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Abstract. In this paper, we study fuzzy linear conformable differential equations using the general-
ized fuzzy conformable fractional differentiability concept. We give an explicit representation of q(1)-
differentiable and q(2)-differentiable solutions for appropriate differential equations. Finally, we give some
examples to illustrate our theoretical results.

1. Introduction

Derivatives of fuzzy valued mappings were developed in [1] that generalized and extended the concept
of Hukuhara differentiability (H-derivative) of set valued mappings to the class of fuzzy mappings. Using
the H-derivative the author in [2] developed a theory for fuzzy differential equations. In [3] the authors
introduced the notion of a fuzzy fractional derivative and the theory was developed in [4–9]. In [10] a
new definition of a fuzzy fractional derivative called the fuzzy conformable fractional derivative is given,
some useful results on fuzzy conformable fractional derivatives and fractional integrals are given and a
class of linear fuzzy conformable fractional differential equations is considered. For first order linear fuzzy
differential equations we refer the reader to [11].

The purpose of this paper is to consider the solutions of x(q)(t) = a(t)x(t) + σ(t) and x(q)(t) + a(t)x(t) =
σ(t) with x(0) = x0, where x(q) denotes the q-derivative of x, a : I → R, x0 ∈ RF, q ∈ (0, 1] and σ ∈
C(I,RF). In this paper, we transfer the idea of a variation of constant formula to conformable differential
equations. Our results extend the representation of (1)-differentiable and (2)-differentiable solutions in
[11] to the representation of q(1)-differentiable and q(2)-differentiable solutions. In particular, we give the
explicit representation of q(1)-differentiable and q(2)-differentiable solutions of fuzzy conformable fractional
differential equations when a < 0 and a > 0 (this is not included in [11] for the first differential equation). Also
under some suitable condition, q(1)-differentiable and q(2)-differentiable solutions of the second differential
equation exist; to achieve this we construct some H-differences.
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2. Preliminaries

Denote by RF := {u : R → [0, 1]} the class of fuzzy subsets of the real line satisfying the following
properties: u is normal (i.e. ∃x0 ∈ R, u(x0) = 1); u is a convex fuzzy set (i.e. u(λs + (1 − λ)r) ≥ min{u(s),u(r)},
∀λ ∈ [0, 1], s, r ∈ R); u is upper semicontinuous on R; [u]0 = cl{x ∈ R|u(x) > 0} is compact.

Then RF is called the space of fuzzy numbers. Now, R ⊂ RF. Let [u]α = {x ∈ R|u(x) ≥ α} for 0 < α ≤ 1,
u ∈ R. Then [u]α is called the α−level set of u, which is a nonempty compact interval for all α ∈ (0, 1]. The
notation [u]α = [uα,uα] denotes explicitly the α−level set of u. We refer to u and u as the lower and upper
branches of u, respectively. For u ∈ RF, we use the notation diam([u]α) = uα − uα to denote the length of u.

We define the sum u+v and the produce λu as [u+v]α = [u]α+ [v]α = [uα+vα,uα+vα] and [λu]α = λ[u]α,
for ∀α ∈ [0, 1], u, v ∈ RF and λ ∈ R.

The metric structure is given by the Hausdorff distance (see [12]) D : RF × RF → R+ ∪ {0}, D(u, v) =
sup
α∈[0,1]

max{|uα − vα|, |uα − vα|}, (RF,D) is a complete metric space and the following properties are well

known: D(u + w, v + w) = D(u, v), ∀u, v, w ∈ RF, D(ku, kv) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF, D(u + v,w + e) ≤
D(u,w) + D(v, e), ∀u, v, w, e ∈ RF.

Let I = (0, b) ⊂ R be an interval. We denote by C(I,RF) the space of all continuous fuzzy functions from
I to RF, which is a complete metric space with respect to the metric h(u, v) = supt∈I D(u(t), v(t)).

Definition 2.1 (see [11], Definition 2.1). Let u, v ∈ RF. If there exists w ∈ RF such that u = v + w then w is called
the H-difference of u, v and it is denoted by u 	 v.

In this paper, we use the sign 	 to represent the H-difference. Note that u 	 v , u + (−1)v.
The generalized fuzzy conformable fractional derivative was introduced in [13].

Definition 2.2 (see [13], Definition 2). Let F : I → RF be a fuzzy function and q ∈ (0, 1]. We say F is q-
differentiable at t ∈ I, if for all ε > 0 sufficiently close to 0, the H-differences F(t + εt1−q) 	 F(t), F(t) 	 F(t − εt1−q)
exist, and the limits (in the metric D)

lim
ε→0+

F(t + εt1−q) 	 F(t)
ε

and lim
ε→0+

F(t) 	 F(t − εt1−q)
ε

(1)

exist. We write (1) as Tq(F)(t) or F(q)(t).

Definition 2.3 (see [13], Definition 3). Let F : I→ RF be a fuzzy function and q ∈ (0, 1].
(q(1)) We say F is q(1)-differentiable at t ∈ I, if for all ε > 0 sufficiently close to 0, the H-differences F(t+εt1−q)	F(t),

F(t) 	 F(t − εt1−q) exist, and the limits (in the metric D)

lim
ε→0+

F(t + εt1−q) 	 F(t)
ε

and lim
ε→0+

F(t) 	 F(t − εt1−q)
ε

(2)

exist. We write (2) as T(q(1))(F)(t) or F(q(1))(t).
(q(2)) We say F is q(2)-differentiable at t ∈ I, if for all ε > 0 sufficiently close to 0, the H-differences F(t)	F(t+εt1−q),

F(t − εt1−q) 	 F(t) exist and the limits (in the metric D)

lim
ε→0+

F(t) 	 F(t + εt1−q)
−ε

and lim
ε→0+

F(t − εt1−q) 	 F(t)
−ε

(3)

exist. We write (3) as T(q(2))(F)(t) or F(q(2))(t).

Theorem 2.4 (see [13], Theorem 6). Let F: I → RF be fuzzy function, where Fα(t) = [ f α1 (t), f α2 (t)], α ∈ [0, 1]: (i)
If F is q(1)-differentiable, then f α1 (t) and f α2 (t) are q-differentiable and [F(q(1))(t)]α = [( f α1 )(q)(t), ( f α2 )(q)(t)]. (ii) If F is
q(2)-differentiable, then f α1 (t) and f α2 (t) are q-differentiable and [F(q(2))(t)]α = [( f α2 )(q)(t), ( f α1 )(q)(t)].
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Definition 2.5 (see [11], Definition 2.2). Let F : I→ RF and fix t ∈ I.
(i) We say F is (1)-differentiable at t, if for all h > 0 sufficiently close to 0, the H-differences F(t + h) 	 F(t) and

F(t) 	 F(t − h) exist, and the limits (in the metric D)

lim
h→0+

F(t + h) 	 F(t)
h

and lim
h→0+

F(t) 	 F(t − h)
h

(4)

exist. We write (4) as D1F(t) or F′(t).
(ii) We say F is (2)-differentiable at t, if for all h > 0 sufficiently close to 0, the H-differences F(t) 	 F(t + h) and

F(t − h) 	 F(t) exist, and the limits (in the metric D)

lim
h→0+

F(t) 	 F(t + h)
−h

and lim
h→0+

F(t − h) 	 F(t)
−h

(5)

exist. We write (5) as D2F(t) or F′(t).

