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Abstract. In this article, we discuss interpolating sesqui-harmonic slant curves in generalized Sasakian
space form and find the necessary and sufficient conditions for slant curves to be interpolating sesqui-
harmonic. Next, we study sesqui minimal slant curves in generalized Sasakian space form. In particular

we give an example of interpolating sesqui-harmonic slant curve in Sasakian space form. Our paper
generalizes the results of the papers [8, 16, 20].

1. Introduction

Harmonic and biharmonic maps play a vital role in geometry, analysis and physics. They are one of the

most studied variational problems in geometric analysis and in theoretical physics they appear as critical

points of non-linear sigma model. A smooth map = : (M",g) — (N",h), where M"™ and N" are smooth

Riemannian manifolds, is said to be a harmonic map if it is critical point of the energy functional [7]

E(n) = lf Ichlzdvg
2 Jm

or equivalently, if the tension field
() = tr(Vdn) 1)

vanishes.

Biharmonic maps are a higher order generalization of harmonic maps and is defined as the critical point of
the bienergy functional for a map 7 between two Riemannian manifolds, which is given by [7]

Ex(m) = fM (e(r) v,

and characterized by the vanishing of bi-tension field

To(t) = tr(V'V™ = V) 1(mr) — tr(RN(dn, t(m))dm) = 0.
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B. Y. Chen and S. Ishikawa [6], studied biharmonic curves and surfaces in semi-Euclidean space. Moreover,
Chen and Ishikawa proved the non-existence of proper biharmonic surfaces in the 3-dimensional Euclidean
space R®. This result was further extended to surfaces in 3-dimensional space forms of non-positive cur-
vature by R. Caddeo, S. Montaldo and C. Oniciuc [5]. Biharmonic submanifolds in the 3-sphere $° were
classified by Caddeo, Montaldo and Oniciuc [4]. Jiang studied the first-variational and second-variational
formulas for the bi-energy functional using Euler-Lagrange equation [14]. On the other hand, E. Loubeau
and S. Montaldo [18] introduced the notion of biminimal immersion. Then D. Fetcu [8] obtained bihar-
monic Legendre curve in Sasakian space form. Further C. Ozgur and S. Guvenc [20] extended the results
in generalized Sasakian space form.

In [3], Branding introduced an action functional for maps between Riemannian manifolds that interpo-
lated between the actions for harmonic and biharmonic maps. A map n : (M",g) — (N", h) is said to be
interpolating sesqui-harmonic if it is a critical point of Es, 4,(m) [3]

Es, 5,(70) = 61 f ldnPdv, + 6, f [t(r0)lPdv,,
M M
where 01, 0; € R. The interpolating sesqui-harmonic map equation is given as

Toy,0, () = 0272(m0) — O17(m) = 0.

Further, a curve g is called Interpolating sesqui harmonic if the following equation satisfied [3]
T51,5,(10) = 02(VrVrVrT) = ,RN(T, ViT)T = 6: VT = 0, )

where 01,0, €e Rand T = ¢’

In[16], F. Karacaetal. studied interpolating sesqui harmonic Legendre curves in Sasakian space forms. They
found a necessary and sufficient condition for Legendre curves in Sasakian space forms to be interpolating
sesqui harmonic and extended the results in generalized Sasakian space forms [15].

Motivated by the above study, we consider interpolating sesqui harmonic slant curves in generalized
Sasakian space forms and find a neccessary and sufficient condition for a slant curve to be interpolating
sesqui harmonic. Moreover, we define interpolating sesqui minimal curve and find the condition for a slant
curve to be interpolating sesqui minimal. Finally we give an example to verify our result.

2. Preliminaries

Let N?"*! with the structure (¢, &, 7, g) be an almost contact metric manifold such that
& =1 X =-X+nX)3e

and
9(pX, pY) = g(X,Y) = n(X)n(Y)

for any vector fields X, Y in TN, where ¢, £ and 1 are the (1-1) tensor field, characteristic vector field and
one form respectively.

