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The n-Hermitian Solutions to Some Systems of Real Quaternion Matrix
Equations

Xiang Zhang®

#School of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, P.R. China

Abstract. Let H™" be the set of all m X n matrices over the real quaternion algebra. We call that A € H™"
is n-Hermitian if A = A™, where A™ = —nA™n, 1 € {i,j, k}, i,j, k are the quaternion units. In this paper, we
derive some solvability conditions and the general solution to a system of real quaternion matrix equations.
As an application, we present some necessary and sufficient conditions for the existence of an n-Hermitian
solution to some systems of real quaternion matrix equations. We also give the expressions of the general

n-Hermitian solutions to these systems when they are solvable. Some numerical examples are given to
illustrate the results of this paper.

1. Introduction

Throughout, the set of all m X n matrices over the quaternion number field H
H = {a + mi + mj + ask| i = 7 = k2 = ijk = —1,a,41,a,23 € R}.

by H™". For a matrix A, A* stands for the conjugate transpose of A. I denotes the identity matrix with
appropriate sizes. The Moore-Penrose inverse A" of A is defined to be the unique matrix A, such that

(1) AATA = A, (ii) ATAAT = AY, (iii) (AAT) = AAT, (iv) (ATA) = ATA.

Furthermore, L4 and R4 stand for the two projectors Ly = I — A'A and R4 = I — AAT induced by A,
respectively. It is known that L4 = L, and R4 = R,. The symbol r(A) stands for the rank of a given real
quaternion matrix A. For a real quaternion matrix A, (A) = #(A™) ([4]). A quaternion matrix A is called an
n-Hermitian matrix if A = A" = —nA*n, n € {i,j, k} ([22]).

Quaternions were introduced by Irish mathematician Sir William Rowan Hamilton Nowadays quater-
nion matrices can be used in signal and color image processing, quantum physics, computer science, and

so on (e.g. [1], [19]-[21], [27]). Many problems in systems and control theory can be reduced to solving
systems of quaternion matrix equations (e.g. [6]-[16], [26]).
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The n-Hermitian matrices have some applications in widely linear modelling, convergence analysis in
statistical signal processing ([21]). He and Wang ([4]) gave some solvability conditions and general solution
to the real quaternion matrix equation involving n-Hermicity

Ar1X + (A X)" +B1YB!" + C1ZCl = Dy,

where Y and Z are n-Hermitian. Horn and Zhang ([17]) derived an analogous special singular value
decomposition for n-Hermitian matrices. He and Wang ([2]) considered the n-Hermitian solution to a
system of real quaternion matrix equations

A1X =Cy, XB; =Dy,
A)Y = Cy, YBy = Dy,
C3XCI + DsYD! = As.

Very recently, He, Wang and Zhang ([5]) presented a simultaneous decomposition for a set of nine real
quaternion matrices involving n-Hermicity: A; € HP™i B; € HP*'#1 and C; € HP*¥, where C; are 1-
Hermitian matrices, (i = 1,2,3). The reference ([5]) gave some necessary and sufficient conditions for the
existence of the general n-Hermitian solution to the system of coupled real quaternion matrix equations
involving n-Hermicity

AXAT +BXinB =C;, (i=1,2,3),

where A; € HP* B; € HP*!"1 and C; € HP*¥, and C; are -Hermitian matrices.

Motivated by the work mentioned above and the recent increasing interests in n-Hermitian quaternion
matrices and real quaternion matrix equations, we in this paper consider the n-Hermitian solution to the
following system of real quaternion matrix equations

A1 X =C, X=X,

AXAT =G,
ASXAﬁ* =Gs, (1)
AyXAT = Cy

where Ay, C1, Az, A3, Ay, Co = C),C3 = C}', Cy = C” be known over H, and X = X™ be unknown. We aim to
give some solvability conditions and general n-Hermitian solution to the system of real quaternion matrix
equations (1). Observe that the following system of real quaternion matrix equations

A1 X =(Cy,

XBy =Dy,
Ay XB, = Gy, (2)
A3XB3 = C3,

A4XB4 = C4

plays an important role in investigating the n-Hermitian solution to (1). Another goal of this paper is to
give some solvability conditions and the general solution to the system (2).