Theorem 2.6. Let F : I→ RF, q ∈ (0, 1]:
(i) F is (1)-differentiable is equivalent to F is q(1)-differentiable, i.e.,

F(q(1))(t) = t1−qD1F(t) = t1−qF′(t).

(ii) F is (2)-differentiable is equivalent to F is q(2)-differentiable, i.e.,

F(q(2))(t) = t1−qD2F(t) = t1−qF′(t).

Proof. We present the details for case (i), since the other case is analogous.
Firstly, we establish necessity. Let F is (1)-differentiable and [D1F(t)]α = [ f ′α(t), 1′α(t)]. Let h = εt1−q.

Therefore, if h > 0 and α ∈ [0, 1], we have [F(t + h) 	 F(t)]α = [ fα(t + h) − fα(t), 1α(t + h) − 1α(t)]. Divide both
sides by h and pass to the limit, then by Definition 2.5, we have

[D1F(t)]α = [ f ′α(t), 1′α(t)] = lim
h→0+

[
fα(t + h) − fα(t)

h
,
1α(t + h) − 1α(t)

h

]
= lim
ε→0+

[
fα(t + εt1−q) − fα(t)

εt1−q ,
1α(t + εt1−q) − 1α(t)

εt1−q

]
=

[
tq−1 lim

ε→0+

fα(t + εt1−q) − fα(t)
ε

, tq−1 lim
ε→0+

1α(t + εt1−q) − 1α(t)
ε

]
.

Thus, we have

lim
ε→0+

fα(t + εt1−q) − fα(t)
ε

= t1−q f ′α(t) and lim
ε→0+

1α(t + εt1−q) − 1α(t)
ε

= t1−q1′α(t).

Similarly, we obtain

lim
ε→0+

fα(t) − fα(t − εt1−q)
ε

= t1−q f ′α(t) and lim
ε→0+

1α(t) − 1α(t − εt1−q)
ε

= t1−q1′α(t).

From Definition 2.3, we get F is q(1)-differentiable and F(q(1))(t) = t1−qD1F(t) = t1−qF′(t).
Next, we establish sufficiency. Let F is (q(1))-differentiable and [F(q(1))(t)]α = [ f (q)

α (t), 1(q)
α (t)]. Let ε = tq−1h

and then h = εt1−q. Therefore, if ε > 0 and α ∈ [0, 1], we have

[F(t + εt1−q) 	 F(t)]α = [ fα(t + εt1−q) − fα(t), 1α(t + εt1−q) − 1α(t)].

Divide both sides by ε and pass to the limit, then by Definition 2.3, we have

[F(q(1))(t)]α = [ f (q)
α (t), 1(q)

α (t)] =

[
t1−q lim

h→0+

fα(t + h) − fα(t)
h

, t1−q lim
h→0+

1α(t + h) − 1α(t)
h

]
.
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Thus, we have

lim
h→0+

fα(t + h) − fα(t)
h

= tq−1 f (q)
α (t) and lim

h→0+

1α(t + h) − 1α(t)
h

= tq−11
(q)
α (t).

Similarly, we obtain

lim
h→0+

fα(t) − fα(t − h)
h

= tq−1 f (q)
α (t) and lim

h→0+

1α(t) − 1α(t − h)
h

= tq−11
(q)
α (t).

From Definition 2.5, we get F is (1)-differentiable and F(q(1))(t) = t1−qD1F(t) = t1−qF′(t). The proof is fin-
ished.

Definition 2.7 (see [10], Definition 4). Let F ∈ C(I,RF) ∩ L1(I,RF), [F(t)]α =
[

f α1 (t), f α2 (t)
]
, t ∈ I, α ∈ [0, 1].

Define the fuzzy fractional integral for c ≥ 0 and q ∈ (0, 1], Ic
q(F)(t) = Ic

1(tq−1F)(t) =
∫ t

c
F(s)
s1−q dx, and [Ic

q(F)(t)]α =

[Ic
1(tq−1F)(t)]α =

[∫ t

c
F

s1−q (s)ds
]α

=
[∫ t

c
f α1

s1−q (s)ds,
∫ t

c
f α2

s1−q (s)ds
]
, where the integral

∫ t

c
f αi

s1−q (s)ds, for i = 1, 2 is the usual

Riemann improper integral.

Lemma 2.8 (see [10], Theorem 7). Let q ∈ (0, 1] and F, G : I → RF be q-differentiable and λ ∈ R. Then (i)
(F + G)(q)(t) = F(q)(t) + G(q)(t) and (ii) (λF)(q)(t) = λF(q)(t).

Lemma 2.9 (see [10], Theorem 8). Let F : I → RF be any continuous function on I. Then (Ic
q(F))(q)(t) = F(t), for

t ∈ I.

Theorem 2.10. Let F : I → RF be q(2)-differentiable on I and assume that the derivative F(q(2)) is integrable over I.
Then for each t ∈ I we have F(t) = F(0) 	 I0

q(−F(q(2)))(t).

Proof. Let [F(t)]α = [ fα(t), 1α(t)], ∀α ∈ [0, 1]. Since F is q(2)-differentiable, we have [F(q(2))(t)]α = [1(q)
α (t), f (q)

α (t)].
Then [F(0) 	 I0

q(−F(q(2)))(t)]α =
[

fα(0) + I0
q( f (q)

α )(t), 1α(0) + I0
q(1(q)

α )(t)
]

= [ fα(t), 1α(t)], t ∈ I,∀α ∈ [0, 1] and this
completes the proof.

Theorem 2.11. Let F : I→ RF be a continuous fuzzy function on I and let u(t) = γ	 I0
q(−F)(t), t ∈ I, where γ ∈ RF

is such that the previous H-difference exists for t ∈ I. Then u is q(2)-differentiable and u(q(2))(t) = F(t), t ∈ I.

Proof. Let t0 ∈ I and ε > 0 sufficiently close to 0. We have diam[u(t)]α = diam[γ]α − Ic
q(diam[F(t)]α).

Since F(t) is continuous, I0
q(F)(t) is q(1)-differentiable and I0

q(diam[F(t)]α) is non-decreasing in the variable
t for any α ∈ [0, 1], the diam[u(t)]α is non-increasing in t for each α ∈ [0, 1]. Therefore the following
H-differences exist and from Definition 2.7, we have

u(t0) 	 u(t0 + εt1−q) = −

∫ t0+εt1−q

t0

sq−1F(s)ds, u(t0 − εt1−q) 	 u(t0) = −

∫ t0

t0−εt1−q
sq−1F(s)ds.

Then, using Theorem 2.6 one has

lim
ε→0+

D
(

u(t0) 	 u(t0 + εt1−q)
−ε

,F(t0)
)

= lim
ε→0+

sup
α∈[0,1]

max


∣∣∣∣∣∣∣∣∣
∫ t0+εt1−q

t0
sq−1F(s)ds

ε
− F(t0)

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
∫ t0+εt1−q

t0
sq−1F(s)ds

ε
− F(t0)

∣∣∣∣∣∣∣∣∣


= lim
ε→0+

D


∫ t0+εt1−q

t0
sq−1F(s)ds

ε
,F(t0)

 = 0.
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Since F is continuous and 1(t) = I0
q(F)(t) is q(1)-differentiable, and from Lemma 2.9 we have 1(q)(t) = F(t)

for t ∈ I. Thus lim
ε→0+

D
(

u(t0)	u(t0+εt1−q)
−ε ,F(t0)

)
= 0. Similarly, we get lim

ε→0+
D

(
u(t0−εt1−q)	u(t0)

−ε ,F(t0)
)

= 0. Then

u(q(2))(t) = F(t), t ∈ I, and the proof is complete.

