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bDepartment of Mathematics, University of Kashmir, Srinagar, 190006, India

Abstract. This paper deals with the problem of finding some upper bound estimates for the maximum
modulus of a univariate complex polynomial on a disk under certain constraints on the zeros and on the
functions involved. A variety of interesting results follow as special cases from our general results.

1. Introduction

LetPn denote the space of all complex polynomials P(z) :=
∑n

j=0 a jz j of degree n and P′(z) is the derivative
of P(z). For brevity, we introduce the following notations:

φk(r,R, α) : =

(
R + k
r + k

)n

− |α|, ψk(r,R, α) :=
(

Rk + 1
rk + 1

)n

− |α|,

φk(r,R) : =

(
R + k
r + k

)n

, ψk(r,R) :=
(

Rk + 1
rk + 1

)n

,

where α ∈ C is such that |α| ≤ 1. Note that(
R + k
r + k

)n

− |α| > 0 and
(

Rk + 1
rk + 1

)n

− |α| > 0 for R > r.

The study of comparison inequalities that relate the norm between polynomials on the disk |z| = R, R > 0,
is a classical topic in analysis. The extremal problems of analytic functions and the results where some
approaches to obtaining the classical inequalities are developed on using various methods of the geometric
function theory are known for various norms and for many classes of functions such as polynomials with
various constraints, and on various regions of the complex plane. A classical result due to Bernstein [3] is
that, for two polynomials f (z) and F(z) with degree of f (z) not exceeding that of F(z) and F(z) , 0 for |z| > 1,
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the inequality | f (z)| ≤ |F(z)| on the unit circle |z| = 1 implies the inequality of their derivatives | f ′(z)| ≤ |F′(z)|
on |z| = 1. In particular, this result allows one to establish the famous Bernstein inequality [2] for the
sup-norm on the unit circle: namely, if P(z) is a polynomial of degree n, it is true that

max
|z|=1

∣∣∣P′(z)
∣∣∣ ≤ n max

|z|=1

∣∣∣P(z)
∣∣∣. (1)

On the other hand, concerning the maximum modulus of P(z) on the circle |z| = R ≥ 1, we have another
classical result known as Bernstein-Walsh lemma ([20], Corollary 12.1.3), which states that, if f (z) and F(z)
are two polynomials with degree of f (z) not exceeding that of F(z) and F(z) , 0 for |z| > 1, the inequality
| f (z)| ≤ |F(z)| on the unit circle |z| = 1 implies that | f (z)| < |F(z)| for |z| > 1, unless f (z) = eiθF(z), θ ∈ R. From
this, one can deduce that if P ∈ Pn, then for R ≥ 1,

max
|z|=R

∣∣∣P(z)
∣∣∣ ≤ Rn max

|z|=1

∣∣∣P(z)
∣∣∣. (2)

The inequalities (1) and (2) are related with each other and it was observed by Bernstein [3] that (1) can also
be deduced from (2) by making use of Gauss-Lucas theorem and the proof of this fact was given by Govil
et al. [4].

If we restrict ourselves to the class of polynomials P ∈ Pn with P(z) , 0 in |z| < 1, then (1) and (2) can be
respectively replaced by

max
|z|=1

∣∣∣P′(z)
∣∣∣ ≤ n

2
max
|z|=1

∣∣∣P(z)
∣∣∣, (3)

and

max
|z|=R≥1

∣∣∣P(z)
∣∣∣ ≤ Rn + 1

2
max
|z|=1

∣∣∣P(z)
∣∣∣. (4)

Inequality (3) was conjectured by Erdős and later proved by Lax [9], where as inequality (4) was proved by
Ankeny and Rivlin [1], for which they made use of (3). Jain [6] generalized both the inequalities (3) and (4)
and proved that if P ∈ Pn with P(z) , 0 in |z| < 1, then for every |β| ≤ 1 and |z| = 1,∣∣∣∣∣zP′(z) +

nβ
2

P(z)
∣∣∣∣∣ ≤ n

2

{∣∣∣∣∣1 +
β

2

∣∣∣∣∣ +

∣∣∣∣∣β2
∣∣∣∣∣} max
|z|=1

∣∣∣P(z)
∣∣∣, (5)

and R ≥ 1,∣∣∣∣∣P(Rz) + β
(R + 1

2

)n

P(z)
∣∣∣∣∣ ≤ 1

2

[∣∣∣∣∣Rn + β
(R + 1

2

)n∣∣∣∣∣ +

∣∣∣∣∣1 + β
(R + 1

2

)n∣∣∣∣∣] max
|z|=1

∣∣∣P(z)
∣∣∣. (6)