Ifdn(X,Y) = g(X, ¢Y) for all vector fields X, Y on N 2n+1 (¢, &, 1, 9), then the almost contact metric manifold
N2+1(¢, &, 7, g) is called a contact metric manifold. The almost contact structure of N is said to normal if

[6, PI(X, Y) = P*[X, Y] + [¢X, §Y] - [PX, Y] - $[X, pY]. )

A normal contact metric manifold is called a Sasakian manifold [2]. An almost contact metric manifold
N2l g called a Kenmotsu manifold [17] if

(Vx@)Y = g(@X, V)¢ = n(Y)pX,
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where V is the Levi-Civita connection.
An almost contact metric manifold N?**! is called a cosymplectic manifold [19] if V¢ = 0, which implies
that V& = 0.

The sectional curvature of a ¢-section is called a ¢-sectional curvature. A Sasakian (resp. Kenmotsu,
cosymplectic) manifold with constant ¢-sectional curvature c is called a Sasakian (resp. Kenmotsu, cosym-
plectic) space form.

The notion of a generalized Sasakian space form was introduced by Alegre et al. in [1]. An almost contact
metric manifold (N?**1, ¢, &, 1, 9) such that the curvature tensor satisfies

flg(Y, 2)X - 9(X, Z)Y} 4)
LA9(X, 9Z)pY = g(Y, 9Z)pX + 29(X, Y)PZ}
SInXn2)Y = n(Y)n(2)X)
9&X, Z)n()E — g(Y, Z)n(X)&,
for certain differentiable functions fi, f, and f; on N2*1 is called a generalized Sasakian space form [1]
denoted by N?"*1(f, f», f3) and such space form were studied in [10], [11].
A generalized Sasakian space form is classified as:
1L Iffi =3, = f5= 5, then N (f1, f5, f3) is a Sasakian space form N*"*1(c).
2. If i =2, f = f3 = <L, then N*"*1 (£, 5, f3) is a Kenmotsu space form N2"*(c).
3. If fi = fo = f3 =5, then N1 (fy, fo, f3) is a cosymplectic space form N*"*1(c).

R(X,Y)Z

+ + +

It is to be noted that interpolating sesqui-harmonic slant curve becomes interpolating sesqui harmonic
Legendre curve for 6 = g and biharmonic Legendre curve for 0 = g, 0 =1and 6; =0.

3. Interpolating Sesqui-Harmonic slant curves in generalized Sasakian space form

Let ¢ : I — (N,g) be an arc length curve in an n-dimensional Riemannian manifold (N, g). If
{E1, Ep,-++ ,Ey} is orthonormal vector field then the curve ¢ is called Frenet curve of osculating order
r,1<r

<nif [21]
T = E1 — (P/’ (5)
VrEr = kkE,
ViE; = —ki1Ei1+ kiE,'Jrl,fOl’ 2<i<n-1,
VTEn = _kn—lEn—l/

where {ki,k»,- -, k,_1} are curvature functions.

1. A geodesic is a Frenet curve of osculating order 1.
2. A circle is a Frenet curve of osculating order 2 if k; is a nonzero positive constant.

3. A helix of order r is a Frenet curve of osculating order r > 3 if ky,---,k,—; are nonzero positive
constants.

Definition 3.1. Let ¢ : I — N*"*1(f,, f2, f3) be a unit speed curve in generalized Sasakian space form. Then ¢ is
called a slant curve if there exist a constant angle O such that n(E;1) = cos 6.

