖ · ‖θ as xn → x in Lθ(µ) means ‖xn − x‖θ → 0. Also, a
sequence {xn}

∞

n=1 in Lθ(µ) is said to converges in θ-mean to x ∈ Lθ(µ), if

lim
n→∞

Iθ(xn − x) = lim
n→∞

∫
X
θ(|xn − x|)dµ = 0.

For further information on Orlicz spaces, see [12–14].

Let ϕ : X → X be a non-singular measurable transformation; i.e. µ ◦ ϕ−1
� µ. It is assumed that the

Radon-Nikodym derivative h = dµ◦ϕ−1/dµ is almost everywhere finite-valued, or equivalently ϕ−1(Σ) ⊆ Σ
is a sub-σ-finite algebra [16]. We have the following change of variable formula:∫

ϕ−1(A)
f ◦ ϕdµ =

∫
A

h f dµ A ∈ Σ, f ∈ L0(Σ).

Any nonsingular measurable transformation ϕ induces a linear operator (composition operator) Cϕ from
L0(µ) into itself defined by

Cϕ( f )(x) = f (ϕ(x)); x ∈ X, f ∈ L0(µ),

where L0(Σ) denotes the linear space of all equivalence classes of Σ-measurable functions on X. Here
non-singularity of ϕ guarantees that the operator Cϕ is well defined as a mapping from L0(Σ) into itself. If
Cϕ maps on Orlicz space Lθ(µ) into itself , then Cϕ is called composition operator on Lθ(µ). Note that, in
this case Cϕ is bounded. The support of a measurable function f is defined by σ( f ) = {x ∈ X; f (x) , 0}. For
a given complex Hilbert spaceH , let u : X → H be a mapping. We say that u is weakly measurable if for
each 1 ∈ H the mapping x 7→ 〈u(x), 1〉 of X to C is measurable. We will denote this map by 〈u, 1〉.
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Definition 1.3. Let ϕ : X → X be a non-singular measurable transformation and Cϕ be a composition operator on
Lθ(X). Also let u : X→H be a weakly measurable function. Then the pair (u, ϕ) induces a substitution vector-valued
integral operator Tϕu : Lθ(µ)→H defined by

〈Tϕu f , 1〉 =

∫
X
〈u, 1〉 f ◦ ϕdµ, f ∈ Lθ(µ).

It is easy to see that Tϕu is well defined and linear.

From [4], we have that if u : X → H be a weakly measurable function. We say that (u, ϕ,H) has absolute
property, if for each f ∈ Lθ(X), there exists 1 f ∈ D such that sup

1∈D

∫
X |〈u, 1〉||Cϕ f |dµ =

∫
X |〈u, 1 f 〉||Cϕ f |dµ,

and 〈u, 1 f 〉 = ei(− arg Cϕ f+β f )
|〈u, 1 f 〉|, for a constant β f .

Proposition 1.4 ([4]). Assume that (u, ϕ,H) has the absolute property. Then

sup
1∈D

|

∫
X
〈u, 1〉Cϕ f dµ| = sup

1∈D

∫
X
|〈u, 1〉||Cϕ f |dµ.

Throughout of this paper, we assume that (u, ϕ,H) has the absolute property.

For a sub-σ-finite algebraA ⊆ Σ, the conditional expectation operator associated withA is the mapping
f → EA f , defined for all non-negative f as well as for all f ∈ Lp(Σ), 1 ≤ p ≤ ∞, where EA f , by Radon-
Nikodym Theorem, is the uniqueA-measurable function satisfying∫

A
f dµ =

∫
A

EA f dµ, ∀A ∈ A.

For more details on the properties of EA see [11]. Throughout this paper, we assume thatA = ϕ−1(Σ) and
Eϕ−1(Σ) = E.

Recall that an atom of the measure µ is an element A ∈ Σ with µ(A) > 0, such that for each B ∈ Σ, if
B ⊂ A then either µ(B) = 0 or µ(B) = µ(A). A measure with no atoms is called non-atomic. We can easily
check the following well-known facts (see[19]):

(a) Every σ-finite measure space (X,Σ, µ) can be partitioned uniquely as

X = (∪n∈NAn) ∪ B, (1)

where {An}n∈N ⊆ Σ is a countable collection of pairwise disjoint atoms and B, being disjoint from each An,
is non-atomic. Since (X,Σ, µ) is σ-finite, it follows that µ(An) < ∞ for every n ∈N.