As refinements of (5) and (6), Jain [7] also established that if P ∈ Pn with P(z) , 0 in |z| < 1, then for
every |β| ≤ 1 and |z| = 1,∣∣∣∣∣zP′(z) +

nβ
2

P(z)
∣∣∣∣∣ ≤ n

2

[{∣∣∣∣∣1 +
β

2

∣∣∣∣∣ +

∣∣∣∣∣β2
∣∣∣∣∣} max
|z|=1

∣∣∣P(z)
∣∣∣ − {∣∣∣∣∣1 +

β

2

∣∣∣∣∣ − ∣∣∣∣∣β2
∣∣∣∣∣} min
|z|=1

∣∣∣P(z)
∣∣∣] , (7)

and ∣∣∣∣∣P(Rz) + β
(R + 1

2

)n

P(z)
∣∣∣∣∣ ≤ 1

2

[{∣∣∣∣∣Rn + β
(R + 1

2

)n∣∣∣∣∣ +

∣∣∣∣∣1 + β
(R + 1

2

)n∣∣∣∣∣} max
|z|=1

∣∣∣P(z)
∣∣∣

−

{∣∣∣∣∣Rn + β
(R + 1

2

)n∣∣∣∣∣ − ∣∣∣∣∣1 + β
(R + 1

2

)n∣∣∣∣∣} min
|z|=1

∣∣∣P(z)
∣∣∣]. (8)
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Other classical majorization results for polynomials and related functions can be found in the com-
prehensive books of Milovanović et al. [14] and Rahman and Schmeisser [20]. Mezerji et al. [10] besides
proving other results also obtained a result concerning minimum modulus of polynomials. In fact, they
proved that if P ∈ Pn and P(z) has all its zeros in |z| ≤ k, k ≤ 1, then for every |β| ≤ 1 and R ≥ 1,

min
|z|=1

∣∣∣P(Rz) + βφk(1,R)P(z)
∣∣∣ ≥ 1

kn

∣∣∣Rn + βφk(1,R)
∣∣∣ min
|z|=k

∣∣∣P(z)
∣∣∣. (9)

In the same paper, Mezerji et al. generalized the inequality (8) by proving that if P ∈ Pn and P(z) , 0 in
|z| < k, k ≥ 1, then for every |β| ≤ 1 and R ≥ 1,

max
|z|=1

∣∣∣P(Rk2z) + βψk(1,R)P(k2z)
∣∣∣ ≤ 1

2

[{
kn

∣∣∣Rn + βψk(1,R)
∣∣∣ +

∣∣∣1 + βψk(1,R)
∣∣∣} min
|z|=k

∣∣∣P(z)
∣∣∣

−

{
kn

∣∣∣Rn + βψk(1,R)
∣∣∣ − ∣∣∣1 + βψk(1,R)

∣∣∣} min
|z|=k

∣∣∣P(z)
∣∣∣]. (10)

Although the literature on polynomial inequalities is vast and growing and over the last four decades
many different authors produced a large number of different versions and generalizations of the above
inequalities, including inequalities for polar derivatives. One can see in the literature (for example, refer
[8], [10]–[19]), the latest research where some approaches to obtaining polynomial inequalities are developed
on applying the methods and results of the geometric function theory. Recently, Kumar [8] found that there
is a room for the generalization of the condition R ≥ 1 in the above inequalities to R ≥ r > 0, and proved
the following results.

Theorem A. If P ∈ Pn and P(z) has all its in |z| ≤ k, k > 0, then for every |β| ≤ 1, |z| ≥ 1, and R ≥ r, Rr ≥ k2,

min
|z|=1

∣∣∣P(Rz) + βφk(r,R)P(rz)
∣∣∣ ≥ 1

kn

∣∣∣Rn + βφk(r,R)
∣∣∣ min
|z|=k

∣∣∣P(z)
∣∣∣. (11)

Equality holds in (11) for P(z) = αzn, α , 0.

