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Abstract. In this paper, we extend the properties of rational Lupag-Bernstein blending functions, Lupas-
Bézier curves and surfaces over arbitrary compact intervals [a, ] in the frame of post quantum-calculus and
derive the de-Casteljau’s algorithm based on post quantum-integers. We construct a two parameter family
as Lupas post quantum Bernstein functions over arbitrary compact intervals and establish their degree
elevation and reduction properties. We also discuss some fundamental properties over arbitrary intervals
for these curves such as de Casteljau algorithm and degree evaluation properties. Further we construct
post quantum Lupas Bernstein operators over arbitrary compact intervals with the help of rational Lupas-
Bernstein functions. At the end some graphical representations are added to demonstrate consistency of
theoretical findings.

1. Essential preliminaries and review of previous results

Computer aided geometric design (CAGD) is a discipline which deals with computational aspects
of geometric objects. It emphasizes on the mathematical development of curves and surfaces such that
it becomes compatible with computers. In [2], Bernstein constructed polynomials called as Bernstein
polynomials. The Bernstein bases play a significant role in preserving the shape of the curves or surfaces.
Many popular programs utilize Bernstein polynomials to form what are known as Bézier curves [6, 8, 9, 15,
18, 30, 35, 36].

Quantum calculus [37] has led to a new generalizations of Bernstein polynomials which was first initi-
ated by Lupas [20] and later on by Phillips [34].

Recently, extension of quantum calculus to post quantum calculus in Approximation Theory has been
initiated by Mursaleen et al [24]. They constructed and studied post quantum analogue of Phillips Bern-
stein operators (polynomials) [34]. These generalizations of Phillips operators (polynomials) reduces to
classical Bernstein operators [2], for parameters p = q = 1. For more relevant works, we refer the reader to
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[1,7,13, 14, 21-23,25-27,29, 31, 38-42, 44].

The post quantum integers [h],, 4 for any p > 0 and q > 0 are defined by

”::gh, when p#qg#1
h-1 _
[y = P 20+ 3R 4+ pd 2 4 g _J ho", whenp=qg#1
[A],, whenp =1
h, whenp=q=1,

where [/1], denotes the g-integer of non-negative integer h.

The post quantum-binomial expansion is given by
L gy wen [
(au + bv)z,q = p 2z qz [ j| ah_kbkuh_kvk,
kZ:O‘ k P
(u+o I;,q = (1 + v)(pu + qU)(P°u + ¢?0) - - (V" u + ¢ o),

(1=, = (1= u)p-a)® - ou) @ -d"w),

where the post quantum binomial coefficients are defined by

K Lo [kl = Kot

Details on post quantum-calculus can be found in [10, 11, 24].
The post quantum Bernstein operators [24] are defined as follows. For0 < g < p <1,

L oy K]
Bipo(fu) = =5 Z[ k ] pout H (» —q'u) f(#), u€[0,1].
p 7 pa =0 phh]p,q

k=0

Post quantum Bernstein operators (1) reduce to Phillips q-Bernstein operators [34] for p = 1.

Herein, we recall and review some preliminary results of [16] for the sake of completeness.
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With the development of Post quantum calculus, Khalid and Lobiyal [16] constructed and studied (p, q)-
analogue of Lupag Bernstein operators which is an extension to the work of Lupasg [20]. They studied and
derived various results for rational Lupas Bernstein blending functions, Lupas Bezier curves and surfaces.

The operators L’:w : C[0,1] — C[0, 1] defined by

P [k h Rkl Kk h—k
Zh“ f( [h]p,ﬂw)[k] p 2z qz u(l-u

Lh (f Ll) — P.q

padS s ’

h
k=0 [P (1 =) + o/ 1u}
j=1

are post quantum analogue of Lupas Bernstein operators.
For p = 1, these turn out to be g-analogue of Lupas operators [31].

These operators (rational) reduces to classical Bernstein operators [2], if one chooses parameters

p=q=1.
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All these operators can be used to approximate any continuous function via Korovkin type approxima-
tion.
For other application of Bernstein polynomials, one can refer to [19] and [30].

The post quantum generalization by Khalid and Lobiyal [16] of Lupas operators L” .(f;u) have an
advantage of generating positive linear operators for all p > 0, g > 0, whereas post quantum generalization
of Phillips polynomials [24] generate positive linear operators only if p, g € (0,1).

Motivated by work of Khalid and Lobiyal [16], we study these on arbitrary compact intervals.

For other works related to Bézier curves and Approximation theory, one can refer [9, 15, 17, 30, 31, 33].

Mainly de-Casteljau’s algorithm has been used in this paper. The derived results and constructions are
important from computational point.
We have formulated this paper as follows: In Section 2, Lupas post quantum analogue of Bernstein
functions over [a, f] is defined and its various properties has been established. In Section 3, the Lupas post
quantum Bézier curves are studied. In Section 4, Bézier surfaces over the generalized tensor product on
the rectangular domain from the Lupas post quantum analogue of the Bernstein functions are discussed.
In section 5, post quantum-analogue of Lupas operators over arbitrary intervals are constructed and its
endpoints interpolation properties are presented. The effects of the shape parameters on the shape of the
curves and surfaces are shown in Section 6.