(b) Let E be a non-atomic set withµ(E) > 0. Then there exists a sequence of positive disjoint Σ-measurable
subsets of E, {En}n∈N such that µ(En) > 0 for each n ∈N and limn→∞ µ(En) = 0.

The basic properties of composition and weighted composition operators on measurable function spaces
are studied by more mathematicians. For more details on these operators see [2, 5, 16, 17]. The multiplication
and weighted composition operators are studied on Orlicz spaces in [3, 6–9]. Also, the fundamental
properties of substitution vector-valued integral operator are studied by the author et al in [4] and the
essential norm these operators investigated by the author in [10]. In this paper, we are going to present
some assertions about boundedness, compactness and essential norm of substitution vector-valued integral
operator on Orlicz spaces. In section 2, we present some necessary and sufficient conditions for boundedness
and compactness of the substitution vector-valued integral operator on Orlicz spaces. Then in section 3, we
characterize substitution vector-valued integral operators on Orlicz spaces that have closed ranges. Also in
this section by using the compactness assertions , that is proved in section 2, we estimate the essential norm
of substitution vector-valued integral operators. Then we present two examples to illustrate our results.
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2. Boundeness and Compactness of Substitution vector-valued integral operators

In this section, we state various necessary and sufficient conditions under which the substitution vector-
valued integral operators Tϕu on Orlicz spaces is bounded and also, we present necessary and sufficient
conditions for compactness these type operators.

Definition 2.1. Let u : X→H be a weakly measurable function. We say that u is a semi-weakly bounded function
if for some M > 0,

‖〈u, λ〉‖θ∗ ≤M‖λ‖; for each λ ∈ H .

Theorem 2.2. Let u : X → H be a weakly measurable function. If u is a semi-weakly bounded function and
h ∈ L∞(Σ), then Tϕu : Lθ(µ)→H is bounded.

proof Let f ∈ Lθ(µ). By Holder inequality, we have

‖Tϕu f ‖ = sup
λ∈H1

∣∣∣∣ ∫ 〈u, λ〉 f ◦ ϕdµ
∣∣∣∣

≤ sup
λ∈H1

∫
|〈u, λ〉|| f ◦ ϕ|dµ

≤ sup
λ∈H1

2‖〈u, λ〉‖θ∗‖ f ◦ ϕ‖θ

≤ sup
λ∈H1

2M‖λ‖‖ f ◦ ϕ‖θ

= 2M inf
{
δ > 0,

∫
X
θ

(
| f ◦ ϕ|
δ

)
dµ ≤ 1

}
= 2M inf

{
δ > 0,

∫
X

hθ
(
| f |
δ

)
dµ ≤ 1

}
≤ 2M‖h‖∞ inf

{
δ > 0,

∫
X
θ

(
| f |
δ

)
dµ ≤ 1

}
= 2M‖h‖∞‖ f ‖θ.

This shows that Tϕu is bounded.

Proposition 2.3. Let u : X→H be a weakly measurable function. Then

(i) If for each λ ∈ H1, the functions 〈u, λ〉 are conditionable and Tϕu is bounded. Hence for all λ ∈ H1,
hE(〈u, λ〉) ◦ ϕ−1

∈ Lθ∗ (µ).

(ii) Tϕu is bounded if and only if supλ∈H1
‖hE(〈u, λ〉) ◦ ϕ−1

‖θ∗ < ∞.

proof (i) Since Tϕu is bounded, so there exists K > 0 such that for each f ∈ Lθ(µ), ‖Tϕu f ‖ ≤ K‖ f ‖θ. For an
arbitrary and fixed λ ∈ H1, we define a linear functional Ωλ on Lθ(µ) by Ωλ( f ) =