The remainder of the paper is organized as follows. In Section 2, we give some lemmas which are
used in this paper. In Section 3, we present some necessary and sufficient conditions for the existence of a
solution to the system of real quaternion matrix equations (2) and provide the general solution to system
(2). In Section 4, we derive some solvability conditions and the general n-Hermitian solution to the system
of real quaternion matrix equations (1).

2. Preliminaries

In this section, we review some lemmas which are used in this paper.
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Lemma 2.1. ([23]) Let A; € H™",B; € H™,C; € H™, and D1 € IH" be given and X € H™" be unknown.

The the system of real quaternion matrix equations
A1X=Cy, XB1 =Dy
is consistent if and only if
Ra4,C1 =0, D1Lg, =0, A1D1 = C1By.
In this case, the general solution to (3) is
X = AlCy + La,D1B! + La, YRy,
where Y is an arbitrary matrix over H with appropriate size.
Lemma 2.2. ([3]) Let Aj;, Bjj, and Cy; (i = 1,2) be given with appropriate sizes. Set
A =ApLa,, B=Rp,By, C=Cyp—AnA},CiB} By, D = Ra,An.
Then the system
A1 XBi1 = Cr1, AnXBy =Cxp
is consistent if and only if
RaCLp =0, R4,Ci=0, Cilg,=0,i=1,2
In this case, the general solution of system (4) can be expressed as
X =A!,C11B}, + La,A'CB}, — La, A"A»D'RACB}, + D'R4CB'Rg,,
+ La,Laly + UsRpRp,, + La,,U3Rp,, + La,UsRp,,,
where Uy, Uy, Us, and Uy are arbitrary matrices over IH with appropriate sizes.
Lemma 2.3. ([3], [25]) Let A1, B1, C3, D3, Cy, Dy, and E; be given. Set
A =Ry,C3,B=D3Lp,C=RuCys,D=DyLp,
E =Ry E1Lg,,M = RAC,N = DLg, S = CL.
Then the real quaternion matrix equation
A1X1 + XoBy + C3X3D3 + C4XyDy = Eq

is consistent if and only if
RMRAE =0,ELgLy = 0,RAELp = 0,RcELg = 0.

In this case, the general solution can be expressed as
X1 =A¥(E; — C3X3D3 — C4XyDy) — AT7B1 + Lo, Te,
Xo =Ry, (E1 — C3X3D5 — C4X4D4)B! + A1ATT; + TsRp,,
X3 =AEB' — A'CM'EB' — A'SC'ENTDB' — ATST,RNDB" + LAT4 + T5R3,
X, =M'ED" + S'SC'EN' + LyLsT1 + LyT>Ry + T3Rp,
where Ty, ..., Tg are arbitrary matrices over H with appropriate sizes.

The following lemma can be easily generalized to H.

©)

Lemma 2.4. ([18]) Let A € H™",B ¢ H™*,C e H*",D € H™?,E € HP",Q € H™**, and P € H*™ be given.

Then
(1) 7(A) + r(R4B) = r(B) + r(RgA) = r(A, B).

(2) r(A) + r(CL4) = r(C) + r(ALc) = r(é)
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3. Solvability conditions and general solution to the system (2)

In this section, we consider the system of real quaternion matrix equations (2). We derive solvability
conditions and general solution to the system (2). Now we give the fundamental theorem of this section.

Theorem 3.1. Let Aq,B1,C1,D1,A>, By, Co, Az, B3, C3, Ay, By, C4 be known over H, and X be unknown. Set