2. Construction of post quantum Lupas basis functions on [, f]

We present here an extension of Lupas type post quantum analogue (rational) of the Bernstein functions
over arbitrary compact intervals [a, f]:

for any p > 0 and q > 0, we set

h (=K)h—k=1)  k(k=1) _
[k] Pz (w-a)f@-wtt
P,q

Vin(;a,p) = — 4 , 3)
[T 1B —u) + /"1 (u — a)}
j=1
where b%(u ;a,B), b}a’f;(u; a,pB), -, bl;’ﬁ(u ; a, B) are the post-quantum analogue of the Lupas q-Bernstein func-

tions [9] of degree h on the interval [«, B].
When p =1and a =0, g = 1, Lupas post quantum Bernstein functions over [«, f] turns out to be Lupas
g-Bernstein functions as given in [9], whereas when p = g = 1, and a = 0, f = 1 Lupas post quantum
Bernstein functions turns out to be classical Bernstein functions.

The Lupas post quantum Bernstein blending functions over the interval [«, §] for i = 3 are as follows:

03/, . _ ps(ﬁ - ”)3
braltt0 ) = = B =) + = ) (PR — ) + u— )

13, _ (* + pa+ ¢?) p(u — a)( — u)?
bya(u;a,) = B—a)pB—u)+aqu—a) MG -u)+q*(u-—a)
P a,f) = (v* + pa + %) au — a)*(B — u)

P\

B - )PP —u)+au—a) (pPP(B-u)+a*(u—-a))
°(u—a)

B —a)(p(B —u) +a(u—a)) (P*(B—u)+a*(u-a))

by, p) = (



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A. Khan et al. / Filomat 36:1 (2022), 331-347 334

1
0a 0a
Ppa al oo Ppa al
pia b
oa P
23 1 o8 23 1
o Coia
—_— ] 07| — X2 ]
] o6l ]
] o5k ]
S
] 04l ]
] o0s ]
] ozt ]
4 o1 b 4
o
01 02 03 04 05 06 07 08 09 1 -3 2 -1 o 1 2 3
q=5andp=10 a=5andp=10
(@) (b)
T T T T T T T T T 1
0
H o9 Poa
b
pa
g os b 1
b
4 07 —— B 4
1 o6l ]
1 o5k ]
—
_ s g o4l 1
,/ .
e AN g 03 1
1 o2k ]
Y o1 b 4
n n . , n >~ °
SR I = T 5 2 25 3 a5 P a5 s

q=5andp=10

() (d)

Figure 1: Lupas cubic Bezier blending functions on arbitrary intervals

Figure 1 and 2 show the Lupas post quantum-Bernstein blending functions of degree 3 for different
values of p and g. Here one can observe that at each point of the interval, sum of blending functions is unity.
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Figure 2: Lupas cubic Bezier blending functions on arbitrary intervals
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Theorem 2.1. The Lupas post quantum-analogue of the Bernstein functions over the interval [, ] possess the
following properties:

(1.) Non-negativity: blg,ﬁ(u,‘ a,)>0, k=0,1,---,h uelaPpl.
(2.) Partition of unity:
I
Z blé’,}é(“} a,p)=1, ucela,pl
k=0

(3.) End-point property:

1, ifk=0
bkh(a a ﬂ)

0, k+0

1,  ifk=h
Bia(B; e p) =

0, k+h

(4.) Post quantum-inverse symmetry:

Vi s a,p) = Mkhuaﬁy_whm+ﬁ—uaﬁ)

fork=0,1,--- ,h.
(5.) Reducibility: by choosing, p =1 and a =0, p =1, formula 3 will turnout to be the Lupas q-Bernstein bases.

Proof:
Here we only present the proofs of properties 2 and 4 as the properties 1,3 and 5 are obvious.

Property 2:
When u = a or f, the result is clear. In case u # &, , the post quantum analogue of Newton’s Binomial

formula will be applied:
Consider

h
h (k) k) ~
[k] P et -a)f -uw
0 P,q

k

L[] et

= (-0 + @w-a) (p(ﬁ—u) +au=a)) - (Wg - 1)+ (- )

I
= H (ps’l(ﬁ —u) + " M (u - a)).

s=1

Hence

h
Z b};’z(u; a,p)=1.
k=0



A. Khan et al. / Filomat 36:1 (2022), 331-347 336

Property (4) We need following relations to prove this result, :

Kk2h—k+1)

2
mm=mwm@[ZLf[ZL;z&@_
Consider
h e hk k
h—k] g ()T (B-u)
Uy (s, B) = ba

ﬂpﬂ@—w+w1w )}
]