Theorem 3.2. Let ¢ : [ — N2"+1(f1,f2,f3) is a slant curve of osculating order r, p = min{r,4} in generalized
Sasakian space form. Then ¢ is interpolating sesqui harmonic if and only if there exists 61, 0, such that

(1) T L Ey or ¢T € {Ey,--- ,E,},

(2)& LEyor&E€l{E,y,--- E,}and
(3) first p of the following equations are satisfied
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305k, =0,
81K — K& = kyk2] + 0 fiky — 0 f cos? Oky + 36, fok1g(&T, Ea)? — 62 fokin(Ea)? — d1ky = 0,
265k ka + 02k1kzy + 302 fok1g(pT, E2)g(¢pT, E3) — 62 fskan(E2)n(Es) = 0,

02(k1koks) + 362 f2k19(¢pT, E2)g(pT, E4) — 62 f3ki1(E2)n(E4) = 0.

Proof. Using (1) and (5) we have

ViE1 = kE;=1(p), (6)

ViViT = —KEy +K E;y +kikE;, (7)

ViVeVeT = (=3kik)Er + (k] — & — kik3)Ea + (2k;ka + k1K) E3 (8)
+  (kikoks)Es.

Next, making use of equation (4), we obtain
R(T,ViT)T = -fikiEs—3f£kig(¢pT, E2)T + f3iks cos? OF, ©9)
= ki cos On(E2)Eq + kin(E2)EL
Further, reporting equations (6), (8) and (9) in (2), we get
Touo (@) = 0a[-3kik|1E1 + [62(K) — K — ki k3)
- (52f3COS2 le + 52f1k1 - (51](1]1':2 + 62(2](1](2 + k1k§)E3 + 52(k1k2k3)E4
362 f2k1g(pT, E2)pT — 63 f3k11(E2)E.

Taking inner product with Eq, E;, E3 and E4 we obtain the result. 0O

+

Now we discuss the following five cases based on above theorem.
Casel: T L E;and & L Ep

Proposition 3.3. Let ¢ : [ — N?"*(f}, f, f3) is a slant curve of osculating order r, p = min{r, 4} in generalized
Sasakian space form with @T L E; and & L E,. Then @ is interpolating sesqui-harmonic with g—; # 0 if and only if

k1 = constant > 0,
K+I3=fi— ficos?0 -2,
ko = constant,

koks =0,

(10)

2 01
where f1 > f3cos” 0 + 5

Proof. 1If ¢T L E; and & L E; then we have g(¢T, E;) = 0 and g(E,, £) = 0. Now making use of Theorem 3.2
we obtain
k1 = constant > 0,
K/ =k = kak% + fiky — f3 cos® Oky — $ky =0,
Zkikz + klk/z =0,
kikoks = 0.

(11)

By using ki = constant > 0 in last three equations of (11) we get the result. O

Theorem 3.4. Let ¢ : I — N?"*1(f, f», f3) be a slant curve of osculating order r in generalized Sasakian space form
such that T L E; and & L E,. Then ¢ is interpolating sesqui-harmonic with % # 0 if and only if
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1. @ is of osculating order v = 2 and it is a circle with ky = \/ fi = facos?(0) — §t, where f — f3 cos? 6 > g—;
2. @ is of osculating order r = 3 and it is a helix with k2 + k3 = fi —f3cos? 6 — L, where fi > f3 cos? 6 + g—;

Proof. Suppose ¢T L E; and & L E; then we have g(¢T,E;) = 0 and g(&, Ep) =
If i > f3cos® 0 + g—;, then by Proposition 3.3, we get
(a) if @ is of osculating order r = 2 then it is a circle with

k1 = \/ﬁ —f3C0829— ﬁ,
02

where, fi — f7cos? 0 > 21

(b) If @ is of osculating order r = 3 then it is helix with

kf+k%:f1—f3c0528—6—;,

2 o1
where f; > f3cos” 0 + 5.