Theorem B. If P ∈ Pn and P(z) , 0, |z| < k, k > 0, then for every |β| ≤ 1 and R ≥ r, Rr ≥ 1/k2, |z| = 1,∣∣∣P(Rk2z) + βψk(r,R)P(rk2z)
∣∣∣ ≤ 1

2

[{
kn

∣∣∣Rn + βψk(r,R)
∣∣∣ +

∣∣∣1 + βψk(r,R)
∣∣∣} max
|z|=k

∣∣∣P(z)
∣∣∣

−

{
kn

∣∣∣Rn + βψk(r,R)
∣∣∣ − ∣∣∣1 + βψk(r,R)

∣∣∣} min
|z|=k

∣∣∣P(z)
∣∣∣]. (12)

Equality holds in (12) for P(z) = azn + bkn, |b| ≥ |a|.
While thinking for the generalization of the above inequalities, we consider a more general problem of

investigating the dependence of
∣∣∣P(Rk2z)− αP(rk2z) + βψk(r,R, α)P(rk2z)

∣∣∣ on the maximum of
∣∣∣P(z)

∣∣∣ on |z| = k
for every |α| ≤ 1, |β| ≤ 1, and develop a unified method for arriving at these results.

2. Main results

We first prove the following general result which as a special case provides a generalization of Theo-
rem A.

Theorem 2.1. If F ∈ Pn and F(z) has all its in |z| ≤ k, k > 0 and P(z) is a polynomial of degree at most n such that∣∣∣P(z)
∣∣∣ ≤ ∣∣∣F(z)

∣∣∣ for |z| = k.

Then for |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ k2 and |z| ≥ 1, we have∣∣∣P(Rz) − αP(rz) + βφk(r,R, α)P(rz)
∣∣∣ ≤ ∣∣∣F(Rz) − αF(rz) + βφk(r,R, α)F(rz)

∣∣∣. (13)

Equality holds in (13) for P(z) = eiγF(z), γ real and F(z) has all its zeros in |z| ≤ k.
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We now present and discuss some consequences of Theorem 2.1. If we apply this theorem to polynomials
P(z) and (zn/kn) min

|z|=k
|P(z)|, we get the following generalization of (11).

Corollary 2.1. If P ∈ Pn and P(z) has all its in |z| ≤ k, k > 0, then for |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ k2 and |z| ≥ 1, we
have ∣∣∣P(Rz) − αP(rz) + βφk(r,R, α)P(rz)

∣∣∣ ≥ |z|n
kn

∣∣∣Rn
− αrn + βrnφk(r,R, α)

∣∣∣ min
|z|=k

∣∣∣P(z)
∣∣∣. (14)

Equality holds in (14) for P(z) = γzn, γ , 0.

Remark 2.1. For α = 0 Theorem 2.1 reduces to Theorem A. If we take r = k, then inequality (14) takes the
form ∣∣∣P(Rz) − αP(kz) + βφk(k,R, α)P(kz)

∣∣∣ ≥ |z|n∣∣∣Rn

kn − α + βφk(k,R, α)
∣∣∣ min
|z|=k

∣∣∣P(z)
∣∣∣.

Several other interesting results easily follow from Theorem 2.1 and here, we mention a few of them.
Setting F(z) = znM/kn, where M = max

|z|=k

∣∣∣P(z)
∣∣∣ in Theorem 2.1, we get the following result.

Corollary 2.2. If P ∈ Pn, then for every α, β with |α| ≤ 1, |β| ≤ 1, and k > 0 with R ≥ r, rR ≥ k2, |z| ≥ 1, we have∣∣∣P(Rz) − αP(rz) + βφk(r,R, α)P(rz)
∣∣∣ ≤ |z|n

kn

∣∣∣Rn
− αrn + βrnφk(r,R, α)

∣∣∣ max
|z|=k

∣∣∣P(z)
∣∣∣. (15)

Equality holds in (15) for P(z) = γzn, γ , 0.

Again, if we choose α = r = 1, k ≤ 1, in Corollary 2.2, divide the two sides of (15) by R−1, making R→ 1
and noting that

φk(1,R, 1)
R − 1

→
n

1 + k
,

we get the following result.

Corollary 2.3. If P ∈ Pn, then for every |β| ≤ 1, k ≤ 1, R > 1 and |z| ≥ 1,∣∣∣∣∣zP′(z) +
nβ

1 + k
P(z)

∣∣∣∣∣ ≤ n|z|n

kn

∣∣∣∣∣1 +
β

1 + k

∣∣∣∣∣ max
|z|=k

∣∣∣P(z)
∣∣∣. (16)

Equality holds in (16) for P(z) = γzn, γ , 0.