Theorem 2.12. Let F, G : I→ RF be two fuzzy function.
(i) If F(t) is q(1)-differentible and G(t) is q(2)-differentible on an interval (α, β) and if the H-difference F(t) 	 G(t)

exists for t ∈ (α, β) then F(t) 	 G(t) is q(1)-differentible and (F 	 G)(q(1))(t) = F(q(1))(t) + (−1)G(q(2))(t) for all t ∈ (α, β).
(ii) If F(t) is q(2)-differentiable and G(t) is q(1)-differentible on an interval (α, β) and if the H-difference F(t) 	G(t)

exists for t ∈ (α, β) then F(t) 	 G(t) is q(2)-differentible and (F 	 G)(q(2))(t) = F(q(2))(t) + (−1)G(q(1))(t).

Proof. We present the details only for case (i). Case (ii) is similar to case (i).
Since F(t) is q(1)-differentiable it follows that F(t + εt1−q) 	 F(t) exists, i.e., ∃u1(t, εt1−q), F(t + εt1−q) =

F(t)+u1(t, εt1−q). Similarly since G(t) is q(2)-differentiable there exists v1(t, εt1−q) such that G(t) = G(t+εt1−q)+
v1(t, εt1−q) and we get F(t + εt1−q) + G(t) = F(t) + G(t + εt1−q) + u1(t, εt1−q) + v1(t, εt1−q). Since the H-differences
F(t)	G(t) and F(t+εt1−q)	G(t+εt1−q) exist for ε > 0 such that t+εt1−q

∈ (α, β), we get F(t+εt1−q)	G(t+εt1−q) =
F(t) 	 G(t) + u1(t, εt1−q) + v1(t, εt1−q), that is the H-difference (F(t + εt1−q) 	 G(t + εt1−q)) 	 (F(t) 	 G(t)) exists
and

(F(t + εt1−q) 	 G(t + εt1−q)) 	 (F(t) 	 G(t)) = u1(t, εt1−q) + v1(t, εt1−q). (6)

By similar reasoning we get that there exist u2(t, εt1−q) and v2(t, εt1−q) such that F(t) = F(t − εt1−q) +
u2(t, εt1−q), G(t − εt1−q) = G(t) + v2(t, εt1−q) and so

(F(t) 	 G(t)) 	 (F(t − εt1−q) 	 G(t − εt1−q)) = u2(t, εt1−q) + v2(t, εt1−q). (7)

Note lim
ε→0+

u1(t,εt1−q)
ε = lim

ε→0+

u2(t,εt1−q)
ε = F(q(1))(t) and lim

ε→0+

v1(t,εt1−q)
ε = lim

ε→0+

v2(t,εt1−q)
ε = (−1)G(q(2))(t). Finally, by multi-

plying (6) and (7) with 1
ε and passing to the limit with ε → 0+ we get that F(t) 	 G(t) is q(1)-differentiable

and (F 	 G)(q(1))(t) = F(q(2))(t) + (−1)G(q(1))(t).

Theorem 2.13 (see [13], Theorem 7). Let F : I→ RF, G : I→ R, and G be q-differentiable.
(i) If G(t) ·G(q)(t) > 0 and F is q(1)-differentiable, then G ·F is q(1)-differentiable and (G ·F)(q(1))(t) = G(t) ·F(q(1))(t) +

F(t) · G(q)(t).
(ii) If G(t) ·G(q)(t) < 0 and F is q(2)-differentiable, then G ·F is q(2)-differentiable and (G ·F)(q(2))(t) = G(t) ·F(q(2))(t)+

F(t) · G(q)(t).

3. The equation x(q)(t) = a(t)x(t) + σ(t)

Consider the fuzzy linear conformable fractional differential equationx(q)(t) = a(t)x(t) + σ(t), t ∈ I,
x(0) = x0,

(8)

where a : I→ R, x0 ∈ RF, q ∈ (0, 1] and σ ∈ C(I,RF).
Denote [x(t)]α = [xα(t), xα(t)], [σ(t)]α = [σα(t), σα(t)], [x(0)]α = [x0

α, x0
α]. From Theorem 2.4, if x(t) is

q(1)-differentiable then [xq(1) (t)]α = [x(q)
α (t), x(q)

α (t)]. If x(t) is q(2)-differentiable then [xq(2) (t)]α = [x(q)
α (t), x(q)

α (t)].

Definition 3.1. Let x(t) : I → RF be a fuzzy function such that xq(1) (t) or xq(2) (t) exists. If x(t) and xq(1) (t) satisfy
problem (8), we say x(t) is a q(1)-solution of problem (8). Similarly if x(t) and xq(2) (t) satisfy problem (8), we say x(t)
is a q(2)-solution of problem (8).

We study problem (8) in three cases a(t) < 0, a(t) > 0 and a(t) = 0 for t ∈ I.
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Case 3.2. a(t) < 0 for t ∈ I.

We get a q(1)-solution via q(1)-differentiable and we consider the following ODEs system:
x(q)(t) = a(t)x(t) + σ(t),
x(q)(t) = a(t)x(t) + σ(t),
x(0) = x0,

x(0) = x0.

For solving this ODEs system, we have(
x(t)
x(t)

)(q)

=

(
0 a(t)

a(t) 0

) (
x(t)
x(t)

)
+

(
σ(t)
σ(t)

)
.

We denote

X(t) =

(
x(t)
x(t)

)
,A(t) =

(
0 a(t)

a(t) 0

)
,B(t) =

(
σ(t)
σ(t)

)
and the previous system is written as X(q)(t) = A(t)X(t) + B(t).

By the variation of constants formula for differential equation and Definition 2.7, we have

X(t) = eI0
q (A)(t)

(
X0 +

∫ t

0
sq−1

(
e−I0

q (A)(s)B(s)
)

ds
)
.

Therefore(
x
x

)
(t) =

(
cosh(I0

q(a)(t)) sinh(I0
q(a)(t))

sinh(I0
q(a)(t)) cosh(I0

q(a)(t))

)
×

((
x0

x0

)
+

∫ t

0
sq−1

(
cosh(I0

q(a)(s)) − sinh(I0
q(a)(s))

− sinh(I0
q(a)(s)) cosh(I0

q(a)(s))

) (
σ(s)
σ(s)

)
ds

)
.

Then we have(
x
x

)
(t) =

(
cosh(I0

q(a)(t)) sinh(I0
q(a)(t))

sinh(I0
q(a)(t)) cosh(I0

q(a)(t))

)

×

 x0 +
∫ t

0 sq−1
[
σ(s) cosh(I0

q(a)(s)) − σ(s) sinh(I0
q(a)(s))

]
ds

x0 +
∫ t

0 sq−1
[
−σ(s) sinh(I0

q(a)(s)) + σ(s) cosh(I0
q(a)(s))

]
ds

 .
Then the solution of the ODEs system is

x(t) = cosh(I0
q(a)(t))

{
x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) − σ(s) sinh(I0
q(a)(s))

]
ds

}
+ sinh(I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(I0

q(a)(s)) + σ(s) cosh(I0
q(a)(s))

]
ds

}
x(t) = sinh(I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) − σ(s) sinh(I0
q(a)(s))

]
ds

}
+ cosh(I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(I0

q(a)(s)) + σ(s) cosh(I0
q(a)(s))

]
ds

}
.
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Then for a(t) < 0, the q(1)-solution of the problem (8) is

x(t) = cosh(I0
q(a)(t))

(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) 	 σ(s) sinh(I0
q(a)(s))

]
ds

)
+ sinh(I0

q(a)(t))
(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) 	 σ(s) sinh(I0
q(a)(s))

]
ds

)
,

provided the H-difference in the integral terms exists.
However, the H-difference σ(s) cosh(I0

q(a)(s)) 	 σ(s) sinh(I0
q(a)(s)) always exists for a < 0.