Conversely, if ¢ is a circle with k; = \/ fi — f3cos? 0 — g—; or a helix with k2 + k3 = f; — f3cos? 0 — 5 Then @
satisfies Theorem 3.2 and this completes the proof. [

In particular, using f; = <2, f; = 5! and 6 = Z in above theorem we have

Corollary 3.5. [16] Let ¢ : I — N?"*1(c) is a Legendre curve of osculating order r in Sasakian space form such that
¢T L E; withc # 1. Then

1. Ifc < 40—] — 3, then @ is interpolating sesqui-harmonic wlth > # 0if and only if it is geodesic.
2. Ifc> 4 — 3, then @ is interpolating sesqui-harmonic wlth L # 0 if and only if either

3_9
(@) If(p is of osculating order r = 2,n > 2 and it is circle wzth k=93 -3,

(b) If @ is of osculating order r = 3,n > 3 and it helix with k3 + k3 = (”3) g;

or

Moreover, for 0 = 7, 61 = 0 and 6; = 1 in Theorem 3.2 we have

Corollary 3.6. [8] Let ¢ : I — N>"*1(c) be a Legendre Frenet curve in a Sasakian-space form and ¢pT L E,. Then ¢
is proper biharmonic if and only if either

1. n > 2 and ¢ is a circle with k; = % Ve + 3, where ¢ > =3 and {T = Ej, Ep, ¢T, V1T, &1, -+ , &) is linearly
independent or

2. n > 3and @ is a helix with k¥ + k3 = ¢ + 3, where ¢ > =3 and (T = Ey, Ey, T, V1T, &1, - -+ , &) is linearly
independent.

If ¢ < =3, then @ is biharmonic if and only if it is a geodesic.
Case 2: ¢T||[E, and & L E.

Proposition 3.7. Let ¢ : I > N*"*1(fy, f, f3) is a slant curve of osculating order v , p = min{r,4} in generalized
Sasakian space form. Then @ is interpolating sesqui-harmonic with g—; # 0 if and only if

ki = constant >0,
1)
K+l = f1+3f2—f3cos26—6—1,
2
kr» = constant, kyks = 0.

Theorem 3.8. Let ¢ : I — N?"*L(f}, f», f3) be a slant curve of osculating order v in generalized Sasakian space form
such that ¢T || Ep and & L E,. Then @ is interpolating sesqui-harmonic wlth L # 0 if and only if either
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1. @isof osculating order r = 2 and it is circle with ky = \/fl +3f, — f3c0s? 6 — 2—;, where fi +3f, — fcos? 0 >

&
5 or

2. @ is of osculating order r = 3 and it is a helix with k, = 1 and k3 = fi +3f> — f3co0s* 0 — g—;.
Proof. 1f ¢T||E; and & L E; then we have

9(¢T,Ex) =+1, and g(&, Ep) =0. (12)

If fi +3f, — f3c08?0 > g—;, then ¢ is a circle with k; = 1 and ky = \/fl +3f — f3c08? 0 — g—;
Also, if ¢ is of osculating order r = 3,1 > 3, then it is a helix with k, = 1 givenby k = f; +3f, — f3 cos? 6 — g—l.
Conversely, if ¢ is helix with k2 + k3 = f1 + 3f> — f3cos? 0 — g—; and k; = 1. Then ¢ satisfies Theorem 3.2. [J

Case 3: ¢T L E; and & € span{Ey, E3, -, E\).

Theorem 3.9. Let ¢ : [ > N?"*1(f, f5, f3) be a slant curve of osculating order r > 4 in generalized Sasakian space
form such that ¢T L Ep and & € span{Ey, Es,--- ,Ey). Then @ is interpolating sesqui-harmonic with 2—; # 0if and
only if

ki = constant >0,
0
2,12 _ 2 2 1
ki+k; = fi— fzcos“ 0~ fzcos u—é—z,
ky = fscosu sinu cosv,
koks = fzcosu sinu sinv

where u and v are real valued angle functions.

Proof. Suppose ¢ is an interpolating sesqui-harmonic slant curve of osculating order r > 4 in N*'*1(f,, f2, f3).
Then we have [15],

& =cosu Ey+sinucosv E; +sinusinv Eg, (13)

where u, v are the real valued angle between £ and E;, E3 and the orthogonal projection of £ onto span{E,, E4}
respectively. Thus we have

n(Ey) = cosu,
n(Ez) = sinu cosv,
n(Ey) = sinu sinwv.