[ e ] p(k)k 1) (=R)=k=1) k)(}xkl) (u—a)h‘k (ﬁ—u)k

(h)(h 1) (h)(h y N
[T{ = a) + o5 (B —u)

j=1

(=)' (B —u)

1 1
P q

—
= =

(h=R)(h-k-1)  (R)(k-1)
1 2

e
o=

h
15— ) + (B 1)

i
(a+p—-u

" (u; o, B).

bh

k
1
P’

h
l
a’

S >\~ :\-A

3. Degree evaluation for Lupas post quantum Bernstein functions over [«, f]

With the help of this algorithm one can construct a new control polygon by taking a convex combination
of the old control points which retains the previous points. For this, the identities (4),(5) and Theorem (3.1)
will be useful.

qh(u—a) kh pn klp,q k+1h+1,, .
PGB+ o (i—a) byq(u; a, B) = ( _W)b (u; a, ), (4)

pEh+1 =Ky,

(B — u) ki . _ a \y e
(u;a, B) = ([h+—1]pq)b (u; , B). )

P(B —u) +a" (u— a)b”’q

Theorem 3.1. Each Lupas post quantum analogue of the corresponding Bernstein function of degree h over the
interval [, B] is a linear combination of two Lupags post quantum analogues of the Bernstein functions of degree h + 1
over the interval [a, B].

pF[h+1-k],

,q bk,h+1(u_ )+ 1 _ k+l[
[h + 1]p q o ’a’ﬁ

]D q ) bk+1 h+1 (u/ @, ﬁ) (6)

kh
b (1/[ (X,ﬁ) ( W
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Proof:

o (u-a) N o (u-a) )
PB-u+a"w—a) PE-u)+d"W-a)

[ Z ] p(h R (i—k-1) k(kl (1 — Dé)k (ﬁ—u)h K
P,q

W (w0, B) = b s, ﬁ)(l -

_ P'(B — u) (
e B R )

j=1

[ Z ] p(h R(h—k-1) k(k 1 (Ll B oz)k (ﬁ 3 M)
P,q

a" (u-a) (
PO SO -+ 0 - o)
j=1
Using 4 and 5, we have
I h pk [h +1- k]p,q kh+l,. . k+1 [ B ]DG k+1 h+1
b (M (X,ﬁ) (W) bv,q (M,CY,IB)'F(l W)b u, ,ﬁ)
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Theorem 3.2. Each Lupas post quantum analogue of the Bernstein function of degree h over the interval [a, f] can
be expressed as a linear combination of two Lupas post quantum analogues of the Bernstein functions of degree h — 1

over the interval [a, B] as follows:

khoo. _ " (u-a) k=1h-1, . PB - w) kh 1
Pl = GG s g GO G g o P
—k o k-1 k(@ _
Ty S e et T . i A RS P

T ) T )

Proof: From the Pascal’s type relations of the post quantum Binomial coefficient, we have

h-1 (=K)h=k=1)  k(k=1) B
+q"[ B ] )niz az (u-af@-u*
P,q P,q

[T{p"1(B — u) + &/ 1 (u — )}

j=1

)

(8)
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or
h—1 M(kl(kﬂ —_ k1 (g —
bk,h(u‘af B) = Yk (- ) [ k ]pq ’ ey v
P\ T -
PN —u) + " (u—a) hHl P16 - u) + o/ (u — a))
=1
W t1gk8 — ) [hil] P = a)f (B w)
— p.q
VB )+ ) hHl e e R
=
) Pk — a) k 1 1 P (B - u) kh 1
TP B—uw) + o (- a) e p)+ P B —u) + o (u — a) e (0P
or
R
ﬁ(u ;a,B) = -

ﬁl (W18 - 1) + 0L - @)
j:

_ 1 (u-a) klhl
BRI e e R

p(B—u)

TG+ g T wah)

4. Lupas post quantum Bézier curves over arbitrary compact intervals [«, fi]

We define the Lupas post quantum Bézier curves of degree h over the interval [a, f] using the Lupas
post quantum analogues of the Bernstein functions over [a, f], as follows:

h
P v, )= Y P b a,p) 9)
i=0

where P; € R® (i = 0,1,---,h), p > 0 and q > 0. P; are control points. Joining up adjacent points P,
i=0,1,2,---,h to obtain a polygon which is called the control polygon of Lupas post quantum Bézier
curves over [a, B].

4.1. Properties

Theorem 4.1. Some basic properties from the definition of Lupas post quantum Bézier curves over the interval [a, f]
are as follows:

1. Lupas post quantum Bézier curves on the interval [a, B] have geometric and affine invariance.

2. Lupag post quantum Beézier on the interval [a, ] lie inside the convex hull of its control polygon.

3. P(a; p,q) = Po, P(B; v,9) = Pn (End-point interpolation property).

4. The Lupas post quantum Bezier on the interval [a, f] obtained by reversing the order of the control points is the
same as the Lupas post quantum Bézier curves with q replaced by < and p replaced by (Post quantum inverse
symmetry).