Since the diameter of the α-level set of σ(s) cosh(I0
q(a)(s)) is diam([σ(s)]α) cosh(I0

q(a)(s)), which is greater
than the diameter of the α-level set of σ(s) sinh(I0

q(a)(s)), diam([σ(s)]α)(− sinh(I0
q(a)(s))). Here we have used

the positive character of the function sinh(I0
q(a)(s)) + cosh(I0

q(a)(s)). Finally, by Theorem 2.13-(i), we see this
solution is q(1)-differentiable on I.

Thus, we have proved the following result.

Theorem 3.3. For a(t) < 0, the q(1)-solution of problem (8) is given by

x(t) = cosh(I0
q(a)(t))

(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) 	 σ(s) sinh(I0
q(a)(s))

]
ds

)
+ sinh(I0

q(a)(t))
(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) 	 σ(s) sinh(I0
q(a)(s))

]
ds

)
.

For finding the q(2)-solution, change problem (8) to the corresponding ODEs system
x(q)(t) = a(t)x(t) + σ(t),
x(q)(t) = a(t)x(t) + σ(t),
x(0) = x0,

x(0) = x0,

and we solve this system.

Theorem 3.4. For a(t) < 0, the q(2)-solution of problem (8) is

x(t) = eI0
q (a)(t)

(
x0 	

∫ t

0
sq−1(−σ(s))e−I0

q (a)(s)ds
)

provided the H-difference exists.

Proof. By Theorem 2.12 and Lemma 2.9, and the H-difference x0 	
∫ t

0 sq−1(−σ(s))e−I0
q (a)(s)ds exists, then the

H-difference is q(2)-differentiable and(
x0 	

∫ t

0
sq−1(−σ(s))e−I0

q (a)(s)ds
)(q(2))

= σ(t) · e−I0
q (a)(t).

Denote G(t) = eI0
q (a)(t) and F(t) = x0 	

∫ t

0 sq−1(−σ(s))e−I0
q (a)(s)ds, since a(t) < 0, so G(t) · G(q)(t) < 0 and F(t) is

q(2)-differentiable, so the condition in Theorem 2.13-(ii) is satisfied. Then we get

xq(t) = a(t)eI0
q (a)(t)

(
x0 	

∫ t

0
sq−1(−σ(s))e−I0

q (a)(s)ds
)

+ σ(t)eI0
q (a)(t)e−I0

q (a)(t) = a(t)x(t) + σ(t),

i.e., x(t) is the q(2)-solution of (8).
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Case 3.5. a(t) > 0 for t ∈ I.

Considering q(1)-differentiability, problem (8) is transformed into the ODEs system
x(q)(t) = a(t)x(t) + σ(t),
x(q)(t) = a(t)x(t) + σ(t),
x(0) = x0,

x(0) = x0,

and we solve this system.

Theorem 3.6. For a(t) > 0, the q(1)-solution of problem (8) is

x(t) = eI0
q (a)(t)

(
x0 +

∫ t

0
sq−1σ(s)e−I0

q (a)(s)ds
)
.

Proof. By Lemmas 2.8 and 2.9, since a constant function is differentiable in any case of differentiability we

have x0 +
∫ t

0 sq−1σ(s)e−I0
q a(s)ds is q(1)-differentiable and

(
x0 +

∫ t

0 sq−1σ(s)e−I0
q (a)(s)ds

)(q(1))
= σ(t)e−I0

q (a)(t).

Denote G(t) = eI0
q (a)(t) and F(t) = x0 +

∫ t

0 sq−1σ(s)e−I0
q (a)(s)ds, since a(t) > 0, so G(t) · G(q)(t) > 0 and F(t) is

q(1)-differentiable, so the condition in Theorem 2.13-(i) is satisfied. Then

xq(t) = a(t)eI0
q (a)(t)

(
x0 +

∫ t

0
sq−1σ(s)e−I0

q (a)(s)ds
)

+ σ(t)eI0
q (a)(t)e−I0

q (a)(t) = a(t)x(t) + σ(t),

i.e., x(t) is the q(1)-solution of (8).

For finding the q(2)-solution, change problem (8) to the corresponding ODEs system
x(q)(t) = a(t)x(t) + σ(t),
x(q)(t) = a(t)x(t) + σ(t),
x(0) = x0,

x(0) = x0.

The solution of this system is

x(t) = cosh(I0
q(a)(t))

{
x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) − σ(s) sinh(I0
q(a)(s))

]
ds

}
+ sinh(I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(I0

q(a)(s)) + σ(s) cosh(I0
q(a)(s))

]
ds

}
x(t) = sinh(I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) − σ(s) sinh(I0
q(a)(s))

]
ds

}
+ cosh(I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(I0

q(a)(s)) + σ(s) cosh(I0
q(a)(s))

]
ds

}
.

Then for a(t) > 0, the q(2)-differentiable solution is

x(t) = cosh(I0
q(a)(t))

(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds

)
	 − sinh(I0

q(a)(t))
(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds

)
,
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provided the H-difference

x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds (9)

exists. Since for a(t) > 0, cosh(I0
q(a)(t)) ≥ sinh(I0

q(a)(t)) and thus ∀K ∈ RF, the H-difference cosh(I0
q(a)(t))K 	

(− sinh(I0
q(a)(t))K) exists.

Theorem 3.7. For a(t) > 0, the q(2)-solution of problem (8) is given by

x(t) = cosh(I0
q(a)(t))

(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds

)
	 − sinh(I0

q(a)(t))
(
x0 	

∫ t

0
sq−1

[
σ(s) cosh(I0

q(a)(s)) − σ(s) sinh(I0
q(a)(s))

]
ds

)

provided that the H-difference (9) exists.

Proof. According to Definition 3.1, we just need to prove x(t) is q(2)-differentiable. Considering Definition
2.3-(q(2)), if the H-differences x(t) 	 x(t + εt1−q) and x(t − εt1−q) 	 x(t) exist and the limits lim

ε→0+

x(t)	x(t+εt1−q)
−ε and

lim
ε→0+

x(t−εt1−q)	x(t)
−ε exist, then x(t) is q(2)-differentiable. So we only need to check above the H-differences and

limits exist. The details are shown as follows.

For α ∈ [0, 1], t ∈ I,

diam[x(t)]α = cosh(I0
q(a)(t))diam

[(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds

)]α
− sinh(I0

q(a)(t))diam
[(

x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds

)]α
=

(
cosh(I0

q(a)(t)) − sinh(I0
q(a)(t))

)
× diam

[(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds

)]α
.