By using above equations and Theorem 3.2, the curve is interpolating sesqui-harmonic if

ki = constant > 0,
0
2 _ 2 2 1
k1+k§ = fi— facos~ 0 — f3cos u—é—z,
, .
kK, = fscosu sinu cosv,
koks = fzcosu sinu sinv.

Conversely, if ¢ satisfies the converse statement then the above four equations in Theorem 3.2 are satisfied.
Hence ¢ is an interpolating sesqui-harmonic. [

For 61 = 0,6, =1and 6 = 7, we have
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Corollary 3.10. [20] Let ¢ : [ — N?**1(f,, f,, f3) be a Legendre Frenet curve of osculating order r in a generalized
Sasakian space form. Then @ is proper biharmonic if and only if

ki = constant > 0,
E+k = fi— ficos’u
1 2 - 1 3 ’
k, = fscosusinucosv,
koks = fzcosusinusinv.

Case 4: £ L E; and ¢T € span{Ey, E3,- -+ , Eyl.

Theorem 3.11. Let ¢ : I — N*"*1(fy, fo, f2) be a slant curve of osculating order r > 4 in generalized Ssakian space
form such that & L E; and ¢T € span{Ey, E3,--- ,E,}. Then @ is interpolating sesqui-harmonic with g—; # 0 if and
only if

ki = constant >0,
01
K+l = fl—f3c0526+3f2cos2w—6—,
2
k, = =3fscosw sinw cosz,
koks = —3fscosw sinw sinz

where w and z are real valued angle function.

Proof. Suppose @ is an interpolating sesqui-harmonic slant curve of osculating order r > 4 in N*"*1(f,, f5, f3).
Then we have [15]

¢T = cosw E, +sinwcosz E3 +sinwsinz Ey (14)

where w, z are the real valued angle between £ and E;, E3, and the orthogonal projection of £ onto span{E,, E4}
respectively. Thus we have

g(Ez, ¢T) = cosw,
g(Es, ¢T) = sinw cosz,
g(E4, ¢T) = sinw sinz.

By using above equations and Theorem 3.2, the curve is interpolating sesqui-harmonic if

ki = constant > 0,
01
K+l = fl—f3c0526+3f2cos2w—6—,
2
k, = =3f,cosw sinw cosz,
koks = —3f,cosw sinw sinz.

Conversely, if ¢ satisfies the converse statement then the above four equations in Theorem 3.2 are satisfied.
Hence ¢ is an interpolating sesqui-harmonic. [

For 61 =0,6, =1,and 0 = § we have

Corollary 3.12. [20] Let ¢ be a Legendre Frenet curve of osculating order r in a generalized Sasakian space form
with f, #0, f3 # 0, ¢T € span{E,, ...,E,} and & L E,. Then ¢ is proper biharmonic if and only if

ki = constant > 0,
2 2
ki + k% = fi+3focos°w,
k, = =3f,coswsinwcosz,

koks = -=3f;coswsinwsinz.
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Case 5: & € span{Ey, E3, -+ ,E;} and ¢T € span{E,, E3,--- ,Ey}.
Making use of equations (13), (14) and Theorem 3.2 we obtain

Theorem 3.13. Let ¢ : [ = N*"*1(fy, fa, f2) be a slant curve of osculating order r > 4 in generalized Sasakian space
form such that ¢T € span{E,, Es,--- ,E,} and & € span{Ey, E3,--- ,E,}. Then @ is interpolating sesqui-harmonic
with & # 0 if and only if

ki = constant >0,
o
2,12 _ 2 2 2 1
ki+k; = fi—f3cos”0+3f,cos”w+ f3cos u—a,
k, = fscosusinucosv—3f,coswsinw cosz,
koks = fzcosusinusinv —3f, coswsinwsinz.