Suppose P ∈ Pn and P(z) , 0 in |z| < k, the polynomial Q(z) = znP(1/z̄) ∈ Pn and Q(z) has all its zeros in
|z| ≤ 1/k. Note that

|Q(z)| =
1
kn

∣∣∣P(k2z)
∣∣∣ for |z| =

1
k
.

Applying Theorem 2.1, with F(z) replaced by knQ(z), we get the following result.

Corollary 2.4. If P ∈ Pn and P(z) , 0 in |z| < k, k > 0, then for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2, |z| ≥ 1, we
have ∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)

∣∣∣ ≤ kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)

∣∣∣, (17)

where Q(z) = znP(1/z̄).
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Next, we establish the following generalization of inequalities (5) and (6).

Theorem 2.2. If P ∈ Pn and P(z) , 0 in |z| < k, k > 0, then for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2 and |z| = 1,
we have∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)

∣∣∣ ≤ 1
2

{
kn

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣
+

∣∣∣1 − α + βψk(r,R, α)
∣∣∣} max
|z|=k

∣∣∣P(z)
∣∣∣. (18)

Equality holds in (18) for P(z) = zn + kn.

Remark 2.2. If we take α = k = r = 1 in Theorem 2.2 and divide both sides of (18) by R− 1 and make R→ 1,
we get (5). Also, if we take α = 0 and r = k = 1 in Theorem 2.2, we get (6).

Instead of proving Theorem 2.2, we prove the following result which not only strengthens inequality
(18) but also provides a generalization of Theorem B.

Theorem 2.3. If P ∈ Pn and P(z) has no zeros in |z| < k, k > 0, then for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2 and
|z| = 1, we have∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)

∣∣∣
≤

1
2

{
kn

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ +
∣∣∣1 − α + βψk(r,R, α)

∣∣∣} max
|z|=k

∣∣∣P(z)
∣∣∣

−
1
2

{
kn

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ − ∣∣∣1 − α + βψk(r,R, α)
∣∣∣} min
|z|=k

∣∣∣P(z)
∣∣∣. (19)

Equality holds in (19) for P(z) = zn + kn.

Remark 2.3. If we take α = 0 in Theorem 2.3, we get Theorem B. Similarly as above, if we take α = k = r = 1
in Theorem 2.3 and divide both sides of (19) by R − 1 and make R → 1, we get (7), where as inequality (8)
follows by taking α = 0 and r = k = 1 in inequality (19).

3. Auxiliary results

We need the following lemmas to prove our theorems.

Lemma 3.1. If P ∈ Pn and P(z) has no zeros in |z| < k, k > 0, then for R ≥ r, rR ≥ k2, we have∣∣∣P(Rz)
∣∣∣ ≥ (R + k

r + k

)n∣∣∣P(rz)
∣∣∣ for |z| = 1.

The above lemma is due to Govil et al. [5].

Lemma 3.2. If P ∈ Pn and Q(z) = znP(1/z̄), then for |α| ≤ 1, |β| ≤ 1, k > 0, R ≥ r, rR ≥ 1/k2 and |z| = 1, we have∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)
∣∣∣ + kn

∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)
∣∣∣

≤

{
kn

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ +
∣∣∣1 − α + βψk(r,R, α)

∣∣∣} max
|z|=k
|P(z)|. (20)

Proof. Let M = max|z|=k |P(z)|. Then |P(z)| ≤ M for |z| = k. Therefore, for a given complex number µ with
|µ| > 1, it follows by Rouché’s theorem that the polynomial F(z) = P(z) − µM does not vanish in |z| < k.
Applying Corollary 2.4 to the polynomial F(z), we get for |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2 and |z| ≥ 1,∣∣∣F(Rk2z) − αF(rk2z) + βψk(r,R, α)F(rk2z)

∣∣∣ ≤ kn
∣∣∣H(Rz) − αH(rz) + βψk(r,R, α)H(rz)

∣∣∣,
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where H(z) = znF(1/z̄) = Q(z) − µ̄Mzn.
The above inequality gives for |α| ≤ 1, |β| ≤ 1 and |z| ≥ 1,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z) − µ

(
1 − α + βψk(r,R, α)