At = AiniLa,, Bii = Rp,Bis1, Cii = Cip1 — Ais1(AIC1 + La,D1BDBi, (i =1,2,3), (6)
A = ApLa,, B = Rp, By, C = Cyp — ApAl,C11B, By, D = Ra, A, )
RgR
As = (LayLa, Lay), Bs = ( R B) ®)
Bss
Cs = AL,Cs3BY; — AT, C11BY, — La,, AYCBY, + La,,A"A%,D'RACB}, - D'RACB'Rg,,, )
Ag = Ra,La,,, Bs = Rp,,Lp;, Co = Ra;La,,, D = Rp,, Lps, (10)
E = Ra,CsLs,, M = Ry,C¢,N = DgLs,, S = CoL. (11)
Then the following statements are equivalent:
(1) The system of real quaternion matrix equations (2) is consistent.
2)
Ra,C1 =0,D1Lp, =0,A1Dy = C1By, (12)
Ra,Cii =0,CiiLp, =0, (i=1,2,3), RaCLg =0, (13)
RmRA,E =0,ELg, Ly = 0,R4,ELp, = 0,Rc,ELg, = 0. (14)
®3)
By
1Ay, C1) =r(Ar), r D)= r(B1),A1D1 = C1 By, (15)
Civ1 A1) _ (A AiiD1 Cina) 4 .
r(ClBi+1 A1 ) - r( Al ),7’( B1 Bj+1) - r(Bll B1+1)I (l - 1/ 2/ 3)/ (16)
-C, Ay 0 0 A
B, 0 By B !
0 As G AsDi|=7 122 +1(B1, B2, Bs), (17)
0 A1 C1B3 ClBl ’
0 o0 B, Bs By By
Ay Ay -C; 0 0 0 iz ‘%2
3
A 00 G 0 ADY Vo a4 x(By, By, By, Ba), (18)
0 Ay 0 0 Cy 0 A 0
Al 0 -CiB, 0 -CBy 0 01 A
0 A 0 0 CBy 0 !
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0 B2 B3 0 B1 0

0 BZ 0 B4 0 Bl

A -G 00 0 —-ADi|_ (B2 B3 0 B 0
r As 0 GCs 0 AzDy —AzDq| r B, 0 By, 0 B

A4 O 0 C4 0 0

Ay 0 0 (B, 0 0

0 B2 B4 Bl A

A, -G 0 0 3 1
"l A, 0 C, AD|=T 1122 +1(B1, Bz, Ba),

Ay =GBy 0 0 4

0 B3 B4 Bl A

Az —GC3 0 0 3 1
" A 0 Cs ADy|™7 1123 +7(B1, B3, Ba).

4

Ay —C1B3 0 0

In this case, the general solution to system (2) can be expressed as
X = AICy + La,D1B! + Lo, YRg,,

where

Y =AY ,C11B, + La,A'CB}, — La, A"AnD'RACB}, + D'RACB'Rg,,
+ LAHLA U1 + u2RBR311 + LAH U3R322 + LAZZ U4RBH,

or
Y = A§3C33B;3 - LA33 u5 - U6RB33,
u
( 1) = A}(Cs — La,,U3Rp,, — La,, UsRp,,) — AiT7Bs + La, Té,

Us

(Ua, Ug) = Ray(Cs — La, UsRp,, — Lap,UsRp,,)BE + AsALT; + TR,

Us = AJEB} — ALCeM'EBY — ATSCIELENTDgBE — ALST,RND6B] + La Ts + T5Rg,

Uy = M'ED} + S'SCIEN' + LiLs Ty + LuT2Ry + T5Rp,,

and T, ..., Tg are arbitrary matrices over IH with appropriate sizes.

Proof. (1) & (2) : We separate the real quaternion matrix equations in system (2) into three groups

A1X = Cl, XB1 = Dl,

AzXBz = Cz, A3XB3 = C3,
and

AsXBy = Cy.

319

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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It follows from Lemma 2.1 that the system of real quaternion matrix equations (29) is consistent if and only
if

Ra,C1 =0,D1Lg, =0,A1Dq = CBy. (32)
In this case, the general solution to the system (29) can be expressed as

X = ATCy + La,D1B} + La, YRg,, (33)
where Y is an arbitrary matrix over H with appropriate size. Substituting (33) into (30) and (31) gives

Ao(ATCy + La,D1B})By + AsLa, YRp, By = Cy,

A3(ATCy + La,D1B})Bs + AsLa, YRp,Bs = C3 (34)
and

Ay(AICy + La,D1B)By + AsLa, YRp, By = Cy, (35)
ie.,

A11YBy1 = Cyy,

A»nYBy = Cyy, (36)
and

A33YBsz = Cs3, (37)

where Aj;, Bii, Ci; are defined in (6). Hence, the system (2) is consistent if and only if the matrix equations
(36) and (37) are consistent, respectively. By Lemma 2.2, we know that the system of real quaternion matrix
equations (36) is consistent if and only if