5.Ifp=1,a=0,p =1, then (9) reduces to the Lupas q-Bézier curves.

Proof: Above properties of Lupas post quantum Bézier curves over the interval [«, ] can be obtained
from corresponding properties of the Lupas post quantum analogue of the Bernstein basis functions over
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the interval [«, f]. Here we only discuss the proof of property 4.
Let P} = Pn-i, i=0,1,---,h, then we have

h
P p,0) = ) P; Uit o, )
k=0

k=0
1
= Pla+p-u;—,-).
a
Theorem 4.2. The end-point property of derivative:

h
P'(a;p,q) = %(7’1 - %)

h
(B v a) = [qh]f’f (Pn — Pn-1)

339

i.e., Lupag post quantum-Bézier over the interval [a, B] are tangent to fore-and-aft edges of its control polygon at end

points.

Proof: Let

I
Enfh] e e
p,q

h —
Pl p,a) = Y Picbifiw) =
k=0 } {(p 1B —u) + /"L (u — a)}

]
_ V@)
W(u; p, q)

1

or

P(u; p,a) W p,q) = V(u; p, ).

On differentiating both hand side with respect to ‘u’, we have
P (u; p,0) W; p,0) + P p,0) W (s, 0) = V' (1; p, ).

Let

ha, h (=K)(h=k=1)  k(k-1) _
AP, ) =[k] Pz a7 (w-a)fo-u'
P,q

then

h
V@ p,0) = ) PRA v, 0)
k=0

(10)

(11)
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From property 2 of the Lupas post quantum Bernstein functions, we have

h
e,
W p,0) = ) AP (w;p,0)
k=0

as
a, v [hlpe | H=1 M S ~
(A (w; v, 0) =—[k]‘“'[ -1 ] P k(=) (g-u'™
.9 n,q
(1] h-1 Ghety )
pTE [ k ] ’ (h=F) (u = ) (B =)'
P9 na
h iy e ~
= {k}m ke A (s, 0) - i Z]‘ PN — k) Al s p, )
P9 p,q
_Ch h— 1“ﬁ(u,p,q) DZ . i 1aﬁ(u »0)
where
h h
C;{l — {k::llpq k— 1k DZ = [h[_];:]qpq Dh_k_l(h—k).
Then
h(h-1) 71(h 1)
Vi;p,)=Pop 2, W(wpq) =
V(@90 =(Cl P -DiP)p
’ (=1)(-2)
W(a;p,0)=(C; -Dj)p 2
hence
h
P'(a;p,q) = [ ]"“(Pl Py).

By similar computatlon, we have

h(h=1)

h(h-1
V(B;p,a) =Pn QT WEBp,a)=q =

(h=1)(h-2)

V'(B;p,q)=(Cl Pn—D} Pra)a 2

W (B;p,0)=(C! D) q 0=nod
hence
h
e = [qh]fiq Ph-1)-
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4.2. Degree elevation for post quantum Lupas Bézier curves over the interval [a, f]

341

Using the technique of degree elevation for Post quantum Lupas Bézier curves over the interval [«, f],
one can attain more control over the shape of a given curve and the parameters will provide the flexibility.

h
Pai;p,0) = ) P ba(nap)
k=0

h+1

P p,0) = Y P e wa,p),
k=0

where

k k
o T+ 1-k,, P+ 1 -kl
Pi= (1 TS ) k1 ( i+l ) Pic fora<p.

Using the identities (4) and (5), the above statements can easily derived. Consider

(B —u) _ o (u—a)
FE-mrda) e g i)

P(u; p,q) =

P(u; p, ),

we obtain

: h+1-kl,, L [ -
Plurp,0) = )+ [U1++—1L)L’”)Pibﬁtﬁ*l<u,a ﬁ>+2( [h[ 3 ]‘“‘)P%k“h“( 4;a,f).
k=0 2l

Now by shifting the limits, we have

h+1 h+1
[h+1-k] Ph+1 kl,, ,
P9 = (0 Ty P e+ 1 (1 SR e,

[h + 1]p,q h + 1]13/11

k=0
where the zero vector is denoted by £°,. Comparing coefficients on both side, we have
- _(1_pk[h+l—k]p,q) (pk[h+1—k]m)
kT [h+11,, et [ +11,, o

wherek=0,1,2,--- ,h+1land P-4 = Pps1 =0

(12)

When p =1, @ = 0,and = 1 Formula (12) reduces to the degree evaluation formula of the Lupas g-Bezier
curves. If P = (Po, P1,- -+ ,Pu)T denotes the vector of control points of the initial post quantum Lupas Bezier

curve of degree h over the interval [a,]; and PV = (P;, P}, , P},

|) be the vector of control points of

the degree elevated post quantum Lupas Bezier curve of degree h + 1 over the interval [a, f], then we can

represent the degree elevation procedure as follows:

P(l) = Th+1pl
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where
The =
[h+ 1]y, 0 0 0
[+ 1 = plhlyg  plhlyg 0 0
1 : : . : :
[h+ 11, 0 R /R | N ) P21, 0
0 0 [h+1]p,q — ph[l]n,a ph[llp,a
0 0 0 [+ 1]y, |
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(h+2)x(h+1)

For any I € IN, the vector of control points of the degree elevated post quantum Lupas Bézier curves of
degree h + I over the interval [a,B] is: PO = Ty -+ Thso The1P. As I — oo, the control polygon P
converges to a post quantum Lupag Bézier curve over the interval [, ].