∫
X hE(〈u, λ〉) ◦ϕ−1 f dµ. We

have

|Ωλ( f )| = sup
λ∈H1

∣∣∣ ∫
X

hE(〈u, λ〉) ◦ ϕ−1 f dµ
∣∣∣ = ‖Tϕu f ‖ ≤ K‖ f ‖θ,

Therefore, Ωλ is a bounded linear functional on Lθ(µ). By Theorem 1 in [13] there exists a unique function
1 ∈ Lθ∗ (µ) such that for every f ∈ Lθ(µ), λ( f ) =

∫
X f1dµ. This implies that 1 = hE(〈u, λ〉) ◦ ϕ−1

∈ Lθ∗ (µ).
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(ii) Let K := supλ∈H1
‖hE(〈u, λ〉) ◦ ϕ−1

‖θ∗ < ∞ and f ∈ Lθ(µ). Hence, by Holder inequality and change of
variable formula we have

‖Tϕu f ‖ = sup
λ∈H1

∫
X

hE(〈u, λ〉) ◦ ϕ−1
| f |dµ

≤ 2 sup
λ∈H1

‖hE(〈u, λ〉) ◦ ϕ−1
‖θ∗‖ f ‖θ

and this implies that Tϕu is bounded.

Conversely, we let that Tϕu be bounded. Define Ωλ( f ) =
∫

X hE(〈u, λ〉) ◦ ϕ−1 f dµ for an arbitrary and fixed
λ ∈ H1 and f ∈ Lθ(µ). Then by a similar argument as in proof of (i), it is easy to see that hE(〈u, λ〉)◦ϕ−1

∈ Lθ∗ (µ)
for each λ ∈ H1.

Theorem 2.4. The substitution vector-valued integral operator Tϕu is a compact operator on Lθ(µ) if and only if for
any ε > 0 the set

Nε :=
{
x ∈ X : sup

λ∈H1

hE|〈u, λ〉| ◦ ϕ−1
≥ ε

}
consists of finitely many atoms.

proof Assume the contrary. Then Nε either contains a non-atomic subset or has infinitely many atoms.
Hence there exist δ > 0 andλ1 ∈ H1 such that the set C := {x ∈ Nε : hE|〈u, λ1〉|◦ϕ−1

≥ δ} has positive measure.
In both cases, we can find a sequence of pairwise disjoint measurable subsets {En} with 0 < µ(En) < ∞ for
each n ∈ N. Put fn =

χEn
‖χEn ‖θ

. Note that Iθ( fn) =
∫

X θ(| fn|)dµ = 1, whence fn ∈ Lθ(µ) and ‖ fn‖θ = 1. For each
n,m ∈N, we have

‖Tϕu fm − Tϕu fn‖ = sup
λ∈H1

∫
X
|〈u, λ〉|| fm − fn| ◦ ϕdµ

≥

∫
X
|〈u, λ1〉|| fm − fn| ◦ ϕdµ

=

∫
X

hE(|〈u, λ1〉|) ◦ ϕ−1)|| fm − fn|dµ

≥

∫
Em∪En

hE(|〈u, λ1〉|) ◦ ϕ−1
|| fm − fn|dµ

=

∫
Em

hE(|〈u, λ1〉|) ◦ ϕ−1

‖χEm‖θ
dµ

+

∫
En

hE(|〈u, λ1〉|) ◦ ϕ−1

‖χEn‖θ
dµ

≥ 2δ
(
µ
(
Emθ

−1
( 1
µ(Em)

))
+ µ

(
Enθ

−1
( 1
µ(En)

)))
> 2δM

where M = µ(Emθ−1( 1
µ(Em) ) + µ(Enθ−1( 1

µ(En) ) > 0. This implies that the sequence {Tϕu fn}n does not contain a
convergent subsequence and this follows that Tϕu fm is not compact.
Conversely, by Theorem 2.10 in [4], it is easy to see that if for each ε > 0 the set Nε = {x ∈ X :
supλ∈H1

hE(|〈u, λ〉|) ◦ ϕ−1
≥ ε} consists of finitely many atoms. Consequently Tϕu is a compact operator

on Lθ(µ).