Since cosh(I0
q(a)(s)) − sinh(I0

q(a)(s)) = e−I0
q (a)(s) is non-negative and decreasing and

x0 	
∫ t

0 sq−1
[
σ(s) sinh(I0

q(a)(s)) − σ(s) cosh(I0
q(a)(s))

]
ds is a q(2)-differentiable function (see Theorem 2.11), its

diameter is non-increasing in the variable t for α ∈ [0, 1] fixed. Then diam[x(t)]α is non-increasing in t for
α ∈ [0, 1] fixed. Therefore the H-differences x(t) 	 x(t + εt1−q) and x(t − εt1−q) 	 x(t) exist. For calculating the
q(2)-derivative, we set f1(t) = cosh(I0

q(a)(t)) and f2(t) = sinh(I0
q(a)(t)). We check that

lim
ε→0+

D
(

x(t)	x(t+εt1−q)
−ε , a(t)x(t) + σ(t)

)
= 0.

For this purpose, we prove that
∣∣∣∣ x(t)−x(t+εt1−q)

−ε − (a(t)x(t) + σ(t))
∣∣∣∣ and

∣∣∣∣ x(t)−x(t+εt1−q)
−ε − (a(t)x(t) + σ(t))

∣∣∣∣ tend to
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0 as ε→ 0+ uniformly for α ∈ [0, 1]. Indeed, with Definition 2.7, we have

x(t) − x(t + εt1−q)
−ε

− (a(t)x(t) + σ(t))

=
f2(t)
−ε

{
x0 +

∫ t

0
sq−1

[
σ(s) f1(s) − σ(s) f2(s)

]
ds

}
+

f1(t)
−ε

{
x0 +

∫ t

0
sq−1

[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

}
+
− f2(t + εt1−q)

−ε

x0 +

∫ t+εt1−q

0
sq−1

[
σ(s) f1(s) − σ(s) f2(s)

]
ds


+
− f1(t + εt1−q)

−ε

x0 +

∫ t1−q

0
sq−1

[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

 − σ(t)

− a(t)
[

f1(t)
{

x0 +

∫ t

0
sq−1

[
σ(s) f1(s) − σ(s) f2(s)

]
ds

}]
− a(t)

[
f2(t)

{
x0 +

∫ t

0
sq−1

[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

}]
=

(
f2(t) − f2(t + εt1−q)

−ε
− a(t) f1(t)

) {
x0 +

∫ t

0
sq−1

[
σ(s) f1(s) − σ(s) f2(s)

]
ds

}
+
− f2(t + εt1−q)

−ε


∫ t+εt1−q

t
sq−1

[
σ(s) f1(s) − σ(s) f2(s)

]
ds


+

(
f1(t) − f1(t + εt1−q)

−ε
− a(t) f2(t)

) {
x0 +

∫ t

0
sq−1

[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

}
+
− f1(t + εt1−q)

−ε


∫ t+εt1−q

t
sq−1

[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

 − σ(t)

=

(
f2(t) − f2(t + εt1−q)

−ε
− a(t) f1(t)

)
11(t) +

(
f1(t) − f1(t + εt1−q)

−ε
− a(t) f2(t)

)
12(t)

+ f2(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f1(s)ds

ε
− f2(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f2(s)ds

ε

− f1(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f2(s)ds

ε
+ f1(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f1(s)ds

ε
− σ(t),

where 11(t) =
{
x0 +

∫ t

0 sq−1
[
σ(s) f1(s) − σ(s) f2(s)

]
ds

}
and 12(t) =

{
x0 +

∫ t

0 sq−1
[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

}
. Then

for each t fixed, lim
ε→0+

sup
α∈[0,1]

∣∣∣∣ x(t)−x(t+εt1−q)
−ε − (a(t)x(t) + σ(t))

∣∣∣∣ = 0 due to the following considerations:

(1) f1(t) and f2(t) are q-differentiable at t, by Theorem 2.6, we have f (q)
1 (t) = a(t) f2(t) and f (q)

2 (t) = a(t) f1(t).
(2) 11(t) and 12(t) are bounded (in the variable α for each t fixed). Indeed, the support of x0 is bounded,

and the endpoints of the support of σ are continuous functions on the compact interval [0, t] and, thus,
bounded. Also, f1(t) and f2(t) are bounded on the compact interval [0, t].

(3) The following limits exist for every α ∈ [0, 1]:

lim
ε→0+

∫ t+εt1−q

t sq−1σ(s) fi(s)ds
ε = σ(t) fi(t), i = 1, 2, lim

ε→0+

∫ t+εt1−q

t sq−1σ(s) fi(s)ds
ε = σ(t) fi(t), i = 1, 2 and they are uniformly

in α ∈ [0, 1]. Since σ is a continuous fuzzy function, and hence,
∫ εt1−q

0 sq−1σ(s) fi(s)ds is (1)-differentiable with
derivative σ(t) fi(t), i = 1, 2.

(4) We have f 2
1 (t) − f 2

2 (t) = 1, ∀t ∈ I.
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Analogously we prove lim
ε→0+

sup
α∈[0,1]

∣∣∣∣ x(t)−x(t+εt1−q)
−ε − (a(t)x(t) + σ(t))

∣∣∣∣ = 0.

Then lim
ε→0+

x(t)	x(t+εt1−q)
−ε = a(t)x(t) + σ(t). Similarly lim

ε→0+

x(t−εt1−q)	x(t)
−ε = a(t)x(t) + σ(t). Consequently, x(t) is

q(2)-differentiable and x(q(2))(t) = a(t)x(t) + σ(t).

Case 3.8. a(t) = 0 for t ∈ I.

Considerx(q)(t) = σ(t), t ∈ I,
x(0) = x0.

From the results in Case 3.2 and Case 3.5 we have

Theorem 3.9. For a(t) = 0 the q(1)-solution of problem (8) is given by x(t) = x0 + I0
q(σ)(t), and the q(2)-solution of

problem (8) is x(t) = x0 	 I0
q(−σ)(t) provided that the H-difference exists.

Remark 3.10. We remark that [11, Cases 1-3] are special situations of Theorems 3.3, 3.4, 3.6, 3.7, 3.9 if q = 1, i.e.,
[11] coincide with the first order situation.

4. The equation x(q)(t) + a(t)x(t) = σ(t)

Consider the fuzzy linear conformable fractional differential equationx(q)(t) + a(t)x(t) = σ(t), t ∈ I,
x(0) = x0,

(10)

where a : I→ R, x0 ∈ RF, q ∈ (0, 1] and σ ∈ C(I,RF).
Here, we study problem (10) in three cases a(t) > 0, a(t) < 0 and a(t) = 0 for t ∈ I.

Definition 4.1. Let x(t) : I → RF be a fuzzy function such that xq(1) (t) or xq(2) (t) exists. If x(t) and xq(1) (t) satisfy
problem (10), we say x(t) is a q(1)-solution of problem (10). Similarly if x(t) and xq(2) (t) satisfy problem (10), we say
x(t) is a q(2)-solution of problem (10).

Case 4.2. a(t) > 0 for t ∈ I.

Theorem 4.3. For a(t) > 0, the q(1)-solution of problem (10) is x(t) = e−I0
q (a)(t)

(
x0 +

∫ t

0 sq−1σ(s)eI0
q (a)(s)ds

)
provided

that x(t + εt1−q) 	 x(t) and x(t) 	 x(t − εt1−q) exist for ε sufficiently small.

Proof. Problem (10) can be written as [x(q)
α (t), x(q)

α (t)] + [a(t)xα(t), a(t)xα(t)] = [σα(t), σα(t)], so x(q)
α (t) + a(t)xα(t) =

σα(t), x(q)
α (t) + a(t)xα(t) = σα(t). Thus

(
xαeI0

q (a)(t)
)(q)

(t) = σα(t)eI0
q (a)(t),

(
xαeI0

q (a)(t)
)(q)

(t) = σα(t)eI0
q (a)(t), therefore, by

Definition 2.7, it can be deduced that

xα(t) = x0α
e−I0

q (a)(t) + e−I0
q (a)(t)

∫ t

0
sq−1σα(s)eI0

q (a)(s)ds,

xα(t) = x0αe−I0
q (a)(t) + e−I0

q (a)(t)
∫ t

0
sq−1σα(s)eI0

q (a)(s)ds.