)
M

∣∣∣
≤ kn

∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz) − µ̄
(
Rn
− αrn + βrnψk(r,R, α)

)
Mzn

∣∣∣. (21)

Now choosing the argument of µ on the right hand side of (21) such that

kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz) − µ̄

(
Rn
− αrn + βrnψk(r,R, α)

)
Mzn

∣∣∣
= |µ|Mkn

|z|n
∣∣∣Rn
− αrn + βrnψk(r,R, k)

∣∣∣ − kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)

∣∣∣,
which is possible by Corollary 2.2, we get from (21) for |α| ≤ 1, |β| ≤ 1 and |z| ≥ 1,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)

∣∣∣ − |µ|∣∣∣1 − α + βψk(r,R, α)
∣∣∣M

≤ |µ|Mkn
|z|n

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ − kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)

∣∣∣,
implying for |z| = 1,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)

∣∣∣ + kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)

∣∣∣
≤ |µ|Mkn

|z|n
∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ + |µ|
∣∣∣1 − α + βψk(r,R, α)

∣∣∣M.
Letting |µ| → 1 in the last inequality, we get the desired inequality (20), and this completes the proof of
Lemma 3.2.

4. Proofs of main results

Proof of Theorem 2.1. In case R = r, we have nothing to prove. Hence forth, we suppose R > r. By hypothesis
F(z) is a polynomial of degree n having all its zeros in |z| ≤ k and P(z) is a polynomial of degree at most n
such that

|P(z)| ≤ |F(z)| for |z| = k, (22)

therefore, if F(z) has a zero of multiplicity ν at z = keiθ0 , then P(z) must also have a zero of multiplicity at
least ν at z = keiθ0 . We assume that P(z)/F(z) is not a constant, otherwise, the inequality (13) is obvious. It
follows by the maximum modulus principle that

|P(z)| < |F(z)| for |z| > k.

Suppose F(z) has m zeros on |z| = k, where 0 ≤ m < n, so that we can write

F(z) = F1(z)F2(z),

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = k and F2(z) is a polynomial of degree
n −m whose all zeros lie in |z| < k. This gives with the help of (22) that

P(z) = P1(z)F1(z),

where P1(z) is a polynomial of degree at most n −m. Now, from inequality (22), we get

|P1(z)| ≤ |F2(z)| for |z| = k,

and F2(z) , 0 for |z| = k. Therefore, for a given complex number λ with |λ| > 1, it follows from Rouché’s
theorem that the polynomial P1(z) − λF2(z) of degree n − m ≥ 1 has all its zeros in |z| < k. Hence the
polynomial

f (z) = F1(z)(P1(z) − λF2(z)) = P(z) − λF(z)
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has all its zeros in |z| ≤ k with at least one zero in |z| < k, so that we can write

f (z) = (z − ηeiγ)H(z),

where η < k and H(z) is a polynomial of degree n − 1 having all its zeros in |z| ≤ k. Applying Lemma 3.1 to
H(z), we obtain for R > r, rR ≥ k2 and 0 ≤ θ < 2π,∣∣∣ f (Reiθ)

∣∣∣ =
∣∣∣Reiθ

− ηeiγ
∣∣∣ ∣∣∣H(Reiθ)

∣∣∣
≥

∣∣∣Reiθ
− ηeiγ

∣∣∣ (R + k
r + k

)n−1∣∣∣H(reiθ)
∣∣∣

=
(R + k

r + k

)n−1
∣∣∣Reiθ

− ηeiγ
∣∣∣∣∣∣reiθ − ηeiγ
∣∣∣ ∣∣∣reiθ

− ηeiγ
∣∣∣ ∣∣∣H(reiθ)

∣∣∣. (23)

Now for 0 ≤ θ < 2π, we have∣∣∣∣∣∣Reiθ
− ηeiγ

reiθ − ηeiγ

∣∣∣∣∣∣2 =
R2 + η2

− 2Rηcos(θ − γ)
r2 + η2 − 2rηcos(θ − γ)

≥

(R + η

r + η

)2

, for R > r and rR ≥ k2,

>
(R + k

r + k

)2

, since η < k.

This implies∣∣∣∣∣∣Reiθ
− ηeiγ

reiθ − ηeiγ

∣∣∣∣∣∣ > R + k
r + k

,

which on using in (23) gives for R > r, rR ≥ k2 and 0 ≤ θ < 2π,

∣∣∣ f (Reiθ)
∣∣∣ > (

R + k
r + k

)n ∣∣∣ f (reiθ)
∣∣∣.