RaCLg =0, Ra,,C11 =0, Ci1Lp, =0, Ra,,Co2 =0, CooLp,, = 0. (38)
In this case, the general solution to the system of real quaternion matrix equations (36) can be expressed as

Y =AY, C11B}, + La, A'CB}, — La, A"A»D'R4CB}, + D'R4CB'Rg,,
+ LAHLA U1 + UZRBRBH + LAn U3R322 + LAzz U4RBH, (39)

where A, B, C, D are defined in (7), Uy, Uy, U3, and Uy are arbitrary matrices over H with appropriate sizes.
It follows from Lemma 2.2 that the real quaternion matrix equation (37) is consistent if and only if

R4,,C33 =0, Cs3Lg,, = 0. (40)
In this case, the general solution to the real quaternion matrix equation (37) can be expressed as
Y = AL,C33Bl; — La, Us — UgRg,,, (41)

where Us and Us are arbitrary matrices over H with appropriate sizes. Equating Y in (39) and Y in (41)
gives

Al C11BY, + La, ATCBY, — La, A"A2D'RACBY, + D'RACB Ry, + La,, Lal; + U2RpRg,,
+ LA” u3RBzz + LAZZ U4RB” = A§3C33B§3 - LA33 U5 - U6RB33,

i.e.,

u
A5 (LI;) * (UZ/ u6)B5 + LA“ U3R322 + LAll U4RBH = C5, (42)
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where As, Bs, Cs are defined in (8) and (9). Now we want to solve the real quaternion matrix equation (42).
It follows from Lemma 2.3 that the real quaternion matrix equation (42) is consistent if and only if

RmRu.E = 0,ELg,Ly = 0, Ra,ELp, = 0, Re,ELp, =0, (43)

where Ag, Bs, Co, Ds, E, M, N, S are defined in (10) and (11). In this case, the general solution to the real
quaternion matrix equation (42) can be expressed as

u
(u;) = AI(Cs — La, U3Rp,, — La, UsRp,,) — ALT7Bs + L, T, (44)
(Ua, Ug) = Ras(Cs — La, UsRp,, — La, UsRp,,)BE + AsAIT; + TsRp,, (45)
Us = ALEB} — AICeM'EB! — AISCIELEN'D¢Bf — AIST,RyDgBf + La, Ts + TsRg,, (46)
Uy = M'ED} + S'SCIEN™ + LyLsTy + LuT2Ry + T3Rp,, (47)

and T7, ..., Ts are arbitrary matrices over H with appropriate sizes.
(2) & (3) : It follows from Lemma 2.4 that

R4, C1 =0 & #(Cy, A1) = 1(A1), DiLp, =0 = r(gll) = 7(By). (48)

Hence, (12) <= (15). Then, the real quaternion matrix equations (29) has a solution, say Xy. So we have
A1 Xy = Cq, XoB1 = Ds. (49)
Now we want to prove (13) & (16) and (17). Note that

Ra,,C11 = 0 &= 1(A11, Ci1) = (A1) & r(A2La,, C11) = 7(An)
Ar
)

= G A (A (G A (A
r A1XoB, AT T \Ax CiB, Ay~ "\A1)°

Similarly, we can prove

_ Cs A3\ [As
RA22C22 —0=>1’(C1B3 Al) —T(Al),

vy 0 A

— Cu Az _ (A2 — Cy — A XoBy A
0 A

B Co A (A4
RA33C33 —0=>1’(C1B4 Al) —T’(Al),

Cilp, =0 = T(Aingl (B;:) =1(B1, Bis1), (i=1,2,3).
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We now pay attention to R4CLg = 0. Note that
AnYBi =Cn
has a specila solution Y
Yo = Af,CiiBI,.
Then we have
AnYoBi = Cu.