4.3. Post quantum de Casteljau algorithm for Lupag Bézier curves over [a, ]

We can get the two selectable algorithms to evaluate post quantum Lupas Bézier curves over the interval
[« B]. The algorithms are as follows:

Algorithm 1.

Pup,q)=P=P; i=0,12,h

Pr(u; 0, 0) = g P11, 0) + g P, ) (13
r=1,---,h, i=0,1,2--- ,h—r,
or
Plu;p,q)=P)=P; i=0,1,2---,h
Pr(1;p,0) = gt ot pret(yp, ) 4 o2 AD oty g) 4
r=1,---,h, i=0,1,2--- ,h—r,
Then
h-1
P p,0) = Y PLup,0) = = ) PHup,0) Uiy (0) = o = P (14;9,9) (15)
i=0

Obvious results can be derived from Theorem 3.2. When p = 1, formula (13) and (14) recover the de
Casteljau algorithms of Lupas ¢-Bézier curves. Let P° = (Po, Py, -+, Pp)’ and P = (P}, P}, -+, P;_ )" then
Algorithm 2.

Pr(u;p,q) = My (u; v, 0) - - MY (s p, )M (u; v, ) P° (16)

where Mf’ﬁ(u; p,q)isa (h—r+1) X (h —r + 2) matrix and
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zx/i

(;p,q) =
BT (p-u) " (u-a) 0 0
P (B-u)+ =T (u-ar) P (B—u)+a T (u-a)
0 o7 () ' =) 0 0
P o)+l T (u—a) Pt '(ﬂ )+l (u—a)
0 T (-u) " (u-a) o
VT () +o T (u—a) o () +d T (u—a)
0 0 W (Bu) )
T ()4t T (u—a) T (B-u)+ah T (u-at)
or
M, 0) =
VT () W w—a) 0 0
p””([)’—u)h‘qh”(u—a) vl””(ﬁ—u)ﬂ]h”(u—n)
0 1 - ) o 0
(B-w)+a =T (u-a) =T (B—)+d T (u-a)

p o'~ 1(p-u) 2" (=)
ph"(ﬁ—zl)ﬂyh”'(u—a) pl”’(ﬁ—u)+q,”’(u—a)
" (B-u) T (u=a)
0 0 = = U= =
P (B-u)+a" T (u-a) P (B-w)+a T (u-a)

0

5. Tensor product post quantum Lupas Bézier surfaces on [«, f] X [, f]

We define
m h
P(u,v) = ZZP b (e, B) b (0, B), (u,0) € [a, B X [, B, (17)
i=0 j=0

a two-parameter family $(u, v) of tensor product surfaces of degree mxh, where P; ; € R} (i=0,1,---,m,j=

0,1,---,h), where blqul (u), b{,jz 1, (0) are Lupag post quantum-analogue of Bernstein functions with the
parameters p1, q; and py, qp, respectively. We call the parameter surface tensor product as the Lupas post

quantum-Bezier surface with degree m x h. Here #; ; denotes the control points.

5.1. Properties

1. Affine invariance and geometric property: Since

m h
Z bm,al(u a, ) bnz o p)=1, (18)
i=0 j=0

P(u,v) is an affine combination of its control points.

2. Convex hull property: P(u, v) represents convex combination of #; ; which lies in the convex hull of its
control net.

3. Isoparametric curves property: The iso-parametric curves v = v* and u = u* of a tensor product post
quantum Lupag Bézier surface on [«, f] X [a, §] are the post quantum Lupas Bezier curves of degree m and
degree h over the interval [a, ], respectively. Namely

Plu,0") = Zm"(ZP,] b @it ) Uit (5, ), 1€ Lo, B

i=0
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h m
Pu',v) = Z(Z P (s, ﬁ)) vy @ B), velapl,
=0 =0

P(u, a), P(u, B), P(a, v) and P(B, v) denote the boundary curves of P(u, v).
4. Interpolation property at corner point: The corner control net coincides with the four corners of the
surface. Namely, P(a, a) = Poo, P(a, B) = Pon, PB, &) = Puo, PB,5) =P
5. Reducibility: For p; = p» =1, @ = 0, and = 1, the formula (17) reduces to a tensor product Lupas
g-Bézier patch.