where 1,0, w and z are real valued angle function.
Using 61 = 0, 62 = 1 and 6 = 7 in above proposition we have

Corollary 3.14. [20] Let @ be a Legendre Frenet curve of osculating order r in a generalized Sasakian space form
such that ¢T € span{Ey,--- ,Ey} and & € span{Ey,--- ,E,,}. Then @ is proper biharmonic if and only if

ki = constant > 0,
2 _ 2 2
ki +k§ = fi1+3facos“w + f3cos” u,
k, = =3f,coswsinwcosz+ f3cosusinicosv,
koks = =3f;coswsinwsinz — f3cosusinusinw.

4. Interpolating sesqui-harmonic minimal curves

An isometric immersion 7 : (M",g) — (N",h) is said to be biminimal if it is a critical point of the bi-
energy functional under all normal variations [18]. Thus the biminimality is weaker than biharmonicity for
isometric immersions, in general. In this section we obtain the minimality of interpolating sesqui-harmonic
slant curves in 3-dimensional generalized Sasakian spaceform.

Definition 4.1. See [14] An immersion 7 : (M, g) — (N, h) is called biminimal if it is a critical point of the functional
EyA(m) := Ex(m) + AE(m), A €elR. (15)
The Euler-Lagrange equation of biminimal immersions is
[r2(m]* + Alr(m)]* =0, (16)
where A € R and L stand for normal component of [.].

In the similar way f-biminmal immersion was defined by F. Gurler and C. Ozgur [9]. Motivated by these
studies we define interpolating sesqui minimal curve as follows:

Definition 4.2. An immersion 1t between two Riemannian manifolds M and N is called interpolating sesqui minimal
if it is critical point of the energy functional Es, 5,(m) for variations normal to the image m(M) C N with fixed energy.
Equivalently, there exist a constant A € R such that

Es, 5,,1(10) = Es, 5,(11) + AE(m0). (17)
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The Euler Lagrange equation for A-interpolating sesqui minimal immersion is
[To,00,A (] = [To,5,(m)] = AlT(m)] = 0, (18)

where A € R.
Then the tension field of 7t is computed as

Tosn(m) = [=300kik)]E1 + [02(k) — ki — kik3) — 62 facos” Ok + 62 fik1 — 61k1]En

+  02(2kika + kik))E3 + (kikoks)Ey + 362 f2k1g(pT, E2)pT — 63 f3kin(E2)E.
T(;,o‘z(n) = [52(k£’ - IC? - klkg) - (52f3 COS2 Ok + (32f1k1 - 61k1]E2 + 62(2](1](2 + klk,z)Eg;
+  (kikok3)Ey + 302 f29(¢T, ki E2)pT — 02 f3kin(E2)E.

Now by the interpolating sesqui minimality condition
Ty o, (M) = ATH() = [02(k) — K — kik3) — B2 f3 cos” Oky + bz fiky — 1k1 — AkyJEz
+ 522K ks + k1K) Es + (kikoks)Es + 36, fog(¢T, ki E2)pT
- O fskin(E2)E = 0.
Taking inner product with E;, E3 and E4, respectively, we obtain
[62(K) — I — kak3) — 02 frc05%(O)kr + 02 fikn — Srky — Aki] (19)
+302 f2k19(¢T, E)* = b2 fak (n(E2))* = 0,
52(2K Ky + knky) + 302 foki g(@T, E2)g(¢T, Es) — 62 fskin(E2)n(Es) = 0,
(k1kaks) + +3062 f2k19(QT, E2)g(¢T, E3) — 62 fskin(E2)n(Es) = 0.
Casel. T L Eyand & L Ep
Sa(k} = I = kik3) — 62 frc0s*(0)ky
+02 fik1 — 01k1 + Aky =0,
02(2k ky + k1k}) = 0,
kikoks = 0.
Case 2. ¢T || E;and & L E;
Sa(k} =16 — kik3) — 02 f3%ka
+02 fik1 — 01ky + Aky + 302 f2k1 =0,
822k kz + kiky) = 0,
kikoks = 0.