Equivalently,

∣∣∣ f (Rz)
∣∣∣ > (

R + k
r + k

)n ∣∣∣ f (rz)
∣∣∣, (24)

for R > r, rR ≥ k2 and |z| = 1. This implies for every |α| ≤ 1, R > r, rR ≥ k2 and |z| = 1,

∣∣∣ f (Rz) − α f (rz)
∣∣∣ ≥ ∣∣∣ f (Rz)

∣∣∣ − ∣∣∣α∣∣∣ ∣∣∣ f (rz)
∣∣∣ > {(

R + k
r + k

)n

− |α|

} ∣∣∣ f (rz)
∣∣∣. (25)

Again, since r < R, it follows that ((r + k)/(R + k))n < 1, inequality (25) implies that

| f (rz)| < | f (Rz)| for |z| = 1.

Also, all the zeros of f (Rz) lie in |z| ≤ k/R, and R2 > rR ≥ k2, we have k/R < 1. A direct application of
Rouché’s theorem shows that the polynomial f (Rz) − α f (rz) has all its zeros in |z| < 1, for every |α| ≤ 1.



G. V. Milovanović, A. Mir / Filomat 35:9 (2021), 3193–3202 3200

Applying Rouché’s theorem again, it follows from (25) that for every |β| ≤ 1, |α| ≤ 1, R > r, rR ≥ k2, all the
zeros of the polynomial

1(z) = f (Rz) − α f (rz) + β

{(R + k
r + k

)n

− |α|

}
f (rz)

= P(Rz) − α f (rz) + β

{(R + k
r + k

)n

− |α|

}
P(rz) − λ

[
F(Rz) − αF(rz) + β

{(
R + k
r + k

)n

− |α|

}
F(rz)

]
(26)

lie in |z| < 1, for every λ with |λ| > 1, and this clearly implies that for |z| ≥ 1 and R > r with rR ≥ k2,∣∣∣∣∣P(Rz) − αP(rz) + β
{(R + k

r + k

)n

− |α|
}
P(rz)

∣∣∣∣∣ ≤ ∣∣∣∣∣F(Rz) − αF(rz) + β
{(R + k

r + k

)n

− |α|
}
F(rz)

∣∣∣∣∣ . (27)

To see that the inequality (27) holds, note that if the inequality (27) is not true, then there is a point z = z0
with |z0| ≥ 1, such that∣∣∣∣∣P(Rz0) − αP(rz0) + β

{(R + k
r + k

)n

− |α|
}
P(rz0)

∣∣∣∣∣ > ∣∣∣∣∣F(Rz0) − αF(rz0) + β
{(R + k

r + k

)n

− |α|
}
F(rz0)

∣∣∣∣∣ . (28)

Now, because by hypothesis all the zeros of F(z) lie in |z| ≤ k, all the zeros of F(Rz) lie in |z| ≤ k/R < 1, and
therefore if we use Rouché’s theorem and arguments similar to the above, we will get that all the zeros of

F(Rz) − αF(rz) + β
{(R + k

r + k

)n

− |α|
}
F(rz)

lie in |z| < 1 for every R > r, rR ≥ k2, that is,

F(Rz0) − αF(rz0) + β
{(R + k

r + k

)n

− |α|
}
F(rz0) , 0

for every z0 with |z0| ≥ 1. Therefore, if we take

λ =
P(Rz0) − αP(rz0) + β

{(
R+k
r+k

)n
− |α|

}
P(rz0)

F(Rz0) − αF(rz0) + β
{(

R+k
r+k

)n
− |α|

}
F(rz0)

,

then λ is a well defined real or complex number and in view of (28) we also have |λ| > 1. Therefore, with this
choice of λ, we get from (26) that 1(z0) = 0 for some z0, satisfying |z0| ≥ 1, which is clearly a contradiction
to the fact that all the zeros of 1(z) lie in |z| < 1. Thus, for R > r, rR ≥ k2, inequality (27) holds for |z| ≥ 1, and
this completes the proof of Theorem 2.1.