5.2. Degree elevation and post quantum de Casteljau algorithm for Lupas Bézier surface on [a, f] X [, ]
Let P(u, v) be a tensor product post quantum Lupas Bézier surface of degree m X h on [a, f] X [a, ].

m h m+1 h+1
7 * jh+1
P,o) =YY Pij bt (w0, 8) b, (00,6) = ZZP o U s, ) B (03 0, B). (19)
i=0 j=0 i=0 j=0
Pl [m+1-il,, (h+1-j1,
Pii=aiBiPiaj1+ai (L-B) Pigj+ (1 —ai) B Pijo + (1 —ai) 1= Bj) Py (20)

and its matrix form is

J [h+1-]
Pij1 Pirj||1 - 2 Taw L P

h+1]

pA . P . [ 'Dzlqz
i,j-1 1,] Dé [;Hl,]]pz,qz
[h+1]

o S A e S N
[m+1],, o, [m+1],, 4,

1-

2,02

The de Casteljau algorithms can be extended to evaluate points on a post quantum Lupas Bézier surface
over [a, f]. Given the control net P; ; € R3i=0,1,---,m, j=0,1,---,h.

00, 4 =P _p. . o cm =
P p) =P =Py i=01,20m =012k
h—r
_ r—1,r—1 r—1,r—1 ] (-0
N oI (1) '™ (u-a) 1’1// i,j+1 U’Z”'r(ﬁfv)Jrag'r(vfa) (21)
P, v;0,B) = | P (B—)+q" 7 (u—a =T (B_ 1)+ (i—a r—1,r-1 r—1,r-1 _
ij P=v (/‘ oy ) R (e ) i1,j41 & (o-a)
Wi 0=0) el " (0-a)
r=1,-- ,k k=min(m,h) i=0,1,2-- ,m—r; j=0,1,--h—r
or
00, o =P _p. . - cemy =
pi,]' (u,p,a,ﬂ)_?’i,j ‘Pl,] i=0,1,2--- ,m; j=0,1,2---h.
h j-rj
i —1r-1 r—1,r-1 B v
m—i— rz M=1=T ol (. Pl L —2 2"
1’"< B) i1 l:'] 11:1ﬁ ru) i pv] ﬂlr‘ft“ ra) lr//lr 1 ly//qlr 1 uh " U)H]h 7(1 —) @
L (u,v;a,B) = =T (B =T (1= —1,r— —1,r-
¥ A I T R T A ey | RN

N ’(p z)+qh "(0-a)
r=1,---,k k=min(m,h) i=0,1,2---,m-r; j=0,1,---h—r

For m = h, one can use the algorithms above directly to evaluate a point on the surface. When m # h, to
evaluate a point on the surface after k applications of formula (21) or (22), we perform formula (16) for the

intermediate point Pi.";‘.
Note: We get Lupas g-Bézier curves and surfaces for (1,v) € [a, ] X [a, f)] when we set the parameters
m=m=1a=0and g =1 as proved in [9].
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6. Some observations and concluding remarks

6.1. Post quantum analogue of Lupas operators over [a, f]
In this section, we present post quantum analogue of Lupas Bernstein operators over [, ] as follows:
For any p > 0 and q > 0, the linear operators Lﬁf{’ﬁ :Cla, B] = Cla, 8]
— )" [Klya h (=R)h—k=1)  kk=1) _
f(a+(ﬂ a)[zlp,q[]/)[k] pz gz (w—a)f@-uwk
pa

h
ha, ,
Ly, ﬂ(f" u) = Z p , (23)

k=0 [T 7Y B = u) + o/ 1 (u — )}
j=1

is post quantum analogue of Lupas Bernstein operators on [«a, ].

Again when p =1, @ = 0 and § = 1, the post quantum Lupas Bernstein operators turn out to be Lupas
g-Bernstein operators as given in [31].

Whenp=q=1, a =0and = 1, the post quantum Lupas Bernstein operators on [, f] turn out to be
classical Bernstein operators.

From the definition of the operators Lﬁ’ﬁ’ﬁ (f,u), it is clear that they posses the end point interpolation
property, that is

LuP(f,a) = f(@), Lya™(f,B) = F(B)

forallp>0and g>0,andallh =1,2,---.

6.2. Shape control of post quantum Lupag Bézier curves on [, ]

We have constructed post quantum Lupas type Bernstein functions and curves over [«a, ] which holds
the end point interpolation property. It is clear from the figures that generated curve will be within the
convex hull of the control net (control polygon) for different values of p and q. For a given q such that
0 < q < 1, if one chooses p > 1 then the curve will move towards the control net (control polygon) with
further increase in the value of p. Similarly for same g, if one chooses p < 1 then the curve moves away
from control net (control polygon) as the value of p decreases. On the other hand, for q > 1 the effect of p
and g will be opposite.