This proves that,

[x(t)]α = [x0]αe−I0
q (a)(t) + e−I0

q (a)(t)
∫ t

0
sq−1[σ(s)]αeI0

q (a)(s)ds.
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Thus x(t) = e−I0
q (a)(t)

(
x0 +

∫ t

0 sq−1σ(s)eI0
q (a)(s)ds

)
. We get that x(t) is a solution of problem (10) for a(t) > 0. Now

we check that x(t) is the q(1)-solution of problem (10).
The H-differences x(t + εt1−q)	 x(t) and x(t)	 x(t− εt1−q) exist. For calculating the q(2)-derivative, we set

f1(t) = e−I0
q (a)(t) and f2(t) = eI0

q (a)(t). We check that lim
ε→0+

D
(

x(t+εt1−q)	x(t)
ε , σ(t) 	 a(t)x(t)

)
= 0. For this purpose, we

prove that
∣∣∣∣ x(t+εt1−q)−x(t)

ε − (σ(t) − a(t)x(t))
∣∣∣∣ and

∣∣∣∣ x(t+εt1−q)−x(t)
ε − (σ(t) − a(t)x(t))

∣∣∣∣ tend to 0 as ε→ 0+ uniformly for
α ∈ [0, 1]. Indeed, with Definition 2.7, we have

x(t + εt1−q) − x(t)
ε

− (σ(t) − a(t)x(t))

=
f1(t + εt1−q)

ε

x0 +

∫ t+εt1−q

0
sq−1σ(s) f2(s)ds

 − f1(t)
ε

[
x0 +

∫ t

0
sq−1σ(s) f2(s)ds

]
+ a(t) f1(t)

[
x0 +

∫ t

0
sq−1σ(s) f2(s)ds

]
− σ(t)

=

(
f1(t + εt1−q) − f1(t)

ε
+ a(t) f1(t)

) [
x0 +

∫ t

0
sq−1σ(s) f2(s)ds

]
+

f1(t + εt1−q)
ε

∫ t+εt1−q

t
sq−1σ(s) f2(s)ds − σ(t)

=

(
f1(t + εt1−q) − f1(t)

ε
+ a(t) f1(t)

)
1(t) +

f1(t + εt1−q)
ε

∫ t+εt1−q

t
sq−1σ(s) f2(s)ds − σ(t),

where 1(t) = x0 +
∫ t

0 sq−1σ(s) f2(s)ds.

Then for each t fixed, lim
ε→0+

sup
α∈[0,1]

∣∣∣∣ x(t+εt1−q)−x(t)
ε − (σ(t) − a(t)x(t))

∣∣∣∣ = 0 due to the following considerations:

(1) f1(t) is q-differentiable at t, by Theorem 2.6, we have f (q)
1 (t) = −a(t) f1(t).

(2) 1(t) are bounded (in the variable α for each t fixed). Indeed, the support of x0 is bounded, and the
endpoints of the support of σ are continuous functions on the compact interval [0, t] and, thus, bounded.
Also, f1(t) and f2(t) are bounded on the compact interval [0, t].

(3) The following limits exist for every α ∈ [0, 1]:

lim
ε→0+

∫ t+εt1−q

t sq−1σ(s) f2(s)ds
ε = σ(t) f2(t), lim

ε→0+

∫ t+εt1−q

t sq−1σ(s) f2(s)ds
ε = σ(t) f2(t), and they are uniformly in α ∈ [0, 1].

Since σ is a continuous fuzzy function, and hence,
∫ εt1−q

0 sq−1σ(s) f2(s)ds is (1)-differentiable with derivative
σ(t) f2(t).

(4) We have f1(t) · f2(t) = 1, ∀t ∈ I.
Analogously we prove lim

ε→0+
sup
α∈[0,1]

∣∣∣∣ x(t+εt1−q)−x(t)
ε − (σ(t) − a(t)x(t))

∣∣∣∣ = 0.

Then lim
ε→0+

x(t+εt1−q)	x(t)
ε = σ(t) 	 a(t)x(t). Similarly lim

ε→0+

x(t)	x(t−εt1−q)
ε = σ(t) 	 a(t)x(t). Consequently, x(t) is

q(1)-differentiable and x(q(1))(t) = σ(t) 	 a(t)x(t), i.e., x(q(1))(t) + a(t)x(t) = σ(t).

Remark 4.4. We remark that ([10], Theorem 12) is special case of Theorem 4.3 when a(t) = 1 for t ∈ I.

For finding the q(2)-solution, change problem (10) to the corresponding ODEs system
x(q)(t) + a(t)x(t) = σ(t),
x(q)(t) + a(t)x(t) = σ(t),
x(0) = x0,

x(0) = x0.
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The solution of this system is

x(t) = cosh(−I0
q(a)(t))

{
x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) − σ(s) sinh(−I0
q(a)(s))

]
ds

}
+ sinh(−I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(−I0

q(a)(s)) + σ(s) cosh(−I0
q(a)(s))

]
ds

}
x(t) = sinh(−I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) − σ(s) sinh(−I0
q(a)(s))

]
ds

}
+ cosh(−I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(−I0

q(a)(s)) + σ(s) cosh(−I0
q(a)(s))

]
ds

}
.

Then for a(t) > 0, the q(2)-differentiable solution of problem (10) is

x(t) = cosh(−I0
q(a)(t))

(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(−I0

q(a)(s)) − σ(s) cosh(−I0
q(a)(s))

]
ds

)
	 − sinh(−I0

q(a)(t))
(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(−I0

q(a)(s)) − σ(s) cosh(−I0
q(a)(s))

]
ds

)
,

provided the H-difference

x0 	

∫ t

0
sq−1

[
σ(s) sinh(−I0

q(a)(s)) − σ(s) cosh(−I0
q(a)(s))

]
ds (11)

exists. Since for a(t) > 0, cosh(−I0
q(a)(t)) > sinh(−I0

q(a)(t)) and thus ∀K ∈ RF, the H-difference cosh(I0
q(a)(t))K	

(− sinh(I0
q(a)(t))K) exists.

Theorem 4.5. Let a(t) > 0 and then the fuzzy function x(t) given by

x(t) = cosh(−I0
q(a)(t))

(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(−I0

q(a)(s)) − σ(s) cosh(−I0
q(a)(s))

]
ds

)
	 − sinh(−I0

q(a)(t))
(
x0 	

∫ t

0
sq−1

[
σ(s) sinh(−I0

q(a)(s)) − σ(s) cosh(−I0
q(a)(s))

]
ds

)
,

is the q(2)-solution to problem (10), provided that H-difference (11) exists and x(t)	 x(t + εt1−q) and x(t− εt1−q)	 x(t)
exist for ε sufficiently small.

Proof. The H-differences x(t) 	 x(t + εt1−q) and x(t − εt1−q) 	 x(t) exist. For calculating the q(2)-derivative, we
set f1(t) = cosh(−I0

q(a)(t)) and f2(t) = sinh(−I0
q(a)(t)).

We check that lim
ε→0+

D
(

x(t)	x(t+εt1−q)
−ε , σ(t) 	 a(t)x(t)

)
= 0.