It follows from Lemma 2.4 and (50) that

RuCLp =0 & r(g g) =r(A) +r(B)

C Apls
= r(RBn BZZ 220 “) - r(AZZLAH) + r(RBllBZZ)

C Apn O
A
—r Bzz 0 Bn = r(AZZ) + T’(Bll, Bzz)
0 Ay O 1
Cyp —AxnYoByn Axp 0 Ay
—r B22 0 B11 = T’(A )+ T(Bu, Bzz)
0 Ay 0 1
C A 0
22 22 _ (An
(= Bzz 0 B11 =r All +1’(B]1, Bzz)
0 An —-Cn
—C2 + A2XOB2 AZLAl 0 AL
= Rg, B, 0 RpBs |= r( Angl
0 AsLy, C3—A3XoBs 3A

-G Ay O 0
B, 0 By B
0 Az Cs AszDq
0 A1 CiBs CiBy

Aq

—r =r

Az

Similarly, we can prove

RuRa,E =0 & (18), ELg Ly = 0 = (19),

Ra,ELp, =0 < (20), Rc,ELp, = 0 < (21).
O

Now we give an example to illustrate Theorem 3.1.

) + 1(Rg, B2, Rg, B3)

Az} + T’(Bl, Bz, B3) — (17)

322

(50)
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Example 3.2. Let

. P . ] -k 1
A= (_11+—]j . +]j _11+—li+—k1<)'B1 = [1 +2k ]
1+i 1+k

2-4i-j+k 1-2i-j+k  2j-2k 2-3k 2+i-k

1+3i+3j-k  i+j-k -1+i-3j+k itk -1-j+k
Ci = b e |
1+ 2k j

. .. . i-j+k j
_fjt+k 1+2i+j 1-i 3 .
AZ_( i K 1+]-,Bz— T+l i+k|,

2i k

AS:(—l—i—k 2-j+k -i-k i-k -k

1+j+k 2+j-k i+k)B B 2-3i+k i+k
, D3 — ,
1+j j

s . i+]' k
A4=(’ itk ?),BF 1+2i+k 1-j|.
oo T-i+k -

Now we consider the system of real quaternion matrix equations (2). Check that

(A1, C1) =1(A1) =2, V(gll) =r(B1) =2,A1D1 = C1By,

Cir1 A\ _ _[Ain) _ AimD1 Cia) _ L .
r(cle Al)‘r(Al)—&’( B, Bi+1)_r(B1'Bl+1)—3, (i=123),

—C2 A2 0 0

Aq
B2 0 B3 B1 _ _
T o As  Cs  AsDi|™ r ﬁz +71(B1, By, B3) =6,
3

0 Ay CBs (B

O O B2 B3 B4 Bl

Az Az —C2 0 0 0 122 1?)2

Az 0 0 Cs 0 AsDq| 3 ~
o A4+ o o0 ¢c o0 —ff? %4 +7(By, By, Bs, By) =9,

A, 0 -CiB, 0 -CiBy 0 01 P

0 A 0 0 C1By 0 1

0 B2 B3 0 Bl 0

0 BZ 0 B4 0 B1 A1

Ay -G 0 0 0 -ADi|_ (B, B; 0 By 0 A,
As 0 G5 0 AsDy -AsDi|-"\B. 0 Bs 0 Bi)FT|a;
Ay 0 0 G4 0 0 A,
A 0 0 GBy O 0
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0 B, By B A
Ay -C 0 0 {1

<

A, 0 Co A= A |+7(B1, By, Bs) =6,

Ay -CiB, 0 0 A4

0 B3 B4 Bl A
A; -C; 0 0 {1

<

A4 0 C4 A4D1 =7 A3 + V(Bl, B3, B4) =6.

A, -CiB; 0 0 A4

Hence, the system of real quaternion matrix equations (2) is consistent.

Now we consider some special cases of the system (2). Let A;,B1,Cq, D vanish in Theorem 3.1. Then
we can give solvability conditions and general solution to the system

A1 XBi1 = Cyy,
A2 XBoy = Cpy, (51)
A33XBsz = Ca3.