3. Substitution vector-valued integral operators with closed-range and their essential norm

In this section, first we are going to investigate closed-range substitution vector-valued integral opera-
tors on Orlicz spaces. Next, we determine the essential norm these type operators.
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Let (B1, ‖ · ‖B1 ) and (B2, ‖ · ‖B2 ) be two Banach spaces and T be a bounded linear operator from B1 into B2.
There exists a constant c > 0 such that ‖Tx‖B2 ≥ c‖x‖B1 for all x ∈ B1 if and only if ker T = {0} and T(B1) is
closed in B2.

Now, we characterize the closedness of range of a substitution vector-valued integral operator from
Lθ(µ) toH .
We start by the following lemma. Put J := ∪λ∈H1σ(hE(|〈u, λ〉| ◦ ϕ−1).

Lemma 3.1. Let Tϕu be a bounded substitution vector-valued integral operator from Lθ(µ) toH and there is a constant
c > 0 such that supλ∈H1

hE(|〈u, λ〉| ◦ ϕ−1
≥ c on J, then Tϕu |J is injective.

proof Let f be a non-zero element in ker Tϕu |J. Then, we have

0 = ‖Tϕu ‖ = sup
λ∈H1

∫
X

hE(|〈u, λ〉| ◦ ϕ−1)| f |dµ

≥ sup
λ∈H1

∫
J
hE(|〈u, λ〉| ◦ ϕ−1)| f |dµ

≥ c
∫

J
| f |dµ.

This means that f = 0 on J and this completes the proof.

Theorem 3.2. Let Tϕu be a bounded substitution vector-valued integral operator from Lθ(µ) toH . Then, the following
statements are hold.

(i) Suppose Tϕu from Lθ(µ) to H has closed range and x ≺ θ then there is a constant c > 0 such that
supλ∈H1

hE(|〈u, λ〉| ◦ ϕ−1
≥ c on J.

(ii) If there is a constant c > 0 such that supλ∈H1
hE(|〈u, λ〉| ◦ ϕ−1

≥ c on J and θ ≺ x, then Tϕu from Lθ(µ) toH
has closed range

proof (i) Suppose that Tϕu has closed range. Since x ≺ θ, so for some a > 0, x ≤ θ(ax). Then there
exists a constant δ > 0 such that ‖Tϕu f ‖ ≥ δ‖ f ‖θ, for any f ∈ Lθ(µ). Take c = δ

a . Let E = {x ∈ J :
supλ∈H1

hE(|〈u, λ〉|) ◦ ϕ−1 < c}. If µ(E) > 0, we can find a measurable set F ⊆ E such that χF ∈ Lθ |J (µ). It is
easy to see that x < a

θ−1( 1
x )

It is known that ‖χF‖θ = 1
θ−1( 1

µ(F) )
. Hence, we get that

‖TϕuχF‖ = sup
λ∈H1

∫
J
hE(|〈u, λ〉|) ◦ ϕ−1χFdµ

≤ cµ(F) < c
a

θ−1( 1
µ(F) )

= δ‖χF‖θ

and this is a contradiction. Hence µ(E) = 0 and this completes the proof.
(ii) Assume that there is a constant c > 0 such that

sup
λ∈H1

hE(|〈u, λ〉| ◦ ϕ−1
≥ c

on J. Since θ ≺ x so for some a > 0 we have θ(x) ≤ ax. Hence∫
X
θ
( | f |

a
∫

X | f |dµ

)
dµ ≤

∫
X

( a| f |

a
∫

X | f |dµ

)
dµ = 1.
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This implies that ‖ f ‖θ ≤ a
∫

X | f |dµ. Therefore, for every f ∈ Lθ |J (µ), we have

‖Tϕu ‖ = sup
λ∈H1

∫
X

hE(|〈u, λ〉|) ◦ ϕ−1dµ

= sup
γ∈H1

∫
J
hE(|〈u, λ〉|) ◦ ϕ−1dµ + sup

λ∈H1

∫
X\J

hE(|〈u, γ〉|) ◦ ϕ−1dµ

≥ c
∫

J
| f |dµ ≥

c
a
‖ f ‖θ

Now, consider Tϕu |J. By using Lemma 3.1, Tϕu |J is injective. In view of the above calculation , we conclude
that Tϕu |J (µ) is closed inH . Since ker Tϕu = Lθ |X\J (µ), Tϕu (Lθ(µ)) must be closed inH .