Proof of Theorem 2.3. Let m = min|z|=k |P(z)|. If P(z) has a zero on |z| = k, then m = 0 and the result follows
from Theorem 2.2 in this case. Henceforth, we assume that P(z) has all its zeros in |z| > k, so that m > 0.
It follows by Rouché’s theorem that h(z) = P(z) − λm does not vanish in |z| < k, for every λ with |λ| < 1.
Applying Corollary 2.4 to the polynomial h(z), we get for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2, and |z| ≥ 1,∣∣∣h(Rk2z) − αh(rk2z) + βψk(r,R, α)h(rk2z)

∣∣∣ ≤ kn
∣∣∣T(Rz) − αT(rz) + βψk(r,R, α)T(rz)

∣∣∣,
where T(z) = znh(1/z̄) = Q(z) − λ̄mzn.

Equivalently,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z) − λ
(
1 − α + βψk(r,R, α)

)
m
∣∣∣

≤ kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz) − λ̄

(
Rn
− αrn + βrnψk(r,R, α)

)
mzn

∣∣∣, (29)
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for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2 and |z| ≥ 1. Since all the zeros of Q(z) lie in |z| ≤ 1/k, we may
apply Corollary 2.1 to Q(z) and get for every |α| ≤ 1, |β| ≤ 1, rR ≥ 1/k2 and |z| ≥ 1,∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)

∣∣∣ ≥ |z|nkn
∣∣∣Rn
− αrn + βψk(r,R, α)

∣∣∣ min
|z|=1/k

|Q(z)|

= |z|n
∣∣∣Rn
− αrn + βψk(r,R, α)

∣∣∣ min
|z|=k
|P(z)|. (30)

Now, choosing the argument of λ on the right hand side of (29) such that

kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz) − λ̄

(
Rn
− αrn + βrnψk(r,R, α)

)
mzn

∣∣∣
= kn

∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)
∣∣∣ − kn

∣∣∣λ∣∣∣∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣m|z|n,
which is possible by (30), we get from (29) for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2 and |z| = 1,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)| − |λ|

∣∣∣1 − α + βψk(r,R, α)
∣∣∣m

≤ kn
∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)

∣∣∣ − kn
|λ|

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣m. (31)

Letting |λ| → 1 in (31), we obtain for every |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1/k2 and |z| = 1,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)
∣∣∣ − kn

∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)
∣∣∣

≤ −

{
kn

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ − ∣∣∣1 − α + βψk(r,R, α)
∣∣∣}m. (32)

Also, by Lemma 3.2, we have for |z| = 1,∣∣∣P(Rk2z) − αP(rk2z) + βψk(r,R, α)P(rk2z)
∣∣∣ + kn

∣∣∣Q(Rz) − αQ(rz) + βψk(r,R, α)Q(rz)
∣∣∣

≤

{
kn

∣∣∣Rn
− αrn + βrnψk(r,R, α)

∣∣∣ +
∣∣∣1 − α + βψk(r,R, α)

∣∣∣} max
|z|=k

∣∣∣P(z)
∣∣∣. (33)

Finally, adding (32) and (33), we get (19) and this completes the proof of Theorem 2.3.

Proof of Theorem 2.2. The proof of this theorem follows by combining Corollary 2.4 and Lemma 3.2. We omit
the details.
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[12] G. V. Milovanović, A. Mir, On the Erdős-Lax inequality concerning polynomials, Math. Inequal. Appl. 23 (2020), 1499–1508.
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[14] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials, Extremal problems, Inequalities, Zeros, World
Scientific, Singapore, 1994.

[15] A. Mir, On an operator preserving inequalities between polynomials, Ukrainian Math. J. 69 (2018), 1234–1247.
[16] A. Mir, Bernstein type integral inequalities for a certain class of polynomials, Mediterranean J. Math. 16 (2019), (Art. 143) pp.

1–11.
[17] A. Mir, Generalizations of Bernstein and Turán-type inequalities for the polar derivative of a complex polynomial, Mediterranean

J. Math. 17 (2020), (Art. 14) pp. 1–12.
[18] A. Mir, I. Hussain, On the Erdős-Lax inequality concerning polynomials, C. R. Acad. Sci. Paris Ser. I, 355 (2017), 1055–1062.
[19] A. Mir, M. I. Sheikh, Some upper bound estimates for the maximal modulus of the polar derivative of a polynomial, J. Contem-

porary Math. Anal. 55 (2020), 189–195.
[20] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, 2002.