He and Wang considered the system (51) over complex field ([3]).
Corollary 3.3. Let Aj;, Bii, Cii be known over H, and X be unknown, (i = 1,2,3). Set

A =ApLa,, B =Rg,Byn,C=Cypn—ApnAl,C11B}Bn, D = Ra, Az,

As = (La,, La, Lag),Bs = ( Rp
33

Cs = A},C33BY, — AT, C1iBY, — La, A'CBY, + La,, A"A»D'RACB}, — D'RACB'Rg,,,
Ag = Ra;La,,, Be = Rpy,Lps, Co = RasLa,,, Do = Ry, Lgs,

E = Ry,CsLp,, M = Ra,Ce,N = DgLg,, S = CgL.
Then the system of real quaternion matrix equations (51) is consistent if and only if

R4,Cii =0,CiiLp, =0, (i=1,2,3), R4CLp =0,

RmRAE =0,ELg,Ln = 0,Ra,ELp, = 0,R¢,ELg, = 0.
In this case, the general solution to system (51) can be expressed as

X =A%, C1BY, + La, A'CB}, — La, A"A»D'RACBY, + D'R4CB'Rg,,
+ LA“LALll + UZRBRB“ + LAH u3RBzz + LAzz u4RB11/

or
X = AL,Cs3BY; — La,,Us — UgRg,,

where

u
(u;) = A;(C5 — LAH U3R322 - LAzz U4RBH) - A;T7B5 + LA5T6,
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(Ua, Us) = Ras(Cs — La,,U3Rp,, — La,, UsRp, )BE + AsALT; + TsRp,,
U = AYEB! — ALCeM'EB! — ALSCIELENTDBE — ALST.RND6B! + La Ts + T5Rg,,

Uy = M'ED} + S'SCIEN™ + LyLsTy + LuT2Ry + T3Rp,,
and Ty, ..., Tg are arbitrary matrices over IH with appropriate sizes.

Let Ay, B4, C4 vanish in Theorem 3.1. Then we can give solvability conditions and general solution to
the system

A1X = C1,
XBy =Dy,
A XBy = G,
A3XB3 = C3.

(52)

Wang, Chang and Ning considered the system of real quaternion matrix equations (52) ([24]).
Corollary 3.4. Let A1,B1,Cy,D1, Az, B2, Ca, Az, B3, Cs be known over H, and X be unknown. Set
Aji = Ai1La,, Bii = Rp,Bis1, Cii = Cix1 — A1 (AICy + La,D1B)Bis, (i=1,2),

A = ApLa,, B =Rp, By, C = Cyp — ApAl,C11B By, D = Ra, A

Then the following statements are equivalent:
(1) The system of real quaternion matrix equations (52) is consistent.

)
R4, C1 =0,D1Lg, =0,A1D1 = C1B4,

Ra,Cii=0,CiLg, =0, (i =1,2), R4CLp = 0.
3)

B
(A1, C1) = r(Ay), T’(Dll) =r(B1),A1D1 = C1By,

. Cii1 Ain _, Ain . AisD1 Cipg
CiBii1 Ay A’ By Bin

) =71(B1, Bis1), (i=1,2),

-G, A, 0 0 4
B, 0 By By |_ Al
0 A; C3 AsDy|™7 o
0 A CB; By 3

+1(B1, By, B3).

In this case, the general solution to system (52) can be expressed as
X = AICy + La,D1B} + La, YRg,,
where

Y =AY, C11B}, + La, A"CB}, — La, A"A»D'R4CB}, + D'R4CB'Ry,,
+ LAHLAU1 + quBRBH + LAH U3R322 + LAzz U4RBH,

where Uy, Uy, Us, and Uy are arbitrary matrices over H with appropriate sizes.
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4. The n-Hermitian solution to system of real quaternion matrix equations (1)

In this section, we consider the general n-Hermitian solution to system of real quaternion matrix
equations (1).