In following, we give equivalent conditions with conditions of Theorem 3.2.

Lemma 3.3. Let B be the collection of all Σ-measurable sets E such that

(i) µ(E) < ∞ and

(ii) whenever F ∈ Σ satisfies F ⊆ E and supλ∈H1

∫
ϕ−1(F) |〈u, λ〉|dµ = 0, then µ(F) = 0.

Suppose that E ∈ Σ and µ(E) < ∞. Hence, E ∈ B if and only if E ⊆ J.

proof (⇒) Obviously, F := E \ ∪λ∈H1σ(hE(|〈u, λ〉| ◦ ϕ−1) is a Σ-measurable subset of E. Also,

sup
λ∈H1

∫
ϕ−1(F)

|〈u, λ〉| = sup
λ∈H1

∫
F

hE(|〈u, λ〉|) ◦ ϕ−1 = 0.

Since E ∈ B, property (ii) implies that µ(F) = 0.
(⇐) It suffices to show that (ii) holds. Assume that F ∈ Σ with F ⊆ E and supλ∈H1

∫
ϕ−1(F) hE(|〈u, λ〉| ◦ ϕ−1 = 0.

We claim that µ(F) = 0. Suppose not, then it follows from F ⊆ E ⊆ ∪λ∈H1σ(hE(|〈u, λ〉|) ◦ ϕ−1) that for some
δ > 0,

µ({x ∈ F : sup
λ∈H1

hE(|〈u, λ〉|) ◦ ϕ−1
≥ δ}) > 0.

Put Mλ1 := {x ∈ F : hE(|〈u, λ1〉|) ◦ ϕ−1
≥ δ} and also µ(Mλ1 ) > 0. Consequently, we get that

sup
λ∈H1

∫
ϕ−1(F)

|〈u, λ〉|dµ = sup
λ∈H1

∫
F

hE(|〈u, λ〉|) ◦ ϕ−1dµ

≥

∫
Mλ

hE(|〈u, λ1〉|) ◦ ϕ−1dµ

≥ δµ(Mλ1 ) > 0.

and this contradicts our assumption on F. Therefore µ(F) = 0.

Proposition 3.4. The following statements are equivalent.

(i) There is a constant c > 0 such that supλ∈H1
hE(|〈u, λ〉|) ◦ ϕ−1

≥ c on J.

(ii) There is a constant α > 0 such that supλ∈H1

∫
ϕ−1(E) |〈u, λ〉|dµ ≥ αµ(E) for all E ∈ B
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proof (i)⇒ (ii) Assume that there is some c > 0 such that supλ∈H1
hE(|〈u, λ〉| ◦ ϕ−1

≥ c on J. Take E ∈ B, we
have E ⊆ J by Lemma 3.1. It implies that

sup
λ∈H1

∫
ϕ−1(E)

|〈u, λ〉|dµ = sup
λ∈H1

∫
E

hE(|〈u, λ〉|) ◦ ϕ−1dµ ≥ cµ(E).

This proves (ii).
(ii) ⇒ (i) Suppose (ii) holds. We claim that the set E := {x ∈ J, supλ∈H1

hE(|〈u, λ〉|) ◦ ϕ−1 < α
2 } has zero

µ-measure. If not, then µ(E) > 0. Since (X,Σ, µ) is σ-finite space, we may assume that µ(E) < ∞. Now, by
Lemma 3.1, we have E ∈ B. However,

sup
λ∈H1

∫
ϕ−1(E)

|〈u, λ〉|dµ = sup
λ∈H1

∫
E

hE(|〈u, λ〉|) ◦ ϕ−1dµ ≤
α
2
µ(E) < αµ(E),

which contradicts our original assumption. This shows that supλ∈H1
hE(|〈u, λ〉|) ◦ ϕ−1

≥
α
2 , a.e. on J, and (i)

is proved.
Let B be a Banach space and K be the set of all compact operators on B, the essential norm of T means

the distance from T toK in the operator norm, namely

‖T‖e = inf{‖T − S‖ : S ∈ K}.