Theorem 4.3. Let ¢ : [ — N?"*1(f}, fo, f3) be a slant curve in generalized Sasakian space form . Then ¢ is
interpolating sesqui harmonic minimal if and only if there exists 61,0, such that

[62(K) — I — kak3) — 02 frc05%(O)kr + Oz fikn — Srky — Aki] (12)
+302 fok1g(T, E2)* — 2 fskn (n(E2))* = 0,
622K Kz + knky) + 302 fok1 (T, E2)g(T, Ez) — 62 fskin(E2)n(Es) = 0,
(kikaks) + +302 fok19(¢pT, E2)g(¢T, E3) — 62 fskin(E2)n(Es) = 0.

Proposition 4.4. Let ¢ : I = N*"*1(fy, f», f3) be a slant curve in a 3-dimensional generalized Sasakian space form
with T L E,. Then ¢ is interpolating sesqui harmonic minimal if and only if

52(’(1’ - ki’ - klkg) - 52f3C2k1
+(52f1k1 - (Slkl + Akl =0,

2k ka + kik, = 0.



M. Igbal et al. / Filomat 36:1 (2022), 303-314 312
Proposition 4.5. Let ¢ : I = N*"*1(fy, f», f3) be a slant curve in a 3-dimensional generalized Sasakian space form
with ¢T||E,. Then @ is interpolating sesqui harmonic minimal if and only if

62(](1' - k’i*- - klkg) - 62f362k1
+(52f1k1 - 61k1 + /\kl + 3(52f2 =0,

2k ky + kik, = 0.

5. Example

Let (N>'*+1, ¢, &, 1, g) be a Sasakian-space form with coordinate functions {x1,--- , x,,
Y1, , Yn, z}. The vector fields

J d d d
Xi= 28—%,Xn+i =X = z(a_x,- + yiz),é = ZE (4)

form a g-orthonormal basis and the Levi-Civita connection is calculated as

)

sz'X/ = VXn+1X”+f =0, VXiX”"'f = 6ifé’ er1+in = _6ijé’
Vx;& = VeXi = —Xp1i, Vx,.:6 = VeXuni = Xi.

Let () = (p1(t), p2(t), @3(t), pa(t), s(t), Pe(t), p7(1)) be a unit speed slant curve in R”(=5). Then for a tangent
vector we have

T—l( ’i+ ’i+ ’i+ ’i+ ’i+ ’i+ ’i) (6)
- 2 (Pl axl (Pz axz (P3 &xs (P4 3]/1 (P5 ayZ (p6 ay3 (P7 0z .
From equation (4), we have
d d d
X1=2=—, Xp=2—, Xz=2—ry,
1 E 2 I 3 E
d d d d
Xy=0X1 = 2(% + yl(g)),Xs =Xy = 2<8_x2 + yZ(E))'

J 9 9
Xo=¢Xs =25+ (7)) &1=27

By using these values we have
T = 50+ 03 + 9 Xa + 1 Xa + 93X + 95 %e @
+ g5~ 9ia = 05 — i)
and
6T = 5= 01 — 9% = 95%s + PiXa + 03 + (X ) @
For slant curve 1(T) = cos(9), we have

P7 = Q194+ Pop5 + Q3p6 + 2 cos(0). (5)

Differentiating equation (4) and making use of (5)

1 ’” 1 ’’ ' 17 ’”
VT = E[(P4X1 +(P5X2+(P6X3+(p1 X4+(p2X5+(p3X6]. (6)
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Since ¢T L E, if and only if
PIPY + P2P5 + P3P6 = Qi + P5Py + Qs -

Then using 6 = 7 and @4 = @5 = @ = 0 in above equations, we get ¢ = V3sint,; = 0 and @3 = V3cost.
Therefore we have o) = (\/_ 3sint, 0, V3cost,0,0,0, 2). Now making use of equation (6) we have

1
VT = E[ \/gcostX4 - \/§sintX6].

Taking inner product of above equation with itself we have k; = V3, which satisfy Theorem 3.2 for the case
of osculating order 2, T L E;,01 = —25and 6, = 8

6. Applications

For particular values of fi, f, and f;, we have the following results for Sasakian, cosymplectic and
Kenmotsu space forms.