Theorem 4.1. Let A1, Cy, Az, A3, Ay, Co = C),C3 = CI',Cy = C]" be known over H, and X = X be unknown.
Set

Aii = AinLa,, Cit = Cisp — A1 (A]C1 + La,CT(ADMAT ., (i1 =1,2,3),

i+1/
A= ApLa,,C = Cyp— ApA} ,Cri(A])TAY, D = Ra, A,

A5 = (LAHLA/ LA33)/A6 = RA5LA11/B6 = RA;;LA;’*/

Cs =A},Ca(AL)™ = Al Clu(AL)™ - La, ATC(AL)™
+ Lyr AT A D RAC(AL)™ = DFRAC(AT)™ Ry,

E = Ra;CsLyy, M = RaBI,N = ALy, S = B Lu.

Then the following statements are equivalent:
(1) The system of real quaternion matrix equations (1) has an n-Hermitian solution.

@)

Ra,C1 =0, AiCT = AT, Ry, Ci =0, (i=1,2,3),

R4CLar =0, RiRa,E = 0, Ra,EL,r = 0.

3)
1Ay, C1) = (A1), A1C] = CLAT,

Ci+1 Ai+1 _ Ai+1 .
e, W)=r) ez
-G, A 0 0 "
m* * m* 1
o o T G ) (O /Y
0 A G AC A
0 A GAI' GAT ’
n* n* n* n+
0 0 Al AT Al Al 4 4
A A -G 0 0 0 2 Ay
A; 0 0 G 0 AT > As
r Ll=7rl 0 Agf+r ,
0 A 0 0 G 0 A0 As
Ay 0 -GAT 0 -GAI 0 0 A Ay
0 A 0 0 GAT o0 !
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0 AT AT AT

2 4 1 A
r 4 -G 0 0 =2r A1
Ay 0 Cy ACT|T AZ '

Al —GAT 0 0

In this case, the general n-Hermitian solution to system (1) can be expressed as

X + X
X =
2 7

where

5(\ = AIC1 + LA1 (:';]*(14‘{)17;e + LA1 YRA’ll*/

Y =A} Cia(A])" + Lo, ATC(AL)"™ = La, A"AnD'RAC(AZ,)™ + D'RAC(AT) "Ry
+ LAHLAl,Il + UQRAU*RA;l; + LAH U3RA127; + LAZZ U4RA;7;,
or

Y = ALCs3(AR)" — LaUs — UsRyr,

u %
(u:-,) = AN(Cs — La,, UsR gy, = Lap,UsRyrr) = AST7AT + Lo, T,

(Uz, Ug) = Rag(Cs = La, UsR g1 = Lan UsR 41 )(AD™ + AsALT7 + TsR yr,

Us =AJEB — A{BI'M'EB} — AlS(B})"EL4»N'AB}
— A}SToRNAT B} + La Ty + T5Rg,,

Uy = MTE(AD)™ + STS(BY)TENT + LyLs Ty + LyTaRy + TR,
and Ty, ..., Tg are arbitrary matrices over IH with appropriate sizes.

Proof. We first prove that the system of real quaternion matrix equations (1) has an n-Hermitian solution if
and only if the system of real quaternion matrix equations

AX =0y,

XAl =T,
AXAY =Gy, (53)
AsXAT = Cs,
AXAT =Cy

has a solution X. If the system of real quaternion matrix equations (1) has an n-Hermitian solution, say, X,
then the system (53) clearly has a solution X = Xj. Conversely, if the system (53) has a solution X, then

_)?+5(7V
T2

is an n-Hermitian solution to (1). We can derive the solvability conditions to the system of real quaternion
matrix equations (1) by Theorem 3.1.
O
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Now we give an example to illustrate Theorem 4.1.