60 60

55 F 55 F

50 - 50 -
45 45
a0 o a0

35 35

30 - 30

25 25
20 25 30 35 40 45 20 25 30 35 40 45
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q=2,p=1.8
= @ control polygon

(© (d)

Figure 3: The effect of the shape of Lupas post quantum-Bezier curves on arbitrary intervals

6.3. Importance of (v, q)-analogues

A relationship between the post quantum integers [k], , and quantum integers [h], is [l]y,q = ph‘l[h]%.
But it is not true in general that the results for the g-analogues can trivially be translated into the corre-
sponding results for the (p, q)-analogues (0 < p < q < 1). Most of the (p, g)-analogues operators and their
properties can not be obtained directly from g-analogues by simply substituting [1], = p'™[h]y . On the
other hand, (p, q)-analogues have some advantages over g-analogues, e.g. (i) for p = 1, the (p, q)-analogues
are reduced directly to the respective g-analogues, (ii) the choice of p > 1 gives that the upper estimates of
geometric order in Theorem 2.1 [26] hold in larger disks than those in the case when p = 1, (iii) for simu-
lation purposes through computers and CAGD, this extra parameter p has some advantages in modeling
flexibility etc. [16, 17].

Conclusion: Post quantum-Lupas-Bernstein operator as well as Bezier curves and surfaces over arbi-
trary compact intervals constructed with the help of rational Lupas-Bernstein basis functions are important
from computational point of view. The extra parameters p and g provide more flexibility in approximation
for simulation purposes. In this paper, we have extended the properties of rational Lupas-Bernstein blend-
ing functions, Lupas-Bézier curves and surfaces over arbitrary compact intervals [a, f] in the frame of post
quantum-calculus. The de-Casteljau’s algorithm based on post quantum-integers is derived. A two param-
eter family as Lupas post quantum Bernstein functions over arbitrary compact intervals are constructed
to establish their degree elevation and reduction properties. Some of their basic properties for Lupas post
quantum Bézier curves are studied. Some fundamental properties over arbitrary intervals for these curves
as de Casteljau algorithm and degree evaluation properties are discussed. Post quantum-Lupas-Bernstein
operators over arbitrary compact intervals are constructed with the help of rational Lupas-Bernstein func-
tions.

References

[1] EAM. Ali, S.A.A. Karim, A. Saaban, M.K. Hasan, A. Ghaffar, K.S. Nisar, and D. Baleanu, Construction of cubic timmer triangular
patches and its application in scattered data interpolation, Mathematics, 8 (2), 159.

[2] S.N. Bernstein, Constructive proof of Weierstrass approximation theorem, Comm. Kharkov Math. Soc. (1912).

[3] PE. Bézier, Numerical Control-Mathematics and applications, John Wiley and Sons, London, (1972).

[4] C. Disibiiyiik and H. Orug, Tensor Product g-Bernstein Polynomials, BIT Numerical Mathematics, Springer 48 (2008), 689-700.

[5] G. Farin, Curves and Surfaces for CAGD-A Practical Guide, 5ed, Elsevier, (2013).

[6] R.T.Farouki, V. T. Rajan, Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design, 5(1)(1988),1-26.

[7] A. Ghaffar, M. Igbal, M.Bari, S.M. Hussain, R. Manzoor, K.S Nisar, and D. Baleanu, Construction and application of nine-tic
B-spline tensor product SS, Mathematics 2019, 7(8), 675.

[8] R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modelling,
Elsevier, 2010.

[9] L. Han, Y. Chu, Z. Qiu, Generalized Bézier curves and surfaces based on Lupas g-analogue of Bernstein operator, Jour. Comput.
Appl. Math., 261 (2014), 352-363.



[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]
[36]

[37]
[38]
[39]

[40]
[41]

[42]
[43]

[44]

A. Khan et al. / Filomat 36:1 (2022), 331-347 347

M. N. Hounkonnou, J. D. Bukweli Kyemba, R(p,q)-calculus: differentiation and integration, SUT Journal of Mathematics,
49,(2)(2013), 145-167.

R. Jagannathan, K. Srinivasa Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hyperge-
ometric series, Proceedings of the International Conference on Number Theory and Mathematical Physics, 20-21 December 2005.

U. Kadak, On weighted statistical convergence based on (p, g)-integers and related approximation theorems for functions of two
variables, Journal of Mathematical Analysis and Applications, 443(2) (2016) 752-764.

S.A.A.Karim, A. Saaban, V. Skala, A. Ghaffar, K.S. Nisar, and D. Baleanu, Construction of new cubic Bézier-like triangular patches
with application in scattered data interpolation, Advances in Difference Equations 2020 (2020): 151.

U. Kadak, V.N. Mishra, S. Pandey, Chlodowsky type generalization of (p, q)-Szdsz operators involving Brenke type polynomials,
RACSAM, 112 (2018), 1443-1462.

Kh. Khan, Generalized Bézier curves and their applications in computer aided geometric design, Ph.D. Thesis, SC & SS, JNU New Delhi,
2019.

Kh. Khan, D.K. Lobiyal, Bézier curves based on Lupas (p, §)-analogue of Bernstein functions in CAGD, Jour. Comput. Appl. Math.,
317 (2017), 458-477.

Kh. Khan, D.K. Lobiyal, Adem Kilicman, A de Casteljau Algorithm for Bernstein type Polynomials based on (p, q)-integers, Appl.
Appl. Math., 13(2) (2018), 997-1017.