Corollary 6.1. Let ¢ : I — N?"*1(c) be a slant curve of osculating order r in Sasakian space form such that T L E,,
p = min{r,4}. Then @ is interpolating sesqui-harmonic wzth > # 0if and only if

ki = constant > 0,
3 ¢-1 o
k2 k2 — Cc+ _ 2 _ _1
1+ kK 1 1 Cos 0 5
kks = 0.

Corollary 6.2. Let ¢ : I — N>"*1(c) be a slant curve of osculating order r in cosymplectic space form such that
¢T L E,. Then @ is interpolating sesqui-harmonic with g’—; # 0 if and only if

ki = constant > 0,
2o = Sl
KG+ig = 1°1°C 0 5,
koks = 0

Corollary 6.3. Let ¢ : I — N?"*1(c) be a slant curve of osculating order r in Kenmotsu space form such that
¢T L Ey, p = min{r,4}. Then ¢ is interpolating sesqui-harmonic with g—; # 0 if and only if

ki = constant > 0,
2,,2 _ €=-3 ¢+ 1 0s2 0 — o
kKi+k = 2 1 0 5,
koks = 0.

Theorem 6.4. Let ¢ : [ — N*"*1(c) be a slant curve of osculating order r in Sasakian space form such that ¢T L E,.
Then

L Ife3 <<=leos?0+ f;’—; then @ is interpolating sesqui-harmonic with 2—; # 0 if and only if it is geodesic.

c+3 c=1 0
2.1 Sl cos? 6 + 5, then @ is interpolating sesqui-harmonic wzth > # 0 if and only if either one of the

followzng holds:
(a) ¢ isof osculating order r = 2,n > 2 and it is a circle with
ki = \/% S cos?0 -2 L, where, e — eos? 6 >

(b) @ is of osculating order v = 3, n > 3 and it is a helix with
B +13 =22 - Slcos? 0 — &, where 2 > L cos? 0 + &
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Corollary 6.5. Let ¢ : I — N?"*1(c) be a slant curve of osculating order r in cosymplectic space form such that
¢T L Ey. Then
1. If £ < £cos? 0+ g—; then ¢ is interpolating sesqui-harmonic with g—; # 0 if and only if it is geodesic.
2. If$ > §$cos? 0+ g—; then @ is interpolating sesqui-harmonic with g—; # 0if and only if either one of the following

holds:
(a) ¢ isof osculating order r = 2,n > 2 and it is circle with

k1= \/§—§cos?0 - g—;,where £ —<cos’0 > g—;
(b) @ is of osculating order r = 3,n > 3 and it is a helix with
k2413 = § — £ cos? 0 — §t, where § > § cos? 0 + &L
Corollary 6.6. Let ¢ : | = N>"*1(c) be a slant curve of osculating order r in Kenmotsu space form such that ¢T L E,
and . Then
1L IfP <cos’0+ g—; then @ is interpolating sesqui-harmonic with g—; # 0 if and only if it is geodesic.
2. If 2 > ¢l cos? 0 + g—; then @ is interpolating sesqui-harmonic with 2—; # 0 if and only if either one of the
following holds:
(a) @ isof osculating order r = 2,n > 2 and it is circle with

k= \/ﬁ -l cos?0 - g—;,where 3 _ et 5529 > g’—;

1 R
(b) @ is of osculating order r = 3,n > 3 and it is a helix with
kK +k = %—%COSZG—%,whem% > %C0529+2—1.
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