Example 4.2. Let

-i—-j-k 1+i+j+2k j
Ar=|i+j+2k 1-j-2k 1+k
k 2+i 1+j+k

j+k 2i +2j 1
Az =| i+j -i+k -1
i+2j+k i+2j+k 0

0 1+j j+k

24+2i-j-k 2i+j-3k -1+2i-2j+2k
Ci = 0 -2-j+5k -i+2j+k ,
2+2i-j-k -2+2i+2k -1+i+3k

C=C=|3-5 8-2i 5+3i

-1-4i 3-51 4-i
4—-i 5+3i 1+4i

C3=Ch=|-1+3i+j-8k 4+4i+3k 3+7i+j-5k

8§-2i-k -1+3i-j-8k 7+i-j-9k
7+i+j-9 3+7i—-j-5k 10+ 8i-14k

Ci=C=| 12-3i-2k 6+11i-k  3-5i+3j+3k
—5-2i-5j-2k 3-5i-3j+3k —2+2i-6k

Now we consider the system (1) where X is j-Hermitian. Check that

r(All Cl) = r(Al) = 2r Alcgl* = CIA;Z*I

r( Cin Ai+1) _ 7(1?4“—1) =3, (l =1,2, 3)/
1

CAT,
-G A; 0 0 A
* e * 1

r A 04 Alr]x— =2r|Ax| =6,
0 As; (C3 AsC A
3

0 A CAT CAF

n* n* n* n*
0 0 A Al AT Al 4 A

Ay Ay -G 0 0 0 w0 Ay

A; 0 0 Cs 0  ACr > A;
r Tl=rl 0 A4|+r

0 Ay 0 0 G 0 A 0 As

Ay 0 —GAT 0 -GAT 0 o A Ay

0 A 0 0 GAT o0 !

n* n* n*
0 A Al Al

2
S R T I o
"l 0 G A4c;'*‘rAi"

A1 -CIAT 0 0

Hence, the system (1) has a j-Hermitian solution.

1 i+j
Ay =11+1 -1+i+j+k
i -1+k

-1 2i+j -i+k
JAg=|-i+j -2+k 1 ,

-1-11i 12-3i-2k -5-2i+5j-2k

i+k
-1+i-j+k
-1-j

|

328
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Let A; and C; vanish in Theorem 4.1. Then we obtain some necessary and sufficient conditions for the
existence of an 77-Hermitian solution to the following system of real quaternion matrix equations
AnXAT =Cy,
ApXAj, = Cp, (54)

E3

A33XA33 = Css.
We can also give the general n-Hermitian solution to the system (54).

Corollary 4.3. Let A;;, Cij = C;| be known over H, and X = X" be unknown, (i = 1,2,3). Set

A = ApLa,, C = Cy — ApAl, Cri(AT )T AT

2D =Ry, A,

As = (LAHLA’ LAas)/ Ag = RASLA11/B6 = RA;;LAQ*/

Cs =A},Ca(AL)™ = Al Clu(AT)™ — La, ATC(AL)™
+ Lyr AT A D RAC(AL)™ = DFRAC(AT)™ Ry,

E = Ra,CsLpr, M = RaB}',N =AlLg,,S = B L.

Then the system of real quaternion matrix equations (54) has an n-Hermitian solution if and only if
R Cii =0, (i=1,2,3), RaCLar = 0, RuR4E = 0, R4 EL v = 0.

In this case, the general n-Hermitian solution to system (54) can be expressed as

_ X + X

X
2 7

where
X =A} Cia(A})™ + La, A'C(AL)™ = La, AT AnD RAC(AL)™ + D'RAC(A")TR 4
+ LayLalli + UaRarRyr + Lay UsR gy + Lay, UsR
or

55 = A;3C33(A;3)n* —La,Us - U6RA§§’

u %
(u;) = AN(Cs = Lay UsRyr — LapUsR ) = ALT7AT + La, T,

(U2, LI6) = RA5(C5 - LAH U3RA;1; — LAzz l,I;}RAﬁ)(A;)q=6 + A5A;T7 + TgRAg*,

Us =AEB! — AIBI'M'EB} — ALS(BY)"ELAwNTA]'B}
— A}SToRNAT B} + La Ty + T5Rgp,,

Uy = MYE(AL)™ + STS(BEYTENT + LyLsT1 + LmTaRy + TsRyr,

and Ty, ..., Tg are arbitrary matrices over H with appropriate sizes.



X. Zhang / Filomat 36:1 (2022), 315-330 330
5. Conclusions

We have presented necessary and sufficient conditions for the existence and the general solution to the
system of real quaternion matrix equations (2). As an application of the system (51), we have also given
necessary and sufficient conditions for the existence and the general -Hermitian solution to the system of
real quaternion matrix equations (1). Some numerical examples are presented to illustrate the results.
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