Clearly, T is compact if and only if ‖T‖e = 0. As is seen [15], the essential norm plays an interesting role in
the compact problem of concrete operators. Many researchers have computed the essential norm of various
concrete operators see [6, 10, 15, 17].

Theorem 3.5. Let Tϕu be a bounded operator on Lθ(µ). Also let α = inf{r > 0,Nr consists of finitely many atoms}
and Nr = {x ∈ X := supλ∈H1

‖hE(|〈u, λ〉|) ◦ ϕ−1
≥ r}. Then we obtain that

(i) ‖Tϕu ‖e = 0 if and only if α = 0.
(ii) ‖Tϕu ‖e ≥ 1

aα where θ ≺ x(i.e. for some a > 0 we have θ(x) ≤ ax. In particular if a ≤ 1 we have ‖Tϕu ‖e ≥ α
(iii) ‖Tϕu ‖e ≤ aα where x ≺ θ(i.e. for some a > 0 we have θ(x) ≤ ax.In particular if a ≤ 1 we have ‖Tϕu ‖e ≤ α

proof Theorem 2.4 implies that Tϕu is compact if and only if α = 0. So (i) is a direct consequence of Theorem
2.4.

(ii) Take ε > 0 arbitrary. The definition of α implies that G = Nα− ε2
either contains a non-atomic subset

or has infinitely many atoms. If G contains a non-atomic subset, then there are measurable sets Gn,n ∈ N,
such that Gn+1 ⊆ Gn ⊆ G, µ(Gn+1) = 1

2n . For n ∈ N define fn =
χGn
‖χGn ‖θ

. Then ‖ fn‖θ = 1 for all n ∈ N. We claim

that fn → 0 weakly. For this we show that
∫

X fn1 → 0 for all 1 ∈ Lθ∗ (µ), where θ∗ is the complementary
function to θ. Let E ⊆ G with 0 < µ(E) < ∞ and 1 = χE. Then we have

∣∣∣ ∫
X

fnχEdµ
∣∣∣ = θ−1(

1
µ(Gn

)(µ(Gn) ∩ E) ≤
1
2nθ

−1(
1

µ(Gn)
) −→ 0,

as n→∞. Since simple functions are dense in Lθ∗ (µ), thus fn is proved to converge to 0 weakly. Now assume
that G consists of infinitely many atoms. Let {Gn}n be disjoints in G. Again put fn as above. If µ(Gn) → 0,
then by using the similar argument we had

∫
X fnχEdµ→ 0. Otherwise, µ(G) ≥ µ(∪Gn) =

∑
µ(Gn) = +∞ and

it implies that for each E ⊆ G with 0 < µ(E) < ∞ we have µ(E ∩ Gn)→ 0, as n→ ∞. Consequently in both
cases

∫
X fn1dµ→ 0. Now, take a compact operator T on Lθ(µ) such that ‖Tϕu −T‖ < ‖Tϕu ‖e + ε

2 . The definition
of G = Nα− ε2

implies that there exists λ ∈ H1 such as λ1 such that hE|〈u, λ1〉| ◦ ϕ−1 > α − ε on G. Since θ ≺ x
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so for some a > 0 we have θ(x) ≤ ax. Thus x ≤ aθ−1(x). Therefore for each n ∈N and λ1 ∈ H1, we get that

‖Tϕu ‖e > ‖T
ϕ
u − T‖ − ε ≥ ‖Tϕu fn − T fn‖ − ε

≥ ‖Tϕu fn‖ − ‖T fn‖ − ε

= sup
λ∈H1

∫
X

hE(|〈u, λ〉|) ◦ ϕ−1
| fn|dµ − ‖T fn‖ − ε

≥

∫
X

hE(|〈u, λ1〉|) ◦ ϕ−1 χGn

‖χGn‖θ
dµ − ‖T fn‖ − ε

≥ (α − ε)
∫

Gn

θ−1
( 1
µ(Gn)

)
dµ − ‖T fn‖ − ε

> (α − ε)θ−1
( 1
µ(Gn)

)µ(Gn

)
− ‖T fn‖ − ε

>
(α − ε)

a
− ‖T fn‖ − ε.