For this purpose, we prove that
∣∣∣∣ x(t)−x(t+εt1−q)

−ε − (σ(t) − a(t)x(t))
∣∣∣∣, ∣∣∣∣ x(t)−x(t+εt1−q)

−ε − (σ(t) − a(t)x(t))
∣∣∣∣ tend to 0 as

ε→ 0+ uniformly for α ∈ [0, 1]. Indeed, with Definition 2.7, we have

x(t) − x(t + εt1−q)
−ε

− (σ(t) − a(t)x(t))

=

(
f2(t) − f2(t + εt1−q)

−ε
+ a(t) f1(t)

)
11(t) +

(
f1(t) − f1(t + εt1−q)

−ε
+ a(t) f2(t)

)
12(t)

+ f2(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f1(s)ds

ε
− f2(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f2(s)ds

ε

− f1(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f2(s)ds

ε
+ f1(t + εt1−q)

∫ t+εt1−q

t sq−1σ(s) f1(s)ds

ε
− σ(t),
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where 11(t) =
{
x0 +

∫ t

0 sq−1
[
σ(s) f1(s) − σ(s) f2(s)

]
ds

}
and 12(t) =

{
x0 +

∫ t

0 sq−1
[
−σ(s) f2(s) + σ(s) f1(s)

]
ds

}
. Then

for each t fixed, lim
ε→0+

sup
α∈[0,1]

∣∣∣∣ x(t)−x(t+εt1−q)
−ε − (σ(t) − a(t)x(t))

∣∣∣∣ = 0 due to the following considerations:

(1) f1(t) and f2(t) are q-differentiable at t, by Theorem 2.6, we get f (q)
1 (t) = −a(t) f2(t) and f (q)

2 (t) = −a(t) f1(t).
(2) 11(t) and 12(t) are bounded (in the variable α for each t fixed). Indeed, the support of x0 is bounded,

and the endpoints of the support of σ are continuous functions on the compact interval [0, t] and, thus,
bounded. Also, f1(t) and f2(t) are bounded on the compact interval [0, t].

(3) The following limits exist for every α ∈ [0, 1]: lim
ε→0+

∫ t+εt1−q

t sq−1σ(s) fi(s)ds
ε = σ(t) fi(t), i = 1, 2,

lim
ε→0+

∫ t+εt1−q

t sq−1σ(s) fi(s)ds
ε = σ(t) fi(t), i = 1, 2 and they are uniformly in α ∈ [0, 1]. Since σ is a continuous fuzzy

function, and hence,
∫ εt1−q

0 sq−1σ(s) fi(s)ds is (1)-differentiable with derivative σ(t) fi(t), i = 1, 2.
(4) We have f 2

1 (t) − f 2
2 (t) = 1, ∀t ∈ I.

Analogously we prove lim
ε→0+

sup
α∈[0,1]

∣∣∣∣ x(t)−x(t+εt1−q)
−ε − (σ(t) − a(t)x(t))

∣∣∣∣ = 0.

Then lim
ε→0+

x(t)	x(t+εt1−q)
−ε = σ(t) 	 a(t)x(t). Similarly lim

ε→0+

x(t−εt1−q)	x(t)
−ε = σ(t) 	 a(t)x(t). Consequently, x(t) is

q(2)-differentiable and x(q(2))(t) = σ(t) 	 a(t)x(t) i.e. x(q(2))(t) + a(t)x(t) = σ(t).

Case 4.6. a(t) < 0 for t ∈ I.

Considering q(1)-differentiability, problem (10) is transformed into the ODEs system
x(q)(t) + a(t)x(t) = σ(t),
x(q)(t) + a(t)x(t) = σ(t),
x(0) = x0,

x(0) = x0.

The solution of this system is

x(t) = cosh(−I0
q(a)(t))

{
x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) − σ(s) sinh(−I0
q(a)(s))

]
ds

}
+ sinh(−I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(−I0

q(a)(s)) + σ(s) cosh(−I0
q(a)(s))

]
ds

}
x(t) = sinh(−I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) − σ(s) sinh(−I0
q(a)(s))

]
ds

}
+ cosh(−I0

q(a)(t))
{

x0 +

∫ t

0
sq−1

[
−σ(s) sinh(−I0

q(a)(s)) + σ(s) cosh(−I0
q(a)(s))

]
ds

}
.

Then for a(t) < 0, the q(1)-solution of the problem (10) is

x(t) = cosh(−I0
q(a)(t))

(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) 	 σ(s) sinh(−I0
q(a)(s))

]
ds

)
+ sinh(−I0

q(a)(t))
(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) 	 σ(s) sinh(−I0
q(a)(s))

]
ds

)
,

provided the H-difference in the integral terms exists. Since for a(t) < 0, we have (−I0
q(a)(t)) > 0, so

diam([σ(s)]α) cosh(−I0
q(a)(s)) ≥ diam([σ(s)]α) sinh(−I0

q(a)(s)),

then H-difference σ(s) cosh(−I0
q(a)(s)) 	 σ(s) sinh(−I0

q(a)(s)) always exists. By Theorem 2.13-(i), and
cosh(−I0

q(a)(s)) + sinh(−I0
q(a)(s)) > 0, we get this solution is q(1)-differentiable on I.
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Theorem 4.7. For a(t) < 0, the q(1)-solution of problem (10) is given by

x(t) = cosh(−I0
q(a)(t))

(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) 	 σ(s)sinh(−I0
q(a)(s))

]
ds

)
+ sinh(−I0

q(a)(t))
(
x0 +

∫ t

0
sq−1

[
σ(s) cosh(−I0

q(a)(s)) 	 σ(s) sinh(−I0
q(a)(s))

]
ds

)
.

Theorem 4.8. For a(t) < 0, the q(2)-solution of problem (10) is given by

x(t) = x0e−I0
q (a)(t)

	 e−I0
q (a)(t)

∫ t

0
sq−1(−σ(s))eI0

q (a)(s)ds.

provided the H-difference exists and x(t) 	 x(t + εt1−q) and x(t − εt1−q) 	 x(t) exist for ε sufficiently small.

Proof. For finding the q(2)-solution, problem (10) can be written as [x(q)
α (t), x(q)

α (t)] + [a(t)xα(t), a(t)xα(t)] =

[σα(t), σα(t)], so x(q)
α (t) + a(t)xα(t) = σα(t), x(q)

α (t) + a(t)xα(t) = σα(t). Thus
(
xαeI0

q (a)(t)
)(q)

(t) = σα(t)eI0
q (a)(t),(

xαeI0
q (a)(t)

)(q)
(t) = σα(t)eI0

q (a)(t), and, therefore, it can be deduced that

xα(t) = x0α
e−I0

q (a)(t)
− e−I0

q (a)(t)
∫ t

0
sq−1(−σα(s))eI0

q (a)(s)ds,

xα(t) = x0αe−I0
q (a)(t)

− e−I0
q (a)(t)

∫ t

0
sq−1(−σα(s))eI0

q (a)(s)ds.

This proves that, [x(t)]α = [x0]αe−I0
q (a)(t)

− e−I0
q (a)(t)

∫ t

0 sq−1[−σα(s),−σα(s)]eI0
q (a)(s)ds. So

x(t) = x0e−I0
q (a)(t)

	 e−I0
q (a)(t)

∫ t

0
sq−1(−σ(s))eI0

q (a)(s)ds,

provided the H-difference exists. The H-differences x(t) 	 x(t + εt1−q) and x(t − εt1−q) 	 x(t) exist. Similar
to the proof of Theorem 4.3, we get that x(t) is the q(2)-differentiable, i.e., x(t) is the q(2)-solution of problem
(10).