Kh. Khan, D.K. Lobiyal and Adem Kilicman, Bézier curves and surfaces based on modified Bernstein polynomials, Azerb. |.
Math., 9(1) (2019) 3-21.

P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corporation, Delhi, 1960.

A. Lupas, A g-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca,
9(1987), 85-92.

V. N. Mishra, S. Pandey, On (p, 9)-Baskakov-Durrmeyer-Stancu operators, Advances in Applied Clifford Algebras, (2016), DOLI:
10.1007/s00006-016-0738-y.

S. A. Mohiuddine, A. Alotaib, and T. Acar, Durrmeyer type (p, 9)-Baskakov operators preserving linear functions, J. Math. Inequal.
12(4)(2018), 961-73.

M. Mursaleen, K.J Ansari, Asif Khan, Approximation properties and error estimation of g-Bernstein shifted operators, Numer.
Algor., 84 (2020) 207-227.

M. Mursaleen, K. J. Ansari, Asif Khan, On (p, g)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), 874-882 [Erratum:
278 (2016) 70-71].

M. Mursaleen, A. Khan, Generalized g-Bernstein-Schurer operators and some approximation theorems, Journal of Function Spaces
and Applications Volume 2013, Article ID 719834, 7 pages.

M. Mursaleen, F. Khan and Asif Khan, Approximation by (p, g)-Lorentz polynomials on a compact disk, Complex Anal. Oper.
Theory, 10(8) (2016) 1725-1740.

M. Mursaleen, A. Naaz, Asif Khan, Improved approximation and error estimations by King type (p, 7)-Szdsz-Mirakjan Kan-
torovich operators, Appl. Math. Comput. 348 (2019), 175-85.

M. Mursaleen and Md. Nasiruzzaman and Ashirbayev Nurgali, Some approximation results on Bernstein-Schurer operators
defined by (p, g)-integers, Journal of Inequalities and Applications (2015), 249, DOI 10.1186/s13660-015-0767-4.

M. Mursaleen, Md. Nasiruzzaman, Asif Khan and K. J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators
defined by (p, g)-integers, Filomat 30(3) (2016), 639-648.

H. Orug, G. M. Phillips, g-Bernstein polynomials and Bézier curves, Jour. Comput. Appl. Math., 151 (2003), 1-12.

S. Ostrovska, On the Lupas g-analogue of the Bernstein operator, Rocky Mountain Jour. Math., 36(5)(2006),1615-1629.

G. M. Phillips, A De Casteljau algorithm for generalized Bernstein polynomials, BIT 36 (1) (1996), 232-236.

G. M. Phillips, A generalization of the Bernstein polynomials based on the g-integers ANZIAM], 42(2000), 79-86.

G. M. Phillips, Bernstein polynomials based on the g-integers, The heritage of P.L.Chebyshev, Ann. Numer. Math., 4 (1997),
511-518.

A.Rababah, S. Manna, Iterative process for G2-multi degree reduction of Bézier curves, Appl. Math. Comput., 217 (2011), 8126-8133.
T. W. Sederberg, Computer Aided Geometric Design Course Notes, Department of Computer Science Brigham Young University,
October 9, 2014.

K. Victor, C. Pokman, Quantum Calculus, Springer-Verlag, New York Berlin Heidelberg, 2002.

A. Wafi, N. Rao, Bivariate-Schurer-Stancu operators based on (p, q)-integers, Filomat, 32(4), (2018), 1251-1258.

Wafi A., Rao N. Szdsz-Gamma operators based on Dunkl analogue, Iran | Sci Technol Trans Sci 43, 213-223 (2019).
https://doi.org/10.1007/s40995-017-0433-4.

A. Wafi, N. Rao, (p, q)-Bivariate-Bernstein-Chlowdosjy operators, Filomat, 32(2)(2018), 369-378.

Rao, N., Nasiruzzaman, M., Heshamuddin, M., Shadab, M. Approximation properties by modified Baskakov-Durrmeyer oper-
ators based on shape parameter-a, Iran | Sci Technol Trans Sci (2021). https://doi.org/10.1007/s40995-021-01125-0.

A. Wafi, N. Rao and Deepmala, Approximation properties of (p,q)-variant of Stancu-Schurer operators, Boletim da Sociedade
Paranaense de Matematica, (2019), 37 (4), 137-151.

K. Weierstrass, Uber die analytische Darstellbarkeit sogenannter willkiirlicher Functionen einer reellen Veranderlichen Sitzungs-
berichtedr, Koniglish Preussischen Akademie der Wissenschcaften zu Berlin, (1885), 633-639, 789-805.

N.A.B. Zulkifli, S.A.A. Karim, A.B. Shafie, M. Sarfraz, A. Ghaffar and K.S. Nisar, Image interpolation using a rational bi-cubic
ball, Mathematics, 2019, 7(11), 1045.