Since a compact operator maps weakly convergent sequences into norm convergent ones, it follows
‖T fn‖ → 0. Therefore ‖Tϕu ‖e ≥ 1

a (α − ε) − ε. Since ε was arbitrary, we get that ‖Tϕu ‖e ≥ 1
aα.

(iii)Take ε arbitrary. Put A = Nα+ε and v = χAu. The definition of α implies that A consists of finitely
many atoms. So we can write A = {A1,A2, ...,Am} are distinct. By a similar argument as in proof of
[[10],Theorem 2.4], it is easy to see that Tϕv is a finite rank operator on Lθ(µ). Notice that Tϕv is a compact
operator. Thus, we have

‖Tϕu − Tϕv ‖ = ‖Tϕu−v‖ = sup
‖ f ‖θ≤1

‖Tϕu−v f ‖

= sup
‖ f ‖θ≤1

sup
λ∈H1

∫
X

hE|〈(1 − χA)u, λ〉| ◦ ϕ−1
| f |dµ

= sup
‖ f ‖θ≤1

sup
λ∈H1

∫
X−A

hE|〈u, λ〉| ◦ ϕ−1
| f |dµ

≤ (α + ε) sup
‖ f ‖θ≤1

∫
X\A
| f |dµ

≤ a(α + ε) sup
‖ f ‖θ≤1

∫
X\A
|θ( f )|dµ

≤ a(α + ε)

Since ε was arbitrary, so ‖Tϕu ‖e ≤ aα.

Example 3.6. Let X = [1, 100] and µ be the Lebesque measure on X. Define ϕ : X → X as ϕ(x) = 1
2 x. If we set

θ(x) = (1 + x) log0.1(1 + x) − x for each x ∈ [1, 100]. It is easy to verify that θ ≺ x for a = 1. Also, putH = R and
Let u : X→ R be defined by u(x) = 1. Then, for any λ ∈ R, we have

‖〈u, λ〉‖θ∗ = ‖λ‖θ∗ = inf{δ > 0,
∫

X
θ∗(
|λ|
δ

)dµ ≤ 1} ≤M|λ|;

where M = µ(X)θ∗(1). Hence, by Theorem 2.2, we deduce that Tϕu : Lθ(µ) → R is a bounded operator. Direct
computation shows that h = 2. Moreover, supλ∈R1

hE|〈u, λ〉| ◦ ϕ−1 = h, where R1 is the closed unit ball of R. Now,
by using Theorem 3.2(ii), we conclude that Tϕu has closed range and also by using Theorem 3.5 (ii), ‖Tϕu ‖e ≥ 2.
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Example 3.7. Let X = (−1, 0] ∪ {1, 2, 3, 4, 5, 6} and µ be the Lebesque measure on (−1, 0] and µ({n}) = 1
2n , if

n = 1, 2, 3, 4, 5, 6. Define ϕ : X→ X as

ϕ = 3χ{1} + 4χ{2,3} + 5χ{4,5} + 6χ{6,7} +
1
3

xχ(−1,0].

If we set θ(x) = ex
− x − 1 for each x ∈ X. It is easy to verify that x ≺ θ for a = 1. Also, put H = R2 and Let

u : X→ R2 be defined by u(x) = 1. Then, since θ∗(1) ≤ 1 so for any λ ∈ R2, we have

‖〈u, λ〉‖θ∗ = ‖λ‖θ∗ = inf{δ > 0,
∫

X
θ∗(
|λ|
δ

)dµ ≤ 1} ≤M|λ|;

where M = µ(X) > 0. Hence, by Theorem 2.2, we deduce that Tϕu : Lθ(µ) → R is a bounded operator. Direct
computation shows that

h = 4χ{3} + 6χ{4} + 3χ{5} +
5
2
χ{6} + 3χ(−1,0].

Moreover, supλ∈R2
1

hE|〈u, λ〉| ◦ ϕ−1 = h, where R2
1 is the closed unit ball of R2. Now by using Theorem 3.5(iii), we

obtain that ‖Tϕu ‖e ≤ 5
2 .
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