Case 4.9. a(t) = 0 for t ∈ I.

When a(t) = 0 case 4.9 of problem (10) is equivalent with case 3.8 of problem (8). In other words, they have
the same solutions; so we omit the details here.

5. Examples

Example 5.1. Consider the fuzzy linear conformable fractional differential equationx(0.5)(t) = tx(t) + 2tγ, t ≥ 0,
x(0) = γ,

where [γ]α = [α − 1, 1 − α].

From Theorem 3.6, we have the q(1)-solution is x(t) = γ
(
3e

2
3 t1.5
− 2

)
, that is shown in Figure 1.
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Figure 1: q(1)-Solution of Examples 5.1 and 5.2 using the q(1)-differentiability.

For finding the q(2)-solution, the solution of the corresponding ODEs system is

x(t) =(α − 1) cosh
(2

3
t1.5

) {
1 − 2

∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
+ (1 − α) sinh

(2
3

t1.5
) {

1 − 2
∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
,

x(t) =(α − 1) sinh
(2

3
t1.5

) {
1 − 2

∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
+ (1 − α) cosh

(2
3

t1.5
) {

1 − 2
∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
.

For t ∈
[
0, 1.5√1.5 ln 1.5

]
, γ 	

∫ t

0 s−0.5
[
2sγ sinh

(
2
3 s1.5

)
− 2sγ cosh

(
2
3 s1.5

)]
ds exists, since

diam([γ]α) ≥ diam
(∫ t

0 s−0.5
[
2s[γ]α sinh

(
2
3 s1.5

)
− 2s[γ]α cosh

(
2
3 s1.5

)]
ds

)
. So we have the q(2)-solution is

x(t) = γ(3e−
2
3 t1.5
− 2). This solution is shown in Figure 2.

Figure 2: q(2)-Solution of Examples 5.1 and 5.2 using the q(2)-differentiability.

Example 5.2. Consider the fuzzy linear conformable fractional differential equationx(0.5)(t) = −tx(t) + 2tγ, t ≥ 0,
x(0) = γ,
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where [γ]α = [α − 1, 1 − α].

For finding the q(1)-solution, the solution of the corresponding ODEs system is

x(t) =(α − 1) cosh
(
−

2
3

t1.5
) {

1 + 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}

+ (1 − α) sinh
(
−

2
3

t1.5
) {

1 + 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}
,

x(t) =(α − 1) sinh
(
−

2
3

t1.5
) {

1 + 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}

+ (1 − α) cosh
(
−

2
3

t1.5
) {

1 + 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}
.

We note that the H-difference 2sγ cosh
(
−

2
3 s1.5

)
	 2sγ sinh

(
−

2
3 s1.5

)
exists and we have the q(1)-solution is

x(t) = γ
(
3e

2
3 t1.5
− 2

)
, that is shown in Figure 1.

For t ∈ [0, 0.7], γ 	
∫ t

0 −2s0.5γe
2
3 s1.5

ds exists, since diam([γ]α) ≥ diam
(∫ t

0 −2s0.5[γ]αe
2
3 s1.5

ds
)
. From Thoerem

3.4 we have the q(2)-solution is x(t) = γ
(
3e−

2
3 t1.5
− 2

)
. This solution is shown in Figure 2.

Example 5.3. Consider the fuzzy linear conformable fractional differential equation

x(0.5)(t) + tx(t) = 2tγ, t ≥ 0,
x(0) = γ,

where [γ]α = [α − 1, 1 − α].

From Theorem 4.3, we have the q(1)-solution is x(t) = γ
(
2 − e−

2
3 t1.5

)
that is shown in Figure 3. (It is easy

to check that x(t + εt1−q) 	 x(t) and x(t) 	 x(t − εt1−q) exist over [0, 0.7].)

Figure 3: q(1)-Solution of Examples 5.3 and 5.4 using the q(1)-differentiability.
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For finding the q(2)-solution, the solution of the corresponding ODEs system is

x(t) =(α − 1) cosh
(
−

2
3

t1.5
) {

1 − 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}

+ (1 − α) sinh
(
−

2
3

t1.5
) {

1 − 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}
,

x(t) =(α − 1) sinh
(
−

2
3

t1.5
) {

1 − 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}

+ (1 − α) cosh
(
−

2
3

t1.5
) {

1 − 2
∫ t

0
s0.5

[
cosh

(
−

2
3

s1.5
)

+ sinh
(
−

2
3

s1.5
)]

ds
}
.

For t ∈ [0, 0.7], γ 	
∫ t

0 s−0.5
[
2sγ sinh

(
−

2
3 s1.5

)
− 2sγ cosh

(
−

2
3 s1.5

)]
ds exists, since

diam([γ]α) ≥ diam
(∫ t

0 s−0.5
[
2s[γ]α sinh

(
−

2
3 s1.5

)
− 2s[γ]α cosh

(
−

2
3 s1.5

)]
ds

)
. So we have the q(2)-solution

x(t) = γ
(
2 − e

2
3 t1.5

)
. This solution is shown in Figure 4. (It is easy to check that x(t) 	 x(t + εt1−q) and

x(t − εt1−q) 	 x(t) exist over [0, 0.7].)

Figure 4: q(2)-Solution of Examples 5.3 and 5.4 using the q(2)-differentiability.

Example 5.4. Consider the fuzzy linear conformable fractional differential equationx(0.5)(t) − tx(t) = 2tγ, t ≥ 0,
x(0) = γ,

where [γ]α = [α − 1, 1 − α].

For finding the q(1)-solution, the solution of the corresponding ODEs system is

x(t) =(α − 1) cosh
(2

3
t1.5

) {
1 + 2

∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
+ (1 − α) sinh

(2
3

t1.5
) {

1 + 2
∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
,

x(t) =(α − 1) sinh
(2

3
t1.5

) {
1 + 2

∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
+ (1 − α) cosh

(2
3

t1.5
) {

1 + 2
∫ t

0
s0.5

[
cosh

(2
3

s1.5
)

+ sinh
(2

3
s1.5

)]
ds

}
.
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We note that the H-difference 2sγ cosh
(

2
3 s1.5

)
	 2sγ sinh

(
2
3 s1.5

)
exists and we have the q(1)-solution is x(t) =

γ
(
2 − e−

2
3 t1.5

)
, that is shown in Figure 3.

For t ∈ [0, 0.7], γ	
∫ t

0 −2s0.5γe−
2
3 s1.5

ds exists, since diam([γ]α) ≥ diam
(∫ t

0 −2s0.5[γ]αe−
2
3 s1.5

ds
)
. From Theorem

4.8 we have the q(2)-solution is x(t) = γ
(
2 − e

2
3 t1.5

)
. That is shown in Figure 4. (It is easy to check that

x(t) 	 x(t + εt1−q) and x(t − εt1−q) 	 x(t) exist over [0, 0.7].)

6. Conclusion

A basic procedure for finding explicit q(1)-differentiable and q(2)-differentiable solutions of linear fuzzy
conformable fractional differential equations with constant function coefficients is established. From the
upper and lower branches, the linear fuzzy conformable fractional differential equations are transformed
into linear ordinary differential equations, and the variation of constant formula is used to derive q(1)-
differentiable solutions and q(2)-differentiable solutions